c

f AMERICAN
SOCIETY FOR
-

MICROBIOLOGY

ystems

RESEARCH ARTICLE

L)

Check for
updates

The Proportion of Soil-Borne Fungal Pathogens Increases with

Elevated Organic Carbon in Agricultural Soils

Shuai Du,*? Pankaj Trivedi,© Zhong Wei,? Jiao Feng,*® Hang-Wei Hu,® Li Bi,° © Qiaoyun Huang,*” Yu-Rong Liu*®

aState Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
bCollege of Resources and Environment, Huazhong Agricultural University, Wuhan, China

“Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA

dJiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National

Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China

eSchool of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia

ABSTRACT Soil-borne fungal phytopathogens are important threats to soil and
crop health. However, their community composition and environmental determi-
nants remain unclear. Here, we explored the effects of agricultural fertilization re-
gime (i.e., organic material application) on soil fungal phytopathogens, using data
sets from a combination of field survey and long-term experiment. We found that
soil organic carbon was the key factor that affected the diversity and relative abun-
dance of fungal phytopathogens in agricultural soils. The dominant genera of phyto-
pathogens including Monographella was also strongly associated with soil organic
carbon. In addition, the elevated soil organic carbon enhanced the node proportion
of phytopathogens and the positive interactions within the fungal community in the
network. Results of the long-term experiment revealed that applications of crop
straw and fresh livestock manure significantly increased the proportion of phyto-
pathogens, which were associated with the elevated soil organic carbon. This work
offers new insights into the occurrence and environmental factors of fungal phyto-
pathogens in agricultural soils, which are fundamental to control their impacts on
the soil and crop systems.

IMPORTANCE Fungal phytopathogens are important threats to soil and crop health,
but their community composition and environmental determinants remain unclear.
We found that soil organic carbon is the key factor of the prevalence of fungal phy-
topathogens through a field survey, which is also supported by our long-term (6-
year) experiment showing the applications of crop straw and fresh livestock manure
significantly increased the proportion of fungal phytopathogens. These findings
advance our understanding of the occurrence and environmental drivers of soil-
borne fungal phytopathogens under agricultural fertilization regime and have impor-
tant implications for the control of soil-borne pathogens.

KEYWORDS agricultural soil, fertilization management, fungal phytopathogen, organic
carbon, soil health

oil health is a global concern linking tightly to crop production and food security,

but it has been threatened by various soil-borne phytopathogens worldwide (1-5).
Soil-borne phytopathogens can infect a wide range of agricultural and economic crops
(6, 7), and have caused up to 78% loss in the productivity of cereal crops, vegetables,
and fruits (8). Many of the most aggressive phytopathogens are soil-borne fungi, which
have been predicted to increase by up to 3-fold by 2050 globally (9). Mounting studies
have focused on the occurrence and causes of certain fungal pathogens that prevail in
soil-plant systems and provided essential information on how soil pathogens such as
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Fusarium graminearum, Magnaporthe oryzae, and Bipolaris sorokiniana infect plants
including maize, wheat, and rice (6, 10-12). However, the prevalence and diversity of
the whole community of fungal phytopathogens in agricultural soils is still unclear,
although they are the potential causes of plant diseases (13-15). Therefore, decipher-
ing the community composition of soil fungal pathogens and their determinants is cru-
cial to protect crop health from diseases.

Soil microbial communities are susceptible to agricultural management practices
for sustaining crop productivity. A large body of literature has demonstrated the
effects of fertilization regime on the soil fungal community (16-18). Importantly, fer-
tilization regimes such as organic material application (e.g., crop straw or livestock
manure) are a key regulator of soil fungal community through introducing abundant
nutrients into soil (19, 20). Also, organic material application can affect soil proper-
ties such as pH and quality and quantity of organic matter that are associated with
fungal community composition (21-24). Fungal communities can be categorized
into different trophic guilds, including pathotrophs, saprotrophs, and symbiotrophs,
and they may have different demands for nutrients (25-27). For example, it has
been reported that nitrogen and phosphorus addition increased the proportion of
soil-borne fungal pathotrophs and decreased symbiotrophs, but had minimal effects
on saprotrophs (28). However, it is still poorly understood how organic material
application may affect different fungal trophic communities, especially pathogens in
agricultural soils.

The interactions within fungal communities are associated with ecological functions
such as nutrient cycling. Pathogenic fungi can interact with other fungi, competing for
nutrients and space in soils. For example, pathogenic Fusarium oxysporum competes
for carbon, nitrogen, and iron with nonpathogenic Fusarium and Trichoderma species
(29). Mycorrhizal fungi are reported to compete for space with fungal pathogens such
as Plasmodiophora brassicae and Plasmopara halstedii because of their tight associa-
tions with plant roots (30). However, the influence of soil organic matter on the interac-
tions between different fungal trophic guilds is still not clear. Consequently, under-
standing microbial interactions between soil fungal pathogens and other microbial
taxa is particularly important for possible control of them.

Herein, we aimed to evaluate how organic material application influences the diver-
sity, relative abundance, and community composition of soil-borne fungal phytopatho-
gens, and identify the key environmental predictors. We hypothesized that organic ma-
terial application facilitated the occurrence of fungal phytopathogens by influencing
soil chemical properties including organic carbon. To achieve this aim, we conducted a
field survey of agricultural soils in the major grain-producing areas of China, combining
a long-term field experiment including multiple organic fertilizer applications. We used
fungal internal transcribed spacer (ITS) amplicon sequencing to characterize the diver-
sity, relative abundance, and community composition of soil-borne fungal phytopatho-
gens, and then identified key regulators associated with these pathogens in agricul-
tural soils. These results were expected to move toward our understanding of soil-
borne fungal phytopathogens in agricultural systems.

RESULTS

The diversity, relative abundance, and environmental predictors of fungal trophic
guilds in agricultural soils. We identified 276, 1102, and 204 phylotypes (OTUs) classi-
fied as potential phytopathogens, saprotrophs, and symbiotrophs out of all the 6,075
fungal phylotypes. The potential phytopathogens, saprotrophs, and symbiotrophs
accounted for 4.5%, 18.1%, and 3.4% of all fungal phylotypes, and accounted for
10.9%, 18.7%, and 0.4% of all fungal reads, respectively (Fig. 1a). The phylotype rich-
ness and reads proportion of saprotrophs were significantly higher than those of phy-
topathogens and symbiotrophs (P < 0.01, ANOVA; Fig. 1b). A complete list of the
potential soil-borne fungal phytopathogens, saprotrophs, and symbiotrophs included
in the field survey can be found in Table S1 in the supplemental material.

We explored the effects of soil properties on the diversity (phylotype richness) and
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FIG 1 The proportion of phylotypes and reads of different fungal trophic modes, and the effects of soil
properties on them in agricultural soils. (@) The proportion of phylotypes and reads of different fungal trophic
modes. (b) Phylotype richness and reads proportion of three fungal trophic modes. One-way ANOVA indicates
the difference between fungal trophic modes, and different letters indicate significant difference (P < 0.05)
based on Duncan test. (c) Soil properties associated with the diversity and relative abundance of all fungi and
three trophic modes evaluated by Spearman correlation and best random forest model. Colors represent
Spearman correlations. Circle sizes represent the variable's importance (that is, decrease in the prediction
accuracy). TC, total carbon; TN, total nitrogen; TS, total sulfur; C/N, carbon-nitrogen ratio; SOC, soil organic
carbon; DOC, dissolved organic carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN,
microbial biomass nitrogen.

relative abundance (reads proportion) of all fungi and three trophic guilds (i.e., phyto-
pathogens, saprotrophs, and symbiotrophs) in agricultural soils. The richness of all
fungi, phytopathogens, and saprotrophs were positively correlated with soil organic
carbon (SOQ), total carbon (TC), and NO;~-N (Fig. 1c). The proportion of phytopatho-
gens was positively correlated with SOC, TC, and total sulfur (TS), while no significant
correlations were observed between these soil properties and other two trophic guilds
(Fig. 1¢). The result of random forest showed that phytopathogens had the highest
explained variation by soil properties. A complete list of soil chemical properties
included in the field survey can be found in Table S2. The community structure of all
fungi and three trophic guilds were also associated with SOC (Fig. S1).

The relative abundance of fungal phytopathogenic genera and their correlations
with soil properties. We identified 13 dominant genera of fungal phytopathogens (the
relative abundance more than 0.01%) such as Gibberella, Clonostachys, Monographella,
Phoma, Volutella, Leptosphaeria, and Neonectria, accounting for 88.1% of all phytopath-
ogens in abundance (Fig. 2a). Among them, Gibberella was the most abundant phyto-
pathogenic genus, with the relative abundance of 5.7%. The pathogenic genera
Monographella and Pestalotiopsis were positively correlated with SOC, while Volutella
and Neonectria were positively correlated with TC, and the genus Gibberella was posi-
tively correlated with total nitrogen (TN) and TS (P < 0.05, Fig. 2b).

Network interactions between trophic guilds within fungal community. The co-
occurrence network was used to explore the potential interactions between different
fungal guilds in agricultural soils. The soil samples were separated into two groups
based on the median value of SOC content (~20 g kg~") in all samples. The node pro-
portion of phytopathogens in the high SOC group (> 20 g kg~") was 1.40 times that in
the low SOC group (< 20 g kg~") (Fig. 3a). The proportion of positive correlated edges
increased 4.78% from low to high SOC groups, and the proportion of interactions
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FIG 2 The dominant genera of fungal phytopathogens and the effects of soil properties on them in agricultural soils. (a) The dominant genera (the
relative abundance more than 0.01%) of fungal phytopathogens in agricultural soils. (b) The regressive relationships between soil properties (i.e.,, SOC, TC,
TN, TS) and the relative abundance of all fungi, phytopathogens, saprotrophs, and symbiotrophs. SOC, soil organic carbon; TC, total carbon; TN, total

nitrogen; TS, total sulfur.

within phytopathogens increased 9.68%, but the average degree decreased 1.98
(Fig. 3a). The fungal hub nodes were 34 and 11 in the two networks, with an increasing
proportion of phytopathogenic hub nodes from 14.71% to 54.55% (Fig. 3b). The phyto-
pathogenic hub nodes were represented by Phoma in the low SOC group, and
Gibberella, Macrophomina, and Adisciso in the high SOC group (Fig. 3b).

Effects of long-term organic material applications on soil fungal phytopathogens.
To experimentally corroborate the observations in the field survey, we analyzed the
effects of fertilization regime on soil fungal phytopathogens from a 6-year field experi-
ment. We focused on the effects of application of organic materials on fungal phyto-
pathogens, which can be an important way introducing diverse pathogens. We identi-
fied 33 phylotypes classified as potential phytopathogens out of all the 815 fungal
phylotypes in all the treatments. A complete list of the potential soil-borne fungal
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FIG 3 Networks visualizing the co-occurrence patterns between phytopathogens, saprotrophs, and symbiotrophs. (a) The co-occurrence networks
between phytopathogens, saprotrophs, and symbiotrophs in low and high SOC groups. The node size is proportional to the degree of taxa, and
the nodes filled in different colors are different trophic modes of fungi. The edges are colored according to interaction types, positive correlations
are colored in red, and negative correlations are colored in blue. Ph, phytopathogens; Sa, saprotrophs; Sy, symbiotrophs. (b) The distribution
patterns of the hub nodes in low and high SOC groups. The hub nodes were defined as degree > 5, and closeness centrality > 0.2.

phytopathogens, saprotrophs, and symbiotrophs included in the experiment can be
found in Table S3.

Long-term applications of wheat straw and livestock manure (i.e., cattle and pig ma-
nure) significantly enhanced SOC content (P < 0.05; Fig. 4a), while other soil properties
had different responses to different types of organic material applications (Fig. S2). The
applications of pig manure significantly enhanced the richness of all fungi, phytopatho-
gens, and saprotrophs (P < 0.05, Fig. 4b). The relative abundance of phytopathogens was
strongly increased in the treatments of straw, cattle, and pig manure from that of the con-
trol (P < 0.05; Fig. 4c), while the relative abundance of saprotrophs was only increased in
the treatment of cattle manure, and both the richness and the proportion of
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FIG 4 Soil properties, fungal trophic guilds, and the dominant genera of phytopathogens in the long-term experiment. (a) Comparison of soil organic
carbon in different fertilization treatments. (b) Comparison of the diversity of all fungi, phytopathogens, and saprotrophs in different fertilization
treatments. (c) Comparison of the relative abundance of phytopathogens, saprotrophs, and the dominant genera of phytopathogens in different
fertilization treatments. (d) Comparison of the relative abundance of shared phytopathogens, saprotrophs, and the dominant genera of phytopathogens
in the control and fertilization treatments. Columns with asterisks in the treatments are significantly different from the control (*. P < 0.05; **, P < 0.01;
*** P < 0.001). ST, crop wheat straw; CM, fresh cow manure; PM, fresh pig manure.

symbiotrophs were not different between the treatments and the control (P > 0.05; Fig.
S3a and b). In particular, the relative abundance of the dominant genera of phytopatho-
gens such as Monographella and Magnaporthe was significantly increased in the treat-
ments of straw and cattle manure (P < 0.05; Fig. 4c). The application of pig manure signif-
icantly increased the proportion of phytopathogenic genera Penicillium, Devriesia, and
Pestalotiopsis (P < 0.05; Fig. S3c). We further found that the relative abundance of shared
phytopathogens and dominant genera were significantly higher in the treatments of
straw and cattle manure than that of the control (P < 0.05; Fig. 4d), suggesting that the
applications of organic materials increased the relative abundance of soil indigenous phy-
topathogens. The three fertilization treatments also altered the community structure of
all fungi and three trophic guilds (P < 0.05, PERMANOVA; Fig. S4).

The results of path analysis revealed that the application of organic materials directly
influenced the proportions of phytopathogens and the dominant genera including
Monographella and Magnaporthe (Fig. 5). In addition, fertilization treatments also had
indirect effects on phytopathogens through the associations with soil properties includ-
ing SOC, C/N, and pH (Fig. 5). After accounting for the standardized total effects of fertil-
ization treatments, the results showed that the application of organic materials had
strong effects on phytopathogens, followed by Magnaporthe and Monographella (Fig. 5).
A complete list of soil chemical properties included in the experiment can be found in
Table S4.
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FIG 5 The effects of fertilization treatments on soil properties and phytopathogens in the long-term experiment. Path analysis assesses
the direct and indirect associations of fertilization treatments and soil properties with the relative abundance of fungal phytopathogens
and its two dominant genera. The standardized total effects (sum of the direct and indirect effects) of fertilization treatments are
calculated on the relative abundance of fungal phytopathogens. The models fit the data well, as suggested by x? = 6.078, P = 0415,
df = 6, GFI = 0.917, AIC = 104.078, and RMSEA = 0.034 (for phytopathogens); x* = 0.836, P = 0.658, df = 2, GFl = 0.986, AIC = 106.836,
and RMSEA = 0 (for Monographella); x? = 8992, P = 0.174, df = 6, GFl = 0.892, AIC = 106.992, and RMSEA = 0.213 (for Magnaporthe),
respectively. The solid line represents the positive effects and the dashed line represents the negative effects. Only significant path
coefficients are displayed, with the significance levels indicated: *, P < 0.05; **, P < 0.01; ***, P < 0.001. The width of arrows is
proportional to the significance levels. SOC, soil organic carbon; TC, total carbon; C/N, carbon nitrogen ratio; DOC, dissolved organic

carbon; DON, dissolved organic nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen.

DISCUSSION

Understanding the occurrence of fungal pathogens in agricultural soils is an essen-
tial to control plant diseases in crop production. However, we lack understandings of
the distribution patterns and influence factors of fungal phytopathogens in agricultural
soils. Here, we demonstrate that organic material application is a key regulator of soil
fungal community of phytopathogens. Crop straw and fresh manure significantly ag-
gravate the prevalence of soil-borne pathogens by increasing the content of soil or-
ganic carbon. These results provide new insights into the ecology of these phytopatho-
gens and potential mitigation of soil-borne pathogens in response to intensified
agriculture.

In this study, the proportion of phytopathogenic reads was far higher than the propor-
tion of phytopathogenic phylotypes, while the proportion of saprotrophic reads was simi-
lar to the proportion of saprotrophic phylotypes. This result implied that phytopathogenic
fungi might exert more important ecological effects than saprotrophic fungi, although
the relative abundance of phytopathogens was lower than saprotrophs. Soil with high
abundance of phytopathogens could be prone to result in plant diseases (31, 32). The
positive correlation between soil organic carbon content and the proportion of phyto-
pathogens within the whole fungal community suggests that soil organic matters can
stimulate phytopathogens. Our results implicate that organic carbon has larger effects on
phytopathogenic fungi than saprotrophic and symbiotrophic fungi in agricultural soils. It
has been documented that phytopathogens, saprotrophs, and symbiotrophs were mainly
influenced by soil properties, climate, and plant community, respectively, based on the
global distribution patterns of fungal guilds (28). Fungal phytopathogens could acquire
nutrients to grow and reproduce with different strategies, and are affected by nutrient
availability (33). It has been reported that pathogens could deactivate plant defenses
from preventing nutrient acquisition (34). The infection of pathogenic fungi like the
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filamentous fungus Aspergillus fumigatus includes key metabolic pathways, with amino
acids served as nutrients during infection (33).

Our study identified several dominant genera of fungal phytopathogens in agricul-
tural soils, which had the potential to cause plant diseases. For example, the genus
Gibberella (also considered as Fusarium) is ubiquitous in agricultural soils, and most
species of this genus (such as Fusarium oxysporum, Fusarium fujikuroi, and Fusarium
graminearum) can affect economically important crops (including cereal crops and
tomato) (11, 35). Another genus, Monographella, has been reported to be pathogenic
to crops including spring barley (36). Other genera of phytopathogens such as
Clonostachys, Leptosphaeria, Phoma, and Colletotrichum also commonly occur in agri-
cultural soils (37-40), posing serious threats to soil and crop health.

Microbial interactions also play roles in regulating soil fungal phytopathogens. The
potential cooperation and competition between microbial taxa are often shown by
positive and negative connections between two nodes in a co-occurrence network
(41). Here, higher proportion of phytopathogens and more interactions within phyto-
pathogens were found in the network of high SOC group than that of low SOC group,
suggesting that the prevalence of phytopathogens was enhanced in higher SOC con-
tent. The higher proportion of positive connections was found in the network of high
SOC group, suggesting more cooperation between fungal taxa in the condition of
higher SOC content. It was reported that pathogens could be more prone to invade a
microbial community with more cooperation than competition, because microbial
community with more cooperation could produce more public goods, which might
benefit pathogens (42). Similarly, the network of microbial community had more posi-
tive connections in diseased soils than in healthy soils (31). The competitions often
occur between pathogens and beneficial microorganisms of the plant (30, 43).

Previous studies revealed that fungal phytopathogens were driven by climate con-
ditions including warming and precipitation in the ecosystems with less human dis-
turbance (e.g., forest and grassland) (9, 44). While in agroecosystems, fungal phyto-
pathogens might be mainly affected by agricultural managements. Our results suggest
that fertilization management regime is a vital factor influencing fungal phytopatho-
gens in agricultural soils. It has been reported that nitrogen and phosphorus fertiliza-
tion consistently favor pathogenic fungi in grassland soils (28), while organic fertilizers
also promote pathogenic fungi. The applications of crop straw and livestock manure
could improve soil nutrition condition for microbial communities (45, 46). In this study,
the higher proportions of fungal phytopathogens and the genera Monographella and
Magnoporthe in the fertilization treatments suggest that nutrients could influence the
prevalence of soil-borne pathogens. This could be attributed to the increasing soil or-
ganic carbon after the applications of crop straw and livestock manure. Crop straw
return provided suitable conditions for pathogens to grow, propagate, and accumu-
late, thus resulting in soil-borne diseases (47-50). For example, it has been reported
that maize straw return enhanced the abundances of two fungal phytopathogens i.e.,
F. graminearum and F. moniliforme (51).

The increased diversity and proportion of fungal phytopathogens could also be
explained the applications of organic materials introducing abundant and diverse poten-
tial pathogens (52-54). For example, maize and wheat straw have been reported to be
potential sources harboring fungal phytopathogens (e.g., Fusarium moniliforme, Fusarium
proliferatum, Fusarium graminearum, and Fusarium subglutinans) (51, 55, 56). It has been
estimated that the yields of crop straw and livestock fresh manure are 9 x 102 tons and
3.8 x 10° tons every year in China, respectively, with approximately 56% of crop straw
used as fertilizers (data from http://www.cnr.cn/). The returned crop straw and livestock
fresh manure may thus bring considerable amounts of pathogens to agricultural soils.
Our results suggest that organic soil matter is an important predictor of fungal phyto-
pathogens, and the application of organic materials is a key cause of the increased fungal
phytopathogens in agricultural soils, which is pivotal to control plant diseases via regulat-
ing fertilization managements.
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Conclusions. Taken together, our work provides novel insights into the prevalence
and diversity of fungal phytopathogens in agricultural soils, which are the major causes
of soil-borne diseases jeopardizing crop health worldwide. Our study found that the
relative abundance of phytopathogens was positively correlated with organic soil car-
bon. We highlight that the application of organic materials is a vital factor influencing
the prevalence of soil-borne fungal phytopathogens. These findings advance our
understanding of the occurrence and sensitivities of soil-borne fungal phytopathogens
to environmental changes, especially resulting from intensified agriculture where crop
straw returning and fresh manure fertilization have become prevalent management
practices. Our work suggests that caution should be taken when applying crop straw
and fresh livestock manure to agricultural soils for enhancing fertility.

MATERIALS AND METHODS

Field survey of soil-borne fungal phytopathogens. The field survey was conducted in major grain-
producing areas in southwest China (Fig. S5) (57). Soil samples were collected from 18 locations covering
maize planting fields in August 2016 before harvesting. Three replicated composite soil (0-15 cm depth)
samples were collected at each location; thus, 54 total samples were obtained. Spatial information including
longitude and latitude were recorded while sampling. Soil samples were homogenized and sieved (2 mm
mesh) on arrival at the laboratory, and subsequently divided into two subsamples. One sub-ample was im-
mediately stored at —20°C for molecular analyses, and the other subsample was stored at 4°C for chemical
analyses. Soil chemical properties were measured according to the traditional methods (58). Briefly, soil pH
was measured on a fresh soil-to-water ratio of 1:2.5 using a Delta pH meter. TC, TN, and TS were determined
on a LECO TureMac Macro CN analyzer (LECO, St. Joseph, MI, USA). Carbon-nitrogen ratio (C/N) was calcu-
lated as the quotient between TC and TN. Soil organic carbon (SOC) was measured using the K,CrO, oxida-
tion titration method. Soil inorganic nitrogen (NH,"-N and NO, -N) were measured using a SAN++
Continuous Flow Analyser (Skalar, Breda, Netherlands). Dissolved organic carbon (DOC) and total dissolved
nitrogen (TDN) were determined with a Shimadzu TOC-TN analyzer (Shimadzu Corp., Kyoto, Japan).
Dissolved organic nitrogen (DON) was calculated as the difference between the TDN reading and the com-
bined NH,*-N and NO,-N reading. Microbial biomass carbon (MBC) and nitrogen (MBN) were determined
using the fumigation-extraction method.

Long-term experiment of organic material applications. The 6-year fertilization experiment was
conducted with multiple organic material applications in east China (Linquan in Anhui Province) (59). The
experimental plots were randomly arranged and subject to wheat-maize rotation, including four treat-
ments with three replicate plots for each: (i) control; (ii) preceding wheat straw (ST); (iii) fresh cow manure
(CM); (iv) fresh pig manure (PM). The NPK fertilizer comprised urea (300 kg N ha~' y ™), superphosphate
(120 kg P,O5 ha™' y™ ), and potassium chloride (100 kg K,O ha™" y~') for each treatment. For (iii) and (iv),
50% NPK fertilizers and 6,000 kg fresh manure ha™' y~' were applied. Soil samples (0-15 cm) from each
plot were collected after the harvest of wheat and were homogenized and sieved (2 mm mesh) on arrival
at the laboratory, followed by dividing into two subsamples and treated as described above. Soil properties
including pH, TC, C/N, SOC, DOC, DON, MBC, and MBN were measured as described above.

Soil DNA extraction and high-throughput sequencing. The genomic DNA was extracted from 0.30
g of soil using the DNeasy PowerSoil Kit (Qiagen GmbH, Germany) according to the manufacturer’s instruc-
tions. The quality and concentration of extracted DNA were checked using the NanoDrop ND-2000c UV-
Vis spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Fungal communities from the field
survey and the long-term experiment were determined by sequencing fungal ITS region with the primer
pairs ITSTF (CTTGGTCATTTAGAGGAAGTAA) and 2043R (GCTGCGTTCTTCATCGATGC) on the lllumina MiSeq
platform (2 x 250 PE) (lllumina Inc,, San Diego, USA). Bioinformatic processing was performed using a
combination of QIIME (60) and USEARCH (61). Then, UPARSE was employed to filter chimera, and the
operational taxonomic unit (OTU or phylotype) was picked at 97% sequence similarity. Phylotype identifi-
cation was obtained against the SILVA rRNA gene database (62). The relative abundance (%) of each phylo-
type was calculated from the resulting OTU (phylotype) table. Trophic guilds including phytopathogens,
saprotrophs, and symbiotrophs of fungal communities were predicted by the FUNGuild database (10)
(http://www.funguild.org/query.php?qText=&qDB=funguild_db&qField=taxon; accessed August 2020),
and classified as probable and highly probable phylotypes (excluding possible phylotypes). The relative
abundances of soil-borne fungal phytopathogens, saprotrophs, and symbiotrophs were calculated using
rarefied ITS OTU tables in each sample of field survey or long-term experiment, as the sum of ITS reads of
fungal phytopathogens (or saprotrophs, symbiotrophs)/all ITS reads x 100 at each soil sample (9).

Network construction and visualization. We established co-occurrence networks to identify the inter-
active relationships between potential phytopathogens and other trophic groups (i.e, saprotrophs and
symbiotrophs) within fungal community in the field survey of agricultural soils. Fungal phylotypes (OTUs)
with relative abundance more than 0.01% and occurrence in more than 20% of all soil samples were kept
constructing the network. Then, the samples were separated into two groups based on the SOC content.
All pairwise Spearman correlations between phylotypes were calculated using the “WGCNA” R package
based on the Spearman correlation matrix (63), and P values were adjusted by the Benjamini and Hochberg
false discovery rate (FDR) test (64). The absolute values of Spearman correlations more than 0.65 and the
adjusted P values less than 0.01 were retained. Finally, we imported the robust correlations into the Gephi
platform (version 0.9.2) (65) for network visualization using the Fruchterman Reingold algorithm.
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Statistical analysis. One-way analysis of variance (ANOVA) was used to detect the differences in alpha-di-
versity (OTU richness) and relative abundance (%) of fungal phytopathogens, saprotrophs, and symbiotrophs
between different fertilization treatments. Principal coordinates analysis (PCoA) based on the Bray-Curtis dissimi-
larity distances and permutational multivariate analysis of variance (PERMANOVA) test with 999 permutations
were used to detect the differences in the beta-diversity of fungal phytopathogens, saprotrophs, and symbio-
trophs in the field survey and the long-term experiment. These analyses were performed using the “vegan”
package (66), and plotted using the “ggplot2” package in the R platform. To evaluate the correlations between
soil properties and the diversity and relative abundance of all fungi and trophic guilds including phytopatho-
gens, saprotrophs, and symbiotrophs, we conducted Spearman correlation analyses. A false discovery rate
approach was used to determine adjusted P values for all the correlations to control for spurious (false positives)
correlations. We used SPSS 22 (IBM, Armonk, NY, USA) to conduct these analyses. The Spearman correlations
were visualized using the “pheatmap” package in the R platform. We also used the random forest model to
determine the importance of each predictor on the diversity and relative abundance of all fungi and trophic
guilds via evaluating the increase in the mean square error with 999 permutations, using the “rfPermute” pack-
age in the R platform. In addition, regression analyses were performed to decipher the associations between
the genera of fungal phytopathogens and soil properties, and linear models were used to estimate the curve fit-
ting and fitted with the adjusted P values lower than 0.05, using the “ggplot2” package in the R platform. Path
analysis was performed to evaluate the effect process of the fertilization treatments and soil properties on fungal
phytopathogens and their genera using SPSS AMOS 19. The fertilization treatments were categorical variables
as 1 and the control as 0. The parameters including root mean square errors of approximation (RMSEA < 0.08),
x? value (P > 0.05), and goodness-of-fit index (GFI > 0.90) were used to indicate the model fitness.

Data availability. The raw sequences of fungal data sets are available in the NCBI Sequence Read
Archive (SRA) database (www.ncbi.nlm.nih.gov/sra) under accession numbers PRJNA803009 and
PRJNA803012 for the field survey and the long-term experiment, respectively, and the SRA accession
numbers of all samples are shown in Table S5.
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