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Leishmaniases are diseases caused by several Leishmania species, and many factors contribute to the development of the infection.
Because the adaptive immune response does not fully explain the outcome of Leishmania infection and considering that the initial
events are crucial in the establishment of the infection, we investigated one of the growth factors, the insulin-like growth factor-I
(IGF-I), found in circulation and produced by different cells including macrophages and present in the skin where the parasite
is inoculated. Here, we review the role of IGF-I in leishmaniasis experimental models and human patients. IGF-I induces the
growth of different Leishmania species in vitro and alters the disease outcome increasing the parasite load and lesion size,
especially in L. major- and L. amazonensis-infected mouse leishmaniasis. IGF-I affects the parasite interacting with the IGF-I
receptor present on Leishmania. During Leishmania-macrophage interaction, IGF-I acts on the arginine metabolic pathway,
resulting in polyamine production both in macrophages and Leishmania. IGF-I and cytokines interact with reciprocal influences
on their expression. IL-4 is a hallmark of susceptibility to L. major in murine leishmaniasis, but we observed that IGF-I operates
astoundingly as an effector element of the IL-4. Approaching human leishmaniasis, patients with mucosal, disseminated, and
visceral diseases presented surprisingly low IGF-I serum levels, suggesting diverse effects than parasite growth. We observed that
low IGF-I levels might contribute to the inflammatory response persistence and delayed lesion healing in human cutaneous
leishmaniasis and the anemia development in visceral leishmaniasis. We must highlight the complexity of infection revealed
depending on the Leishmania species and the parasite’s developmental stages. Because IGF-I exerts pleiotropic effects on the
biology of interaction and disease pathogenesis, IGF-I turns up as an attractive tool to explore biological and pathogenic
processes underlying infection development. IGF-I pleiotropic effects open further the possibility of approaching IGF-I as a
therapeutical target.

1. Introduction

Leishmaniases are considered neglected tropical diseases
caused by parasites of the order Kinetoplastida, family Try-
panosomatidae, and genus Leishmania, affecting one million
people globally each year and endemic in 98 countries. The

transmission occurs through a sandfly bite that inoculates
promastigotes into the skin, which transform into amasti-
gotes and proliferate within phagocytic mononuclear cells.
The infection can be asymptomatic or symptomatic, leading
to a wide spectrum of clinical manifestations ranging from
localized, disseminated, or diffuse cutaneous lesions or
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mucosal lesions to viscera involvement such as the liver and
spleen [1]. The establishment of these different clinical forms
depends on the parasite’s species and on the vector, in addi-
tion to the epidemiological characteristics and genetic and
immunological constitution of the host [2], where both
innate and adaptive immune responses can drive the devel-
opment or control of infection.

The beginning of our studies on insulin-like growth fac-
tors on Leishmania and leishmaniases backs to the nineties
when the main focus on leishmaniasis research was the cell-
mediated immune response. At the end of the eighties, T
helper 1 (Th1) was related to resistance and T helper 2
(Th2) to susceptibility to Leishmania major infection in stud-
ies using inbred mouse strains. The susceptibility was attrib-
uted to early Th2 cell activation present in BALB/c mice and
the resistance to Th1 cells in C57BL/6 mice by the infection.
Subsequent studies using different approaches as cytokine
neutralization, specific cell response induction, or inhibition
of the immune system’s elements through molecular dele-
tions confirmed this view, but others pointed flaws in this
model. Similar studies using other Leishmania species also
showed that the adaptive immune response does not explain
the infection’s resistance and susceptibility profiles. Further,
human leishmaniases’ pathogenesis cannot be explained only
based on resistance and susceptibility to parasite growth.

In this review, we initially present some data related
to the involvement of adaptive immune response on
Leishmania major and Leishmania donovani/Leishmania
infantum infections that do not fully clarify infection
development to justify the focus here on nonspecific fac-
tors. Then, we present data including studies on the innate
immune response that points out our research on the IGF-I
growth factor as an element that may contribute to Leish-
mania infection.

2. Adaptive Immune Response in
Leishmaniases: Flaws

2.1. Leishmania major. The experimental model using L. (L.)
major has been used to characterize the immune response on
resistance or susceptibility to infection related to the Th1 and
Th2 cell activation, respectively [3]. The role of cytokines in
the Th1 and Th2 paradigm has been questioned by results
suggesting that the resistance and susceptibility regulation
are much more complex, involving cytokine production
and other factors [4–9]. Studies have demonstrated that the
interferon- (IFN-) γ and interleukin- (IL-) 4 production are
similar in susceptible and resistant mice in the early stage
of infection [3, 10, 11]. Further, IL-4 production in resistant
mice does not alter the evolution towards progressive disease,
similarly seen in C3H mice treated with IL-4 or anti-IL-12 at
the beginning of infection. These mice presented a solid but
transient increase in the IL-4 level, with no change in their
resistant phenotype [12–14]. Another study showed that
the transfer of BALB/c T cells with high IL-4 expression to
genetically resistant chimeric mice having a C57BL/6 back-
ground did not result in susceptibility [15]. These questions
on the Th1 and Th2 paradigm in leishmaniasis also become
evident in infections caused by other Leishmania species.

2.2. Leishmania donovani/Leishmania infantum. In contrast
to the L. major-infected mouse model’s immune response
very much scrutinized, the immune mechanisms in experi-
mental visceral leishmaniasis (VL) are less explored. Resis-
tance in VL involves CD4+ and CD8+ T cells, IL-2, IFN-γ,
and IL-12, the latter in an IFN-γ-independent mechanism
and linked to transforming growth factor β (TGF-β) produc-
tion. Susceptibility involves IL-10 but not IL-4 and B cells
[16]. Studies on L. donovani and L. infantum infections in
mice and humans [17–20] suggest that control of infection
was independent of the Th1 and Th2 cytokine differential
production (IFN-γ/IL-4 balance) [20]. The resistance to L.
donovani and induction of granuloma formation are depen-
dent on the generation of an IFN-γ response by both CD4+

and CD8+ T cells. IFN-γ activates macrophages to produce
antimicrobial reactive nitrogen and oxygen intermediates
[21], also important in driving granuloma maturation. Most
L. donovani-infected mouse strains control infection sponta-
neously, becoming immune for subsequent infections. In
these immune animals, upon reinfection, the elements
involved in resistance are different, i.e., CD8+ T cells and
IL-2 [16]. These experimental VL findings do not contribute
substantially to understand active human VL where the dis-
ease is progressive and lethal if not treated.

In active human VL, the patients present fever, hepatos-
plenomegaly, hypergammaglobulinemia, pancytopenia, and
significant weight loss [1]. Most of the studies focus on the
suppression of the T cell responses [22]. Immunosuppression
is characterized as Leishmania antigen-specific, where T cells,
Th2 cells, and adherent antigen-presenting cells are involved
[16]. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-
4) and programmed cell death protein 1 (PD-1) are negative
regulators of T cells and are expressed on exhausted or aner-
gic T cells in active infection, taking part in immunosuppres-
sion. The evoked mechanism is the induction of an increased
level of TGF-β and apoptosis of CD4+ T cells and inhibition
of macrophage apoptosis by Leishmania infection [23]. T cell
apoptosis, mainly CD4+ T cells, accompanied by a significant
decrease in IL-2 and IFN-γ secretion and unaltered IL-4
secretion, was observed during L. donovani infection and
was also related to immunosuppression [16]. Other immu-
nosuppressive mechanisms established during VL may be
mediated through regulatory T cells, secreting regulatory
cytokines like IL-10 and TGF-β and expressing inhibitory
molecules such as CTLA-4 and IL-35 [23].

In contrast to the studies on immunosuppression, other
data suggest intense immune activation in active VL [24].
Studies on peripheral blood mononuclear cells raised data
that suggest immunosuppression. However, findings in
lymphoid organ samples such as bone marrow and spleen
show high expression of tumor necrosis factor α (TNF-α)
and IFN-γ mRNA levels and high IFN-γ serum level as a
consequence [25, 26]. A study showing exhaustion of the
immune system [27] reinforces this view. All these studies
focusing on the balance between elements of adaptive
immune mechanisms are aimed at explaining the active
disease’s development. Still, no clear answer was achieved,
demanding the investigation on other components as the
nonspecific factors.
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3. Growth Factors in the Innate
Response in Leishmaniases

As the adaptive immune response does not fully explain the
control or development of Leishmania infection and the
initial events that occur immediately after the vector’s pro-
mastigote inoculation are crucial, we chose to investigate
growth factors present on the inoculation site. Once inocu-
lated into the skin, the parasites immediately encounter
innate immune elements, including growth factors such as
TGF-β and granulocyte-macrophage colony-stimulating
factor (GM-CSF).

The role of TGF-β as an important immune regulator in
leishmaniasis has been demonstrated in vitro [28–31] and
in vivo [32–34]. TGF-β can inhibit macrophage activation
through the blockage of nitric oxide (NO) production, lead-
ing to an increase in the parasitic load. Further, a synergistic
effect between TGF-β and EBI-3 (Epstein Barr virus-induced
gene 3 or IL-27β) on suppression of BALB/c mouse immune
response infected by L. donovani was observed [35]. Interest-
ingly, TGF-β homolog found in Lutzomyia longipalpis was
suggested to contribute to the L. infantum survival within
the vector [36].

In addition to TGF-β, GM-CSF can interact with L. ama-
zonensis promastigotes, promoting their growth and protect-
ing them from death by thermal shock [37, 38]. In
accordance, the rGM-CSF (recombinant GM-CSF) treat-
ment in L. major-infected BALB/c mice promoted an
enlargement in lesions and increased parasite load, as well
as L. major-infected macrophages incubated with rGM-CSF
presented an increased parasite load [39]. Further, the GM-
CSF was used topically during Miltefosine treatment in
American tegumentary leishmaniasis without success [40,
41]. In a multiomic study in cutaneous leishmaniasis
patients, diminished concentrations of GM-CSF, IFN-α2,
IL-6, and IL-3 and increased eotaxin levels were related to
treatment failure [42]. However, other studies show opposite
results; parasites are eliminated in L. tropica-, L. mexicana-,
and L. donovani-infected macrophages upon activation with
GM-CSF [43–45]. Moreover, mice with a null mutation in
the gene for the beta common (βc) chain of the receptors
for GM-CSF, IL-3, and IL-5 infected with L. major presented
resistance to infection [46].

In this context, we have started studying another growth
factor, the insulin-like growth factor-I (IGF-I). Its role in
Leishmania infection was considered because it is produced
by different cell types, including macrophages that harbor
the parasites. Also, it is present in the skin, where the parasite
initiates the infection [47].

The IGF-I is a hormone that presents a molecular struc-
ture relatively similar to insulin, being produced primarily
by the liver under the control of growth hormone (GH). As
a polypeptide phylogenetically well preserved, the IGF-I pre-
sents a molecular mass of approximately 7.5 kDa. It is present
in the circulation bound to a complex of carrier proteins
called insulin-like growth factor-binding proteins (IGFBPs).
Since its affinity for IGFBPs is greater than for its receptor,
in the extracellular environment, most IGFs bind to IGFBP,
of which IGFBP-3 is the most abundant in human serum

[48]. As mentioned before, different cell types produce IGF-
I, including macrophages that produce and harbor the IGF-
I with 26 kDa that will be cleaved in a 7.5 kDa molecule to
be secreted. IGF-I exhibits pleiotropic properties, including
the ability to promote cellular proliferation, differentiation,
nutrient transport, energy storage, gene transcription, pro-
tein synthesis, modulation of the immune response and
inflammation, and epigenetic modifications [47, 49, 50]. Of
note, IGF-I can trigger and/or modulate more than 200 genes
depending on cell types, tissues, development stages, among
others [51, 52]. In addition to insulin, the IGF-II is another
molecule that presents considerable similarity with IGF-I,
and its effect was observed on the stimulation ofGiardia lam-
blia trophozoite growth [53]. Despite the substantial similar-
ity between IGF-I and IGF-II, only IGF-I presented effect on
Leishmania infection and proliferation [54–56]. The same
was observed on the development of infection caused by
other pathogens, like Mycobacterium leprae, Schistosoma
mansoni, and Schistosoma japonicum [57, 58].

The IGF-I exerts its biological effects binding to its
receptor (IGF-IR), which is present in several cell types,
mainly in macrophages, activating the intracellular sig-
naling cascade. The phosphoinositide-3 kinase/protein
kinase-B (PI3K/AKT) and the mitogen-activated protein
kinase (Ras/MAPK/ERK) are two main pathways activated
by IGF-I. Their stimulation may also occur by binding to
the insulin receptor (IR) when its free form is present in
excess. Since IGF-IR and IR are highly homologous tyrosine
kinase receptors sharing many signaling pathway compo-
nents and inducing insulin receptor substrates 1 and 2
(IRS1/2) in addition to AKT and MAPK phosphorylation
[59–61], the IGF-I binding to IR can result in a signaling cas-
cade comparable to the one triggered by the IGF-IR, generat-
ing similar effects.

It has been demonstrated that some physiological pro-
cesses are controlled by the immune and endocrine systems
reciprocally, through cytokine and hormone-regulated
actions [62–64]. Regarding IGF-I, some factors such as cyto-
kines can regulate its expression in macrophages. Macro-
phage stimulation, in vitro, by IFN-γ results in a decrease
and by IL-4 and IL-13 in an increase of IGF-I expression
[65–67]. On the other hand, IGF-I can also regulate cytokine
production. Phytohemagglutinin- (PHA-) stimulated human
peripheral blood mononuclear cells (PBMC) in the IGF-I
presence showed an increase in IL-10 and IL-4 and decrease
in IFN-γ secretion. In accordance, the IL-10 mRNA level
increased, as well as IL-10 secretion in PBMC-derived T cells
under the same conditions [68]. Further data showing
expression of IGF-I receptor expression upon T cell activa-
tion or modulation of adaptive immune elements by IGF-I
[69–72] suggest an important role of IGF-I in immunity.

This review will present the IGF-I as an active participant
both in experimental infection by Leishmania spp and
human leishmaniasis.

4. IGF-I in Experimental Leishmaniasis

4.1. Effect of IGF-I on Leishmania Promastigotes and
Amastigotes. The IGF-I likely interacts with Leishmania
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immediately after its inoculation into the host’s skin and after
being phagocytized by macrophages. For years, we studied
the participation of this growth factor directly on Leishmania
spp promastigotes and amastigotes in experimental in vitro
and in vivo infection and human infection.

We initially evaluated the IGF-I effect on promastigotes
and axenic amastigotes of different Leishmania species by
adding extrinsic IGF-I (i.e., recombinant human IGF-I) in
physiological concentrations [54–56]. Analyzing the IGF-I
effect throughout the promastigote growth curves of each
species, we observed increased proliferation of the parasites
in the presence of IGF-I. Its effect was more evident when
they reached the stationary growth phase (Figure 1). Thus,
the promastigotes’ response to extrinsic IGF-I suggests that
their contact with the host’s IGF-I when inoculated into the
skin can substantially affect them at the initial stage of
infection.

Subsequently, binding of IGF-I was shown to induce
phosphorylation of tyrosine (185 kDa and 60 to 40 kDa pro-
teins) and serine-threonine residues (110 kDa and 120 and
95 kDa proteins) in promastigotes and axenic amastigotes,

in a stage-specific effect [73]. When analyzing the interaction
between IGF-I and parasites, it was shown that IGF-I binds
specifically to a single-site putative receptor at the parasite
membrane. The receptor is a monomeric glycoprotein with
a molecular mass of 65 kDa and is antigenically related to
the α chain of human type 1 IGF-I receptor [74]. This specific
IGF-I receptor found on the surface of Leishmania promasti-
gotes and amastigotes differs considerably from those found
on mammalian cells. In human cells, the IGF-I receptor is
constituted by two alpha and two beta chains with a molecu-
lar mass of 135 and 93 kDa, respectively [74, 75]. Upon IGF-I
stimulation, the receptor goes through autophosphorylation
on tyrosine residues, activating the signaling pathway. Acti-
vation of the IGF-I receptor on Leishmania also leads to the
phosphorylation of a 185 kDa molecule that is homologous
to the insulin receptor substrate present in human cells, the
IRS-1. IRS-1 is a critical adapter protein involved in IGF-I
signaling and is considered a docking protein, playing a cen-
tral role in the intracellular signaling network [74, 76]. We
may speculate that the receptor functions as part of an array
of adaptive responses developed by the parasite to survive
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Figure 1: Growth curves of Leishmania spp promastigotes upon IGF-I stimulus. L. major, L. amazonensis, L. infantum, and L. braziliensis
promastigotes (5 × 105/mL) were cultured in 199 medium (Cultilab, Brazil) and Schneider’s Insect medium (Sigma-Aldrich, USA),
respectively, supplemented with 5% heat-inactivated fetal calf serum (FCS) (Cultilab, Brazil) at 26°C, with or without 50 ng/mL IGF-I
(rIGF-I, R&D Systems, USA). The growth of parasites was monitored by daily counting, for 10 days, in a Neubauer chamber, and the
results are presented as the number of parasites × 107/mL (mean ± standard deviation) from three independent cultures with or without
50 ng/mL IGF-I. ∗p < 0:05 (one-way ANOVA) compared with the culture without IGF-I (adapted from Reis et al. [65]).
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within the host. Thus, it may be considered a possible vaccine
target. In fact, it has been approached in schistosomiasis
since the IR in Schistosoma mansoni and S. japonicum were
discovered. These worms like Leishmania use the host’s hor-
mones and nutrients for their development. Their insulin
receptors have been studied as a vaccine target in animal
models to prevent transmission [57].

4.2. Effect of IGF-I on Leishmania-Macrophage Interaction.
Moving to in vivo studies using a cutaneous leishmaniasis
model in BALB/c mice, we have shown that the preincuba-
tion of L. amazonensis promastigotes with IGF-I promotes
a significant increase in the footpad lesion size, 21 days post-
infection. We observed an increase in the number of parasites
in the lesion accompanied by an inflammatory infiltrate.
These results suggest that IGF-I has a significant role in the
innate immune response during the infection, favoring the
parasite growth within macrophages [77].

Since IGF-I favors the macrophage’s parasite growth, this
growth factor probably affects the macrophage’s metabolic
machinery. The macrophages are key cells in the establish-
ment of Leishmania infection. Depending on the cells’ activa-
tion stimuli, Leishmania infection’s development will result
in progression or cure. One of the mechanisms involved in
these processes is the L-arginine metabolic pathway. The L-
arginine enters the cells from the extracellular milieu by the
cationic amino acid transporter 2 (CAT-2B), a member of
the classical amino acid cationic transporter system y+
(SLC7) [78]. When this amino acid is oxidized by the nitric
oxide synthase 2 (NOS2), it generates nitric oxide (NO),
one of the main leishmanicidal elements. However, when
the enzyme arginase hydrolyzes L-arginine, polyamines are
generated, promoting Leishmania proliferation [79–81].
Thus, we addressed the study of extrinsic IGF-I’s effect on
the parasite-macrophage interaction in vitro, evaluating the

L-arginine metabolic pathway in macrophages’ infection
with L. amazonensis.

In this approach, we observed that IGF-I favored parasite
growth in L. amazonensis-infected macrophages. It occurred
through an increase in arginase mRNA expression and argi-
nase activity in both parasites and macrophages and
decreased the production of NO by macrophages [55]. As
each species of Leishmania behaves differently, we analyzed
the role of extrinsic IGF-I on L. major. Similarly to those
results obtained with L. amazonensis, in L. major-infected
macrophages, IGF-I favored the parasite proliferation within
the macrophage inducing the arginase activation with an
increase of arginase mRNA expression and arginase activity
in both parasites and macrophages and a decrease in the
Nos2mRNA expression and the production of NO bymacro-
phages [65, 82] (Figure 2). These results showed the effect of
extrinsic IGF-I on L-arginine metabolism leading to the par-
asite’s proliferation within the macrophage.

It is worth mentioning that in Leishmania infection, the
fate of host-parasite interaction depends on the Leishmania
species involved. With this in mind, we evaluated the effect
of IGF-I on the macrophage infection with other species, L.
infantum, which causes visceral leishmaniasis (VL) and L.
braziliensis, which is responsible for the cutaneous (CL), dis-
seminated (DL), and mucosal (ML) forms of the disease.

For the evaluation of the IGF-I effect on L. infantum
infection, we used the THP-1 human monocytic cell line
and murine macrophages. In L. infantum-infected THP-1
cells upon IGF-I stimulus, the increase in parasitism was
not evident, only a slight tendency, accompanied by an
increase in NO production and no difference in arginase
activity (Figures 3(a)–3(c)). We observed similar results in
L. infantum-infected bone marrow-derived murine macro-
phages enquiring whether the cell type influences these results.
We noted an increasing trend in parasitism, accompanied by

L. amazonensis

L-arginine L-arginine

Polyamines

NO

L-ornithine

L-hydroxy arginine

Urea

NOS2

Arginase

Arginase

CAT-2B

L-arginine L-arginine

Polyamines

NO

L-ornithine

L-hydroxy arginine

Urea

NOS2

Arginase

Arginase

CAT-2B
rIGF-I rIGF-I

L. major

Figure 2: Scheme of the effect of extrinsic IGF-I (rIGF-I) in the L-arginine metabolic pathway activation in macrophages infected by L.
amazonensis and L. major. In RAW 264.7 cells or BALB/c mouse peritoneal macrophages infected with L. amazonensis or L. major
promastigotes and stimulated with 50 ng/mL recombinant IGF-I (rIGF-I, R&D Systems, USA), the parasitism, arginase mRNA expression,
and arginase activity, nitric oxide synthase 2 (NOS2) mRNA expression, and nitric oxide production (Griess reaction) were evaluated.
Extrinsic IGF-I induced an increase in arginase expression and arginase activity in both parasites and macrophages, decreased the
production of NO, and increased the parasitism in L. amazonensis- and L. major-infected cells, comparably.
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increased NO production upon stimulation with IGF-I and no
difference in arginase activity (Figures 3(d)–3(f)). Thus, unlike
L. major and L. amazonensis infection, these data suggest that
IGF-I does not significantly influence L. infantum amastigote
proliferation. It may be related to the difference in the L-
arginine metabolic pathway in this Leishmania species, where
arginase does not seem essential for polyamine production. In
studies with L. donovani, a related species that cause VL,
arginase-deleted amastigotes survive within the cell without
polyamine supplement but not promastigotes [83–85].

Further, in L. infantum-infected BALB/c and Swiss Web-
ster mice, in the presence of spleen and liver cells producing
high NO levels but with low arginase activity, the parasites
continue multiplying within the host cells [86]. In vitro, L.
infantum survives in the presence of high amounts of NO
added in the culture medium [87]. Altogether, these data
support the view that viscerotropic strains show differences
in L-arginine metabolism.

As observed with other Leishmania species, the extrinsic
IGF-I promoted L. braziliensis promastigote proliferation
(Figure 1). However, this effect was not evident in L. brazi-
liensis amastigotes within THP-1 cells upon stimulation with
IGF-I. Analyzing the parasitism upon IGF-I stimulus in
THP-1 cells infected with parasites isolated from patients

presenting different clinical manifestations, CL, ML, and
DL, no differences were observed. We noted only a slight ten-
dency to increase and decrease parasitism in cells infected
with parasites derived from ML and DL patients, respec-
tively. We also investigated the involvement of IGF-I on argi-
nase activation in both L. braziliensis promastigote-infected
THP-1 cells. In promastigotes isolated from CL and DL
patients, the arginase activity was increased after IGF-I stimu-
lation, while in parasites isolated fromML patients, a decrease
was observed. It is worthmentioning that theML-derived par-
asites presented a higher arginase activity when compared
with CL- and DL-derived parasites. Besides the alteration in
arginase activity in promastigotes, no difference in arginase
activity was detected in macrophages infected with those par-
asites derived from different disease manifestations [88, 89].
Besides, no differences were observed on NO production
between the groups stimulated or not with IGF-I (personal
communication). Macrophage metabolism in L. braziliensis
derived from diverse clinical manifestations is poorly under-
stood, demanding more studies on the role of IGF-I.

4.3. Effect of Macrophage Intrinsic IGF-I on Intracellular
Leishmania Growth. As macrophages contain endogenous
IGF-I in the cytoplasm, we decided to evaluate IGF-I’s role
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Figure 3: Parasitism and nitric oxide production in L. infantum-infected cells upon extrinsic IGF-I stimulus. THP-1 cells (a–c) or BALB/c
mouse bone marrow-derived macrophages (d–f) were infected with L. infantum promastigotes and stimulated with recombinant IGF-I
(rIGF-I, 50 ng/mL; R&D Systems, USA) for 24 and 48 hours. One representative experiment from three independent assays is shown.
THP-1 cells were differentiated into macrophages with 20 ng/mL phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich, USA) for 24
hours. Then, the cells were washed and allowed to rest in a fresh medium for 48 hours before infection with L. infantum promastigotes.
The parasitism (median number of parasites per 100 cells), nitric oxide production (Griess Reagent), and arginase activity (urea
production) were determined after 24 and 48 hours of incubation.
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produced by the macrophages (intrinsic IGF-I) in Leish-
mania infection. Under confocal microscopy, we showed
that the intrinsic IGF-I interacts with intracellular Leish-
mania parasites [82] (Figure 4).

Since the interaction occurs between intrinsic IGF-I and
intracellular parasites, we evaluate the parasitism upon inac-
tivation of intrinsic IGF-I. Using a knockdown strategy, the
Igf-I mRNA was silenced with IGF-I small interfering RNA
(siRNA) in L. major-infected macrophages. In the siRNA-
transfected group, we observed a significant decrease in
parasitism, accompanied by decreased arginase mRNA
expression and arginase activity in both parasites and macro-
phages and an increase in the Nos-2 mRNA expression and
NO production, when compared with the control group
without siRNA transfection. This effect was reversed by the
addition of recombinant IGF-I (rIGF-I), which induced an
increase in the number of parasites and increased the levels
of Leishmania arginase mRNA expression and arginase
activity, accompanied by a decrease in the Nos-2 mRNA
expression and NO production [65].

We observed similar results when the IGF-I silencing
strategy was employed in L. amazonensis-infected macro-
phages. We observed a significant decrease in parasitism
accompanied by an increase in the NO production in the
groups treated with siRNA compared with the control with-
out siRNA (Figure 5). In another study, macrophages from
growth hormone (GH)/IGF-I-deficient individuals, due to
the growth hormone-releasing hormone receptor gene muta-
tion, were assayed in vitro for L. amazonensis infection. It
was observed that the macrophages isolated from these indi-
viduals were less prone to infection than healthy control

macrophages [90]. These data certainly confirmed the role
of intrinsic IGF-I in intracellular parasite growth.

5. IGF-I and Cytokines

In Leishmania infection, the cytokines produced by macro-
phages and lymphocytes have an important participation in
the interplay between parasite and the host involving IGF-I.
In L. amazonensis-infected macrophages, the mechanisms
leading to parasite growth upon IGF-I stimulus differed
depending on the parasite life cycle stage used for infection.
When cells were infected by promastigotes, upon IGF-I stim-
ulus, this activation likely occurred through modulation of
cytokine production, inducing a decrease in TNF-α and an
increase in TGF-β and IFN-γ [55]. In cells infected by amas-
tigotes, the mechanism was diverse. IGF-I induced phospha-
tidylserine exposure on the parasite surface that likely
activated the macrophage arginase [91].

Other cytokines can act on the IGF-I expression like
IFN-γ which promotes a reduction in the IGF-I expression,
while IL-4 and IL-13 promote an increase in IGF-I expres-
sion [65–67]. These data suggest that IGF-I is involved in
the development of the adaptive immune response in
leishmaniasis.

The idea of immune-endocrine cross-talk has been
described in other studies examining the roles of prolactin,
GH, IGF-I, and thyroid-stimulating hormone in the devel-
opment, maintenance, and function of the immune sys-
tem, which in turn cause changes in the endocrine
system [92–94]. The interaction between the endocrine
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Figure 4: Detection of IGF-I within RAW 264.7 macrophages following infection with Leishmania major promastigotes. Colocalization of
IGF-I and Leishmania was analyzed using immunofluorescence. Following a 24 h in vitro infection, cells were fixed in 4%
paraformaldehyde (Sigma-Aldrich, USA), washed in 0.01M phosphate-buffered saline, pH 7.2 (PBS), blocked for one hour with 2%
bovine serum albumin (BSA; Sigma-Aldrich, USA) in PBS, and incubated overnight with monoclonal goat anti-mouse IGF-I antibody
(1 : 75; R&D Systems, USA) and a polyclonal mouse anti-Leishmania antibody (1 : 400) [136]. Anti-goat IgG Alexa Fluor-546 (1 : 200,
Invitrogen, USA—shown in red) and anti-mouse IgG Alexa Fluor-488 (1 : 400, Invitrogen, USA—shown in green) were used as secondary
antibodies. 4,6-Diamidino-2-phenylindole (DAPI, Invitrogen, USA—shown in blue) was used to stain nuclei. Images were captured using
a Leica LSM510 confocal microscope with a 63x objective and oil immersion (adapted from Reis et al. [82]).
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and immune systems is somewhat expected, as they share
several ligands and receptors in their signaling pathways [65].

Interactions between IGF-I and the immune system are
complex, bidirectional, and not fully explained. IGF-I could
modulate the inflammatory response and the activity of sys-
temic inflammation [95]. Studies have indicated that chronic
inflammation could suppress the IGF-I axis via several mech-
anisms such as downregulation of IGF-I receptors, disrup-
tion in the IGF-I signaling pathways, dysregulation of
IGFBPs, reduced IGF bioavailability, and modified gene reg-
ulation through the changes in the microRNA expression
[95, 96]. Proinflammatory cytokines such as IL-6, TNF-α,
and IL-1β impair the activity of the IGF-I axis by dysregula-
tion of its intracellular mediators, such as mitogen-activated
protein kinase (MAPK)/extracellular signal-regulated kinases
and PI3K [97]. IGF-I can reduce inflammation induced by
oxidized low-density lipoprotein treatment by reducing
high-mobility group box 1 (HMGB1) release, a potent stimu-
lator of tissue damage and inflammation, after stimulation
with pathogens or a factor passively released by necrotic cells,
activating nuclear factor kappa B (NF-κB) [98, 99]. In another
study on postmyocardial infarction, IGF-I decreased myocar-
dium cell apoptosis and inhibited gene expression and
production of proinflammatory cytokines, such as TNF-α,
IL-1β, and IL-6 [100]. Overall, most of the data appoint the
effect of IGF-I on the innate inflammatory response.

In leishmaniasis, the specific immune response is well
established in the L. major-infected mouse model, where
Th1 and Th2 cytokines were, respectively, related to resis-
tance and susceptibility to the infection. When Th1 cells are
predominantly activated, the cytokines IL-2, IFN-γ, TNF-β,
and IL-12 will be produced. Then, macrophages are activated
and NOS2 induced, which metabolizes L-arginine, generat-
ing citrulline and NO associated with increased microbicidal
activity. However, when Th2 cells are predominantly acti-
vated, mainly IL-4, IL-10, TGF-β, and IL-13 will be pro-
duced. Again, macrophages are activated alternatively, and
arginase I expression and arginase activity are induced, lead-

ing to polyamine production that contributes to parasite
proliferation [3].

When we analyzed IGF-I expression and the parasitism
of L. major infection in vitro, macrophages stimulated with
IFN-γ exhibited a reduction in the parasite load, accompa-
nied by a parallel reduction in IGF-I expression and arginase
activity and an increase in NO production. Further, IL-4 and
IL-13 stimuli increased the parasitism, followed by a parallel
increase in IGF-I expression and arginase activity and
reduced NO production [65]. These data showing the similar
effects of those cytokines on IGF-I expression and parasitism
compelled us to explore this hormone’s interference on the
effects of cytokines during Leishmania infection.

As shown above, the Th1 and Th2 paradigm defined in
the murine model with L. major infection has imperfections,
and IL-4 related to susceptibility cannot be considered valid
in any situation. Recently, in another Leishmania species,
IL-4 was considered cytokine determining resistance in a L.
donovani-infected BALB/c mouse [20]. Since the studies
suggest that the susceptibility profile is not exclusively due
to IL-4, and analyzing the signaling pathways of IL-4/IL-13
compared with the IGF-I pathway, we noticed shared com-
ponents, suggesting that IGF-I and IL-4 may reciprocally
interfere during Leishmania infection [65]. Thus, we pro-
ceeded with the study on the interference of IGF-I on IL-4
effect in L. major-macrophage interaction.

In L. major-infected macrophages stimulated with cyto-
kines upon Igf-I mRNA expression silencing, the parasitism
did not show the specific cytokine effect’s expected result.
Increased parasitism would be anticipated with IL-4 and
IL-13 stimuli. However, they were utterly ineffective when
the Igf-I mRNA was silenced. The effects of IL-4 and IL-13
on Igf-I mRNA-silenced cells were restored by the addition
of rIGF-I in the culture, in a mechanism dependent on Leish-
mania arginase production [65].

Our results showed that IGF-I is necessary for IL-4 to
exert its effect on parasite proliferation in macrophages.
IGF-I and the cytokines IL-4 and IL-13 share common
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Figure 5: Parasitism in L. major- or L. amazonensis-infected macrophages upon IGF-I siRNA transfection. RAW 264.7 cells infected with L.
major or L. amazonensis promastigotes transfected with or without 150μM IGF-I siRNA for 6 hours. The parasitism (median number of
parasites per 100 cells) was evaluated after 24 and 48 hours. One representative experiment from three independent assays is shown. ∗p <
0:05 (ANOVA and Tukey’s tests).
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components in their intracellular signaling pathways. IGF-I
triggers MAPK (ERK) and PI3K pathways [59, 101], and
IL-4 sequentially activates IRS-2 and the PI3K/Akt and
Ras-MAPK pathways [61, 102]. We observed an increase in
the levels of these phosphorylated proteins in all groups
treated with IL-4. Upon Igf-I mRNA silencing, we observed
a decrease in the expression of all phosphoproteins, and
interestingly, IL-4 stimulation did not completely restore
the decreased expression of phospho-p44 (ERK), phospho-
p38 (MAPK), and phospho-AKT [65] (Figure 6). We thus
considered IGF-I as the effector element for the IL-4 effect
in promoting susceptibility in L. major infection.

The participation of both Th1 and Th2 cytokines in
resistance and susceptibility was defined on L. major-
infected murine model infection, but it may not work in
other Leishmania species such as L. amazonensis. IFN-γ pro-
motes parasite growth in L. amazonensis amastigote-infected
macrophages [103]. In our study with L. amazonensis-infected
macrophages, IFN-γ induced increased parasitism and NO
production and decreased IGF-I expression, with no correla-

tion with the parasitism. The IL-4 and IL-13 stimuli also pro-
moted an increase in parasitism associated with an increase in
IGF-I expression and an increase in arginase activity. Silencing
Igf-ImRNA using IGF-I siRNA, the IL-4 and IL-13 stimuli led
to decreased parasitism compared with their controls without
siRNA. These data suggested that in the infection by L. amazo-
nensis, IGