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Abstract

Motivation: Several recently developed single-cell DNA sequencing technologies enable whole-genome sequencing
of thousands of cells. However, the ultra-low coverage of the sequenced data (<0.05� per cell) mostly limits their
usage to the identification of copy number alterations in multi-megabase segments. Many tumors are not copy
number-driven, and thus single-nucleotide variant (SNV)-based subclone detection may contribute to a more com-
prehensive view on intra-tumor heterogeneity. Due to the low coverage of the data, the identification of SNVs is only
possible when superimposing the sequenced genomes of hundreds of genetically similar cells. Thus, we have devel-
oped a new approach to efficiently cluster tumor cells based on a Bayesian filtering approach of relevant loci and
exploiting read overlap and phasing.

Results: We developed Single Cell Data Tumor Clusterer (SECEDO, lat. ‘to separate’), a new method to cluster tumor
cells based solely on SNVs, inferred on ultra-low coverage single-cell DNA sequencing data. We applied SECEDO to
a synthetic dataset simulating 7250 cells and eight tumor subclones from a single patient and were able to accurate-
ly reconstruct the clonal composition, detecting 92.11% of the somatic SNVs, with the smallest clusters representing
only 6.9% of the total population. When applied to five real single-cell sequencing datasets from a breast cancer pa-
tient, each consisting of �2000 cells, SECEDO was able to recover the major clonal composition in each dataset at
the original coverage of 0.03�, achieving an Adjusted Rand Index (ARI) score of �0.6. The current state-of-the-art
SNV-based clustering method achieved an ARI score of �0, even after merging cells to create higher coverage data
(factor 10 increase), and was only able to match SECEDOs performance when pooling data from all five datasets, in
addition to artificially increasing the sequencing coverage by a factor of 7. Variant calling on the resulting clusters
recovered more than twice as many SNVs as would have been detected if calling on all cells together. Further, the al-
lelic ratio of the called SNVs on each subcluster was more than double relative to the allelic ratio of the SNVs called
without clustering, thus demonstrating that calling variants on subclones, in addition to both increasing sensitivity
of SNV detection and attaching SNVs to subclones, significantly increases the confidence of the called variants.

Availability and implementation: SECEDO is implemented in Cþþ and is publicly available at https://github.com/rats
chlab/secedo. Instructions to download the data and the evaluation code to reproduce the findings in this paper are
available at: https://github.com/ratschlab/secedo-evaluation. The code and data of the submitted version are
archived at: https://doi.org/10.5281/zenodo.6516955.

Contact: kjlehmann@ukaachen.de

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Somatic single-nucleotide variants (SNVs) are commonly associated
with cancer progression and growth (Stratton et al., 2009). The re-
cent development of single-cell DNA sequencing technologies
(Gawad et al., 2016) offers the ability to study somatic SNVs at a
single-cell level, providing much more detailed information about
tumor composition and phylogeny than traditional bulk sequencing
(Kuipers et al., 2017; Navin et al., 2011). However, several technical
obstacles decrease the interpretability of the data obtained using
these technologies. In particular, most of the current single-cell
DNA sequencing technologies require a whole-genome amplifica-
tion step, which introduces artifacts such as DNA-amplification
errors and imbalanced amplification of alleles (up to the complete
dropout of alleles) (Gawad et al., 2016). Several approaches
(Bohrson et al., 2019; Dong et al., 2017; Hård et al., 2019;
Lähnemann et al., 2021; Luquette et al., 2019; Singer et al., 2018;
Zafar et al., 2016) have been proposed to detect SNVs based on
such data.

Approaches that do not require whole-genome amplification
have been developed to overcome issues related to amplification
(Laks et al., 2019; Navin et al., 2011). A prominent example of such
technologies is 10X Genomics’ Chromium Single Cell CNV Solution
(https://www.10xgenomics.com/resources/datasets/). This technol-
ogy allows the sequencing of hundreds to thousands of cells in paral-
lel, albeit with only extremely low-sequencing coverage (<0.05�
per cell). Hence, its use has been limited to the inference of copy
number variations (CNVs) and alterations (CNAs) (https://bit.ly/
37oZIPG) (Durante et al., 2020; Velazquez-Villarreal et al., 2020;
Zaccaria and Raphael, 2021). The attempts to also use these data
for the identification of tumor subclones based solely on SNVs have
so far failed to provide a solution that would be able to recover the
clonal composition at the original sequencing depth (Myers et al.,
2020); in particular, SBMClone, the algorithm of Myers et al.
(2020), requires a minimum coverage of �0.2� per cell, roughly
four times more than what is currently achievable using the 10X
Genomics technology (Velazquez-Villarreal et al., 2020).

In this work, we propose SECEDO (Single Cell Data Tumor
Clusterer), a novel algorithm for clustering cells based on SNVs
using single-cell sequencing data with ultra-low coverage. Using an
extensive set of simulated data, as well as five real datasets, we show
that SECEDO is able to correctly identify tumor subclones in data-
sets with per-cell coverage as low as 0.03�, improving the current
state of the art by a factor of seven and thus rendering the algorithm
applicable to currently available single-cell data. We also provide an
efficient Cþþ implementation of SECEDO, which is able to quickly
cluster sequencing data from thousands of cells while running on
commodity machines.

2 Materials and methods

2.1 Overview
Due to the extremely low coverage of the data (<0.05� per cell),
deciding whether two cells have identical or distinct genotypes is a
difficult problem. Most loci are covered, if at all, by only one read
(Supplementary Fig. S1). This makes it difficult, if not impossible, to
interpret an observed mismatch when comparing data from two
cells. The mismatch could be caused by an actual somatic SNV, by a
sequencing error, or by a heterozygous locus that was sequenced in
a different phase in the two cells. Hence, it is crucial to jointly lever-
age the information from all cells at the same time.

The pivotal blocks in the SECEDO pipeline (Fig. 1) are: (i) a
Bayesian filtering strategy for efficient identification of relevant loci
and (ii) derivation of a global cell-to-cell similarity matrix utilizing
both the structure of reads and the haplotype phasing, which proves
to be more informative than considering only one locus at a time.

SECEDO first performs a filtering step, in which it examines the
pooled sequenced data for each locus and uses a Bayesian strategy to
eliminate loci that are unlikely to carry a somatic SNV. The filtering
step drastically increases the signal-to-noise ratio by reducing the
number of loci by 3–4 orders of magnitude (depending on the

coverage), while only eliminating approximately half of the loci that
carry a somatic SNV. Moreover, the eliminated mutated loci typical-
ly have low coverage or high error rate and would not be very useful
for clustering. In the second step, SECEDO builds a cell-to-cell simi-
larity matrix based only on read-pairs containing the filtered loci,
using a probabilistic model that takes into account the probability
of sequencing errors, the frequency of SNVs, the filtering perform-
ance, and, crucially, the structure of the reads, i.e. the fact that the
whole read was sampled from the same haplotype. In the third step
of the pipeline, we use spectral clustering to divide the cells into two
or more groups. At this point, we reduced the problem to an in-
stance of the well-studied community detection problem (Porter
et al., 2009), so spectral clustering is a natural choice. Optionally,
the results of spectral clustering can be further refined in a fourth
step using the expectation–maximization (EM) algorithm (Dempster
et al., 1977). The whole pipeline is then repeated for each of the
resulting subclusters. The process is stopped if (i) there is no evi-
dence for the presence of at least two clusters in the similarity ma-
trix, or (ii) the clusters are deemed too small. Downstream analysis,
for instance, variant calling, can then be performed by pooling
sequencing data from all cells in one cluster based on the results of
SECEDO to create a pseudo-bulk sample.

2.2 Filtering uninformative loci
Consideration of all genomic loci is not desirable when performing
the clustering and variant calling since most positions are not in-
formative for clonal deconvolution. The most informative loci with
respect to the clustering of the cells are the loci carrying somatic
SNVs since they provide (i) information on the assignment of cells to
clusters and (ii) information on haplotype phasing (due to loss/gain
of heterozygosity). To a lesser extent, this is also true for germline
heterozygous loci since they provide information on haplotype phas-
ing. In other words, loci at which all the cells have the same homo-
zygous genotype do not provide any information relevant to the task
of dividing the cells into genetically homogeneous groups, so they
can be excluded from downstream analysis.

Due to the low sequencing coverage, it is generally not possible
to reliably assign genotypes to individual cells. However, we identify
loci of interest by using the pooled data across all the cells to ap-
proximate posterior probabilities that the cells have the same geno-
type. Consider for example a specific locus at which all cells have
genotype AA. Assuming sequencing errors happen independently
with probability h and are unbiased (i.e. all types of substitutions are
equally probable), the fraction of As in the pooled data is in expect-
ation ð1� hÞ and the fraction of all other bases is h=3. A locus with
a significantly different proportion of observed bases indicates that
there may be two (or more) different genotypes contributing to the
observed data. In particular, we compute the posterior probability
that all cells at the locus share the same homozygous genotype using
an approximate Bayesian procedure. If this posterior is lower than a
chosen threshold K, the locus is marked as ‘informative’.

Formally, let C1, C2, C3, C4 be the bases sorted from the most to
the least frequent in the pooled data at the given position, c1, c2, c3,
c4 the corresponding counts (c1 � c2 � c3 � c4), c the total coverage
(c ¼ c1 þ c2 þ c3 þ c4). Next, let M be an indicator random variable
that is 1 if all cells in the sample have the same homozygous geno-
type and 0 otherwise. Applying Bayes rule, we can compute PðM ¼
1jc1; c2; c3; c4Þ as:

PðM ¼ 1jc1; c2; c3; c4Þ ¼
Pðc1; c2; c3; c4jM ¼ 1ÞPðM ¼ 1Þ

Pðc1; c2; c3; c4Þ
: (1)

We compute or approximate the individual terms as follows:

• PðM ¼ 1Þ can be estimated from literature: the prevalence of

somatic SNVs in cancer lies between 10�9 and 10�3 (Alexandrov

et al., 2013; Lawrence et al., 2013); the frequency of heterozy-

gous sites in a typical human genome lies between ca 0.04% and

0.11% (Bryc et al., 2013; Meyer et al., 2012). In order to be
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conservative, we choose the largest probability (�10�3) in both

cases, resulting in PðM ¼ 1Þ � 1� 2� 10�3 ¼ 0:998.
• Pðc1; c2; c3; c4jM ¼ 1Þ, is equal to:

Pðc1; c2; c3; c4jM ¼ 1Þ ¼
X
g2G

agPðgÞ; (2)

where ag ¼ Pðc1; c2; c3; c4jgenotype of all cells is gÞ and G ¼
fAA; CC; GG; TTg is the set of all possible homozygous

genotypes.

The probability ag of observing data ðc1; c2; c3; c4Þ given that

the genotype of all cells is g (g ¼ CiCi) has a multinomial distri-

bution with c trials and event probabilities equal to

1� h; h
3 ;

h
3 ;

h
3

� �
:

ag ¼
c!

c1!c2!c3!c4!
ð1� hÞci

h
3

� �c�ci

:

Assuming the error rate h is small, the result of the equation

above is negligible for any ci that is not close to c. As a conse-

quence, if the prior P(g) is approximately the same for all geno-

types, we can approximate the sum in Equation (2) with the

largest term:

Pðc1; c2; c3; c4jM ¼ 1Þ � max
g2G

agPðgÞ: (3)

• Computing Pðc1; c2; c3; c4Þ is intractable, as it would involve

summing over all possible combinations of the cells’ genotypes.

We instead approximate the evidence by:

Pðc1; c2; c3; c4Þ �
c!

c1!c2!c3!c4!

"
phomð1� hÞc1

h
3

� �c2þc3þc4

þphet
1
2� h

3

� �c1þc2
h
3

� �c3þc4

þphompmut
3
4� 2h

3

� �c1
1
4

� �c2
h
3

� �c3þc4

þphetpmut
c!

c1!c2!c3!c4!

1

2
� h

3

� �c1 1

4

� �c2þc3 h
3

� �c4
#

;

where phom;phet; pmut represent the probability of a locus being

homozygous, heterozygous and mutated, respectively. The first

summation term estimates Pðc1; c2; c3; c4Þ for a homozygous

locus, the second term assumes a heterozygous locus, the third

term corresponds to a homozygous locus that suffered a somatic

mutation, and the last term to a heterozygous locus with a som-

atic mutation (see Supplementary Material S1 for a more

detailed derivation). In order to be consistent with the prior

probability PðM ¼ 1Þ, we used phet ¼ 10�3 (Bryc et al., 2013;

Meyer et al., 2012), pmut ¼ 10�3 (Alexandrov et al., 2013;

Lawrence et al., 2013), and phom ¼ 1� phet � pmut.
We then include the locus into the subset of informative positions if
PðM ¼ 1jc1; c2; c3; c4Þ � K for a suitable constant K (see
Supplementary Material S2 and Supplementary Table S1).

Filtering heterozygous loci is similar. Here, let PðM0 ¼
1jc1; c2; c3; c4Þ be the probability that all cells have the same hetero-
zygous genotype. The individual terms in Equation (1) are identical
except that the event probabilities for the multinomial distribution

are 1
2� h

3 ;
1
2� h

3 ;
h
3 ;

h
3

� �
. However, since heterozygous loci are three

orders of magnitude fewer than homozygous loci (Bryc et al., 2013;

Meyer et al., 2012) in addition to potentially being useful in haplo-
type phasing, we empirically determined that the following simpler

and faster criteria works equally well in practice: denote the locus as
informative if c1 > 1:5� c2, where c1 and c2 are the most frequent
and the second most frequent bases at that locus, respectively (the

expectation is that at a heterozygous locus c1 and c2 should not dif-
fer too much). In addition, we reject all loci for which
c1 þ c2 þ c3 < 5.

The final set of informative loci then includes those positions
that were marked as informative by both filtering steps (i.e. filtering

of both homozygous and heterozygous loci). In practice, sequencing
artifacts may lead to loci with unusually high coverage. For this rea-

son, we also eliminate any loci with coverage more than two SDs
away from the expected coverage. In addition, we also eliminate loci
where c� c1 < 5 (see Supplementary Fig. S2).

2.3 Cell-to-cell similarities
We define the similarity s(i, j) of cells i and j as the log-odds of the
probability that cells i and j have the same genotype and the prob-

ability that they have different genotypes, given the corresponding
sets of reads. Each of the two probabilities is then approximated as
a product of probabilities of individual overlaps of two reads, one

read from cell i and one read from cell j (Fig. 2). Formally:

sði; jÞ ¼ log
P½CðiÞ ¼ CðjÞjri; rj;h; ��
P½CðiÞ 6¼ CðjÞjri; rj;h; ��

 !

¼ log
P½ri; rjjCðiÞ ¼ CðjÞ;h; ��
P½ri; rjjCðiÞ 6¼ CðjÞ;h; ��

 ! (4)

Fig. 1. The SECEDO pipeline. After sequencing, reads are piled up per locus and a Bayesian filter eliminates loci that are unlikely to carry a somatic SNV. For each pair of

reads, SECEDO compares the filtered loci and updates the likelihoods of having the same genotype and of having different genotypes for the corresponding cells. The similarity

matrix, computed as described in Section 2, is then used to cluster the cells into 2–4 groups (the number of groups depends on the data and is determined automatically by

SECEDO) using spectral clustering. The algorithm is then recursively applied to each cluster until a termination criterion is reached
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�
X
k;l

log
P½xsðrk

i ; r
l
jÞ; xdðrk

i ; r
l
jÞjCðiÞ ¼ CðjÞ;h; ��

P½xsðrk
i ; r

l
jÞ; xdðrk

i ; r
l
jÞjCðiÞ 6¼ CðjÞ;h; ��

 !
; (5)

where ri is the set of reads from cell i, rk
i is the k-th read from cell i,

xsðp; qÞ and xdðp; qÞ the number of matches and mismatches, re-
spectively, between reads p and q, C(i) is the (true) cluster assign-
ment of cell i, � is the proportion of SNVs in the set of informative
positions and h the proportion of homozygous loci in the set of in-
formative positions (see below). In case the two cells have no over-
lapping reads, the similarity is by definition equal to 0 (i.e. we have
no information on whether the two cells have equal or different gen-
otypes). We assume that observing cells with the same genotype and
with different genotypes has the same prior probability. (Notice that
decomposing the probabilities in Equation (4) over pairs of reads is
indeed only an approximation. In particular, the decomposition in
Equation (5) would only be precise if no two reads coming from one
cell were overlapping; in the opposite case, the probabilities of read
pairs containing one of these overlapping reads are non-
independent. However, since the per-cell coverage is so low
(Supplementary Fig. S1), the number of such non-independent pairs
is negligible.)

Notice that by decomposing the probabilities over the overlaps
of reads we gain information not only on the number of matches
and mismatches between the two reads (i.e. information on potential
differences between the two cells), but also information on haplo-
type phasing. Moreover, it also allows us to put more weight on lon-
ger (and hence supposedly more informative) overlaps. For example,
a long overlap with only matches is an indication that the two cells
might have the same genotype. A long overlap with only mis-
matches, on the other hand, is not a strong indication towards the
cells being from different clusters—another likely scenario is that
the two reads were sampled from different haplotypes and we just
observe a row of heterozygous loci in different phase. As a result,
overlaps with a combination of matches and mismatches are the
ones most strongly suggesting the ‘different genotypes’ case
(Supplementary Fig. S3). We also show, using simulated data, that
considering the number of matches and mismatches in the whole
overlap of two reads provides strictly more information than consid-
ering each locus independently (Supplementary Fig. S4).

Below we give details on the computation of Equation (5), under
the simplifying assumptions that (i) all cells are diploid, (ii) the som-
atic SNVs are with equal probability of type AAþAB and ABþAA
(a homozygous site in cluster 1, heterozygous in cluster 2, or vice
versa), and (iii) the prevalence of differences between any two sub-
clones is l (see Supplementary Material S3 for the full list of
assumptions).

2.4 Parameters
The algorithm has three parameters: h, the fraction of the homozy-
gous loci in the set of selected positions, �, the fraction of the
mutated loci in the set, and h, the error rate. In our analyses, we
used h¼0.5, � ¼ 0:01, and h ¼ 0:05 (the h parameter has higher
value than the usually reported sequencing error rate, because the
set of informative positions is enriched in positions carrying
sequencing errors). See Supplementary Figure S5 for a justification
of the given parameter choices and Supplementary Table S3 for an
analysis of SECEDOs performance under various parameter
combinations.

2.5 Computing the probabilities of overlaps
We define:

• Ps;s, the probability that sequencing of two bases of the same

kind results again in two bases of the same kind: Ps;s ¼
ð1� hÞ2 þ h2

3 (both bases are sequenced without error, or both

are misread to the same base),
• Ps;d, the probability that sequencing of two bases of the same

kind results in bases that differ from each other: Ps;d ¼ 1� Ps;s,
• Pd;s, the probability that two different bases are read as the same:

Pd;s ¼ 2� ð1� hÞ � h
3þ 2h2

9 (one of the two bases is misread to

the other one, or both are misread to the same base),
• Pd;d the probability that two different bases are sequenced as dif-

ferent: Pd;d ¼ 1� Pd;s.
The probability of observing xs matches and xd mismatches in an

overlap of length xs þ xd, assuming cells i and j have the same geno-
type, is now:

P½xs; xdjCðiÞ ¼ CðjÞ;h; �� ¼
xs þ xd

xs

0
@

1
AXxs

k¼0

Xxd

l¼0

xs

k

0
@

1
A xd

l

0
@

1
A

� 1� h� �

2

� �kþl 1

2
ðPk

s;s � Pl
s;d þ Pk

d;s � Pl
d;dÞ

� �dðkþlÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{heterozygous positions

� hþ �

2

� �ðxsþxd�k�lÞ
� Pðxs�kÞ

s;s � P
ðxd�lÞ
s;d ;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

homozygous positions

(6)

where dðxÞ is a function defined as 0, if x¼0, and 1, otherwise. In
the formula we sum over all possible combinations of ðkþ lÞ hetero-
zygous loci and ðxs þ xd � k� lÞ homozygous loci; k of the hetero-
zygous loci result in a match, the remaining l in a mismatch.

The probability of observing xs matches and xd mismatches
assuming cells i and j are in different clusters is:

P½xs;xdjCðiÞ 6¼ CðjÞ; h; �� ¼
xs þ xd

xs

0
@

1
A

�
Xxs

k¼0

Xxs�k

p¼0

Xxd

l¼0

Xxd�l

q¼0

xs!

k!p!ðxs � k� pÞ! �
xd!

l!q!ðxd � l � qÞ!

�ð1� h� �Þkþl 1

2
ðPk

s;s � Pl
s;d þ Pk

d;s � Pl
d;dÞ

� �dðkþlÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{heterozygous positions

� �

2

� �ðxsþxd�k�l�p�qÞ
� ðPs;s þ Pd;sÞðxs�k�pÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{mutated positions

�ðPd;d þ Ps;dÞðxd�l�qÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{mutated positions

� hðpþqÞ � Pp
s;sP

q
s;d

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{homozygous positions

:

(7)

Here, k denotes the number of heterozygous positions giving rise
to a match, l the number of heterozygous positions giving rise to a
mismatch, p the number of positions with the same homozygous
genotype in both types of cells that give rise to a match and q the
number of these positions that result in a mismatch.

2.6 Clustering
We first normalize the computed similarity matrix by making sure
all elements are positive: S	 ¼ �Sþmini;jsði; jÞ. The cells are then
clustered using a slight variation on spectral clustering (Ng et al.,
2001) as follows. We compute the symmetric normalized Laplacian

Fig. 2. Illustration of an overlap between two reads. The shaded positions are the

positions chosen as informative. In this example, length of the overlap is 3, the num-

ber of positions where the bases are the same, xs, is 2 and the number of positions

where they are different, xd, is 1. For our purposes, an overlap is fully described by

the tuple (xs, xd)
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L ¼ I �D�
1
2S	D�

1
2 and determine its first k (we used k¼6 in all

experiments in this paper) eigenvectors, corresponding to the k
smallest eigenvalues. We then cluster into 1, 2, 3 or 4 clusters using
k-means (Arthur and Vassilvitskii, 2006; Lloyd, 1982), computing
the inertia values i1; i2; i3; i4 for each of the four options and the iner-
tia gaps gk ¼ ik � ik�1; k ¼ 2; 3;4, and define g1 :¼ 0. The final
number of clusters is maxk¼2;3;4fkjgk > 0:75gk�1g.

An important feature of spectral clustering is that it leverages the
information on similarities of all pairs of cells at the same time.
Thus, even in case two cells would not have any overlapping reads
(the probability of which is negligibly small, see Supplementary
Material S4), they could still be clustered based on their similarities
to other cells in the dataset.

Optionally, the results of the previous step are further refined
using the EM algorithm (Dempster et al., 1977) (Supplementary
Material S5). However, all results reported in this paper were
obtained without the EM-refinement.

One important aspect of clustering is the stopping criterion, i.e.
the decision whether a specific group of cells should be divided into
subclusters or not. We suggest a heuristic approach to automatically
decide if the computed normalized similarity matrix S	 indicates
that there are two (or more) different clusters of cells. We fit a
Gaussian mixture model with 1, 2, 3 or 4 components to the small-
est k eigenvectors of S	 and compare their likelihood using the
Bayesian information criterion (BIC). If the model with only one
component is preferred by BIC over the models with 2, 3 or 4 com-
ponents we do not split the data further. We further do not accept
the split if the resulting subclone has too few cells (we used 500 in
our experiments). We also require that the mean within-cluster
coverage is at least 9, the lowest coverage sufficient for a reliable
variant call (see Supplementary Material S6).

3 Results

3.1 SECEDO recovers tumor subclones with average

precision of 97% on simulated data
In order to test the performance of our method, we simulated a data-
set consisting of 7250 cells divided into nine groups of various sizes:
one group of healthy cells and eight groups of tumor cells. The gen-
ome of the healthy cells was created using Varsim 0.8.4 (Mu et al.,
2014) based on the GRCh38.p13 human reference genome.
Common variants from dbSNP 20180418 (Sherry et al., 2001)
(3 000 000 single-nucleotide polymorphisms, 100 000 small inser-
tions, 100 000 small deletions, 50 000 multi-nucleotide polymor-
phisms, 50 000 complex variants) were added to the genome. The
genome of the tumor cells was built by adding 2500–20 000 of both
coding and non-coding SNVs (subclonal SNV fraction of 3–27%;
Dentro et al., 2021), randomly chosen from the COSMIC v94
(Catalogue Of Somatic Mutations In Cancer) database (Tate et al.,
2018), to the parent genome, in addition to 250 small insertions,
250 small deletions, 200 multi-nucleotide variants and 200 complex
variants (Fig. 3, left). Paired-end reads, with each mate of length
100 bp, were simulated using ART 2.5.8 (Huang et al., 2011) at an
average coverage of 0.05� per cell and with the error profile of
Illumina HiSeq 2000 machines. The reads were then aligned using
Bowtie 2.4.4 (Langmead and Salzberg, 2012) and filtered using
Samtools 1.12 (Li, 2011) to select for reads mapped only in proper
pair, non-duplicate and only primary alignments.

For efficiency reasons, we build the pileup files used by the
Bayesian filtering using our own implementation rather than
existing tools that are not optimized for use on thousands of cells
simultaneously (e.g. Samtools, which currently does not offer a
multi-threaded pileup creation). We eliminate bases with read qual-
ities below 30, reads with a mapping quality below 30 and loci
where all bases are identical. The pileup creation, distributed on 23
commodity machines (one for each chromosome) using 20 threads
each, takes about 70 min (down from 72 h when using Samtools’
pileup creation on the same machines). We ran SECEDO on the
resulting pileup files on an Intel(R) Xeon(R) Gold 6140 CPU @
2.30GHz using 20 threads and 32GB of RAM. The filtering,

clustering and VCF generation took 21 min. Since the time complex-
ity of the most expensive step, the similarity matrix computation, is
quadratic in the pooled coverage (for every filtered position), the
running time decreases rapidly with each level of the tree.
Consistently, half of the total running time was spent performing
the top-level clustering, where the filtering step kept about 1 in
16 000 loci. Somewhat counter-intuitively, the number of filtered
loci approximately doubled at each level as we traveled down the
clustering tree. This is due to the fact that previously rejected loci
may be classified as informative when looking at a subset of the
data, particularly loci containing reads from smaller clusters. At the
same time, the discriminative power of the Bayesian filtering
degrades as the mean pooled coverage decreases (from 248 at the
root to 20 at the leaves), such that a larger proportion of loci that
are not relevant are let through.

SECEDO was able to recover all nine subclones with an average
precision of 97.45% (Fig. 3, right). Note that SECEDO is not
attempting to reconstruct the evolutionary history of the tumor, but
merely trying to efficiently find a grouping of cells that reflect the
current subclonal structure and enable downstream tasks like vari-
ant calling. Therefore, the clustering tree reconstructed by SECEDO
does not reflect the actual developmental process that gave rise to
the given population of cancer cells; indeed, the SECEDO clustering
tree differs from the true phylogenetic tree of the population
(Fig. 3).

In order to show the potential of the resulting clusters for somat-
ic variant calling, we identified the most likely genotype of each
cluster using a simple MAQ-based approach (Li et al., 2008)
(Supplementary Material S6) and generated VCF files for each clus-
ter against the GRCh38 human reference genome. Similarly to other
variant callers that remove germline variants (Cibulskis et al.,
2013), we then removed the ground-truth variants that were present
in the healthy cells and compared the remaining SNVs against the
ground truth SNVs provided by Varsim for each cluster. SECEDO
was able to detect 92.11% of the somatic SNVs (versus 77.79%
when calling variants on the unclustered cells) with a 52.41% aver-
age precision (see Supplementary Table S2).

3.2 SECEDO is able to correctly group cells starting at

0.033 coverage and 500 cells per cluster
One practical question of crucial importance is how to determine if,
given a dataset, SECEDO will be able to correctly cluster the cells
for meaningful downstream processing. To answer this question, we
conducted a series of experiments to determine the conditions under

Fig. 3. Clustering a synthetic dataset with nine unequally sized subclones totaling

7250 cells. Top: Theoretical phylogenetic tree of the dataset. Edge labels indicate

the number of additional SNVs in each subclone relative to the parent, node labels

indicate the number of cells in each subclone. Bottom: Recursive clustering by

SECEDO. Each node corresponds to one SECEDO clustering step; the first row indi-

cates the subclones assigned to that node, the second row the number of recovered

cells out of the total and the third row indicates the clustering precision (correctly

clustered cells relative to total cells in cluster). The scatter plots above parent nodes

depict the second and third eigenvectors of the similarity matrix Laplacian. For leaf

nodes, SECEDO correctly determined that further clustering is not desirable
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which SECEDO can successfully be applied to a given dataset.
There are three cluster attributes that affect SECEDOs ability to sep-
arate cell clusters: (i) the number of cells, (ii) the average per-cell
coverage, and (iii) the number of SNVs in which the clones differ. In
order to test the interplay of these three cluster attributes, we
devised a series of synthetic datasets, each consisting of 1000 cells
belonging to two groups. The sizes of the two groups were either
equal (i.e. 500 cells in each group) or in ratio 1:3 (i.e. one cluster
consisted of 250 cells and the other one of 750 cells). We further
constructed a series of synthetic datasets consisting of 2000 cells
being split equally among two groups (i.e. 1000 cells in each group).
Then, for a given number of SNVs and given sizes of clusters, we
gradually lowered the per-cell coverage until the algorithm was un-
able to cluster the cells correctly. The genome creation, reads simu-
lation, and alignment were done as described in the previous
section. For most parameter configurations, the currently achievable
per-cell coverage of 0.05� is sufficient for SECEDO to correctly
cluster the cells (see Fig. 4). Since SECEDO is able to discriminate
between balanced clusters of 1000 cells that differ in as little as
2500 SNVs (equivalent to an SNV prevalence of ca 8:33� 10�7),
the method can be applied to a wide variety of cancers, starting
from those with very high mutation rates, such as melanoma (me-
dian prevalence of somatic SNVs ca 10�5) down to pancreatic and
breast cancer (median prevalence of somatic SNVs ca 10�6)
(Alexandrov et al., 2013; Lawrence et al., 2013). Note that there is
a relationship between tumor mutational burden and SECEDOs
ability to distinguish subclones. SECEDO is able to identify complex
subclonal structures (such as in Fig. 3) in cancers with high muta-
tional burden (e.g. melanoma), whereas in cancers with lower

mutational burden (e.g. pancreatic and breast cancer) only major
clones could be identified, as shown in the next section.

As expected, the discriminative power of SECEDO increases
with the number of cells (Fig. 4), as well as with the per-cell cover-
age (Supplementary Fig. S6), since both act as a multiplying factor
for the pooled coverage.

3.3 SECEDO recovers dominant subclones in a breast

cancer dataset, clearly outperforming state of the art
In order to test the performance of SECEDO on real data, we down-
loaded a publicly available 10X Genomics single-cell DNA sequenc-
ing dataset (https://github.com/ratschlab/secedo-evaluation/tree/
main/breast_cancer) sequenced using an Illumina NovaSeq 6000
System. The dataset contains five tumor sections (labeled A–E) of a
triple negative ductal carcinoma, each section containing roughly
2000 cells. The mean per-cell coverage in the dataset is 0.03�, with
individual coverage ranging from 0.006� to 0.086�. CHISEL, the
CNV-based clustering algorithm proposed by Zaccaria and Raphael
(2021), identified three dominant clones in each of the sections, ex-
cept for section A, which consists mainly of healthy cells.

We applied SECEDO separately to each of the tumor sections.
The filtering step reduced the number of loci in each tumor section
to roughly 1 000 000 bp (ca 0.03% of the original size); the average
pooled coverage across the �2000 cells in each dataset ranged from
45 to 55. The number of clusters identified in each slice ranged be-
tween 3 and 10; it is likely that some of them are only artifacts.
However, SECEDO was able to recover the three dominant clones
in sections B, C, D, and E with high accuracy (96.68% recall,
66.59% precision) in the first two clustering steps. Note that we
included cells that were unassigned to any clone by CHISEL, affect-
ing our precision. The scatter plots of the second and third eigenvec-
tors of the similarity matrix confirm that each tumor section, except
for section A, indeed consists of three highly separable clusters
(Fig. 5).

We compared SECEDOs performance to that of SBMClone
(Myers et al., 2020), the current state of the art in SNV-based clus-
tering. As a metric for evaluation we used the Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985), measuring the similarity of the
ground truth and data-derived clusterings. Since SBMClone was
reported to work only at coverage �0.2�, and the coverage of the
breast cancer dataset is 0.03�, we created higher coverage data in
silico by merging sequencing data from cells reported to be in the
same cluster by CHISEL. In addition, SBMClone requires a matched
normal sample, so we again used the clustering in CHISEL to deter-
mine the healthy cells; from the variants determined using Varscan
(https://github.com/raphael-group/chisel-data/blob/master/
patientS0/snvs/cellmutations.tsv.gz) (Koboldt et al., 2009), we
removed all mutations that appeared in at least one healthy cell, and
the remaining mutations were fed to SBMClone. SECEDO does not
require a matched normal sample, so the sequencing data were used
without this pre-processing. SECEDO correctly clustered (precision
>96%) all cells at the original coverage (including the separation of
healthy cells), and its performance remained relatively constant as

Fig. 4. Minimum required coverage for successful clustering (>90% precision and

recall) of sub-clones differing in the given number of SNVs, in three scenarios: clus-

tering 1000 cells, with a ð1=4; 3=4Þ split, with an equal ð1 2 ;
1 2 Þ=

�
split, and clustering

2000 cells with an equal split. The shaded area marks the coverage currently achiev-

able in practice. The top labels indicate the cancer type with median mutation rate

closest to the given SNV density [cancer mutation rates according to Lawrence et al.

(2013)]

Fig. 5. Clustering of the five tumor sections in the 10x Genomics ductal carcinoma dataset. The first row in each node denotes the cluster name; for consistency, we used the

same cluster numbering as CHISEL (https://github.com/raphael-group/chisel-data/). The second row denotes the number of cells recovered by SECEDO versus the total num-

ber of cells as identified by CHISEL. The last row denotes the precision of the clustering, i.e. the percentage of cells in the SECEDO cluster that match the originally reported

cluster. The lower precision values are due to the fact that cells categorized by CHISEL as ‘None’ based on the CNV signature are assigned a category by SECEDO based on

the genomic signature. The first section (SliceA) consists mainly of healthy cells, as reflected by the scatter plot of the second and third eigenvectors of the similarity matrix

Laplacian
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coverage increased. SBMClone was able to provide an approximate
clustering starting at 3-fold the original coverage, and its perform-
ance matched SECEDOs at 7-fold the original coverage when com-
bining data from all slices. For individual slices, SBMClone was not
able to cluster the cells, irrespective of the coverage (Fig. 6).

We then called SNVs on each subclone of Slice B, as identified
by SECEDO, independently, and on the entire slice. In order to call
SNVs, we created a Panel of Normals from the cells categorized as
normal by CHISEL based on the CNV profile (Clone19 in the left-
most tree of Fig. 5). We ran MuTect 1.1.4 (Cibulskis et al., 2013)
with the default settings, using dbSNP v20180418 (Sherry et al.,
2001) and Cosmic v94 (Tate et al., 2018) as priors. The number of
distinct SNVs in the two tumor subclones is more than double the
number of variants that were called when pooling all cells together
(Supplementary Fig. S7, left). The histogram of the allelic ratio for
the sublconal and global SNVs shows a significant shift to the right
for the subclonal SNVs, an indication that the clustering correctly
identified and separated genetically similar cells, enabling the detec-
tion of twice as many SNVs at twice the allelic ratio (Supplementary
Fig. S7, right).

4 Discussion

We introduced SECEDO, a method that is able to correctly identify
SNV-based subclones in single-cell sequencing datasets with cover-
age as low as 0.03� per cell. This is a significant improvement in
comparison to SBMClone, the current state-of-the-art method
(Myers et al., 2020), which, using the same data, was able to cluster
the cells only after pooling data from all five datasets and artificially
increasing the coverage by a factor of 7. This improvement in per-
formance can likely be attributed to the fact that SECEDO takes
into account the information on read phasing, as well as its efficient
filtering of uninformative positions. We also note that unlike
SBMClone, SECEDO does not require a matched normal sample for
the identification of potential SNVs. We provide an efficient, well-
tested, ready-to-use Cþþ implementation of SECEDO, which uses
established data formats for both input and output, and can thus be
easily incorporated into existing bioinformatics pipelines.

We demonstrated SECEDOs applicability to currently available
single-cell sequencing data and find that SECEDO correctly clus-
tered cells on a series of synthetic and five breast cancer datasets.
CNA frequencies and patterns vary significantly across cancer types
(Harbers et al., 2021; Zack et al., 2013), similarly to SNV fre-
quency. Since SECEDO does not use copy-number information to
cluster cells, it can infer sub-clones even in cancer types where
CNAs do not vary or where the frequency of CNAs is generally low
(e.g. pancreatic neuroendocrine tumors; Dentro et al., 2021). It is

also notable that not all CNAs affect the SNV profile of a cell. Thus,
CNA-based clustering may lead to suboptimal grouping of cells, e.g.
from a variant calling perspective. SECEDO is able to group cells
with similar SNV profiles irrespective of their CNA profiles. This
can lead to improvements in the precision and accuracy of the vari-
ant calling. Using the clusters identified by SECEDO, we were able
to recover 92.11% of the SNVs present in the synthetic dataset using
a simple variant caller. On Slice B of the breast cancer dataset, the
number and the confidence of the called SNVs more than doubled
after clustering using SECEDO, compared to calling variants on the
entire slice.

While SECEDO enables accurate cell-clustering and variant call-
ing, there are a number of areas for future improvement. First,
SECEDO currently only uses single-nucleotide substitutions to clus-
ter cells, which are known to be the most common type of mutations
in adult and childhood cancers (Gröbner et al., 2018; Lawrence
et al., 2014; Ma et al., 2018). We expect that the clustering accuracy
could be further improved if e.g. short insertions and deletions were
additionally used. Second, the smallest subclones that SECEDO was
able to detect had �200 cells. However, as technology inevitably
improves and the sequencing coverage increases, SECEDOs reso-
lution and variant calling quality will also proportionally increase.

We hope that SECEDO will facilitate new types of analyses and
form the basis for future methodological development in the field of
cancer research and treatment outcome prognosis.
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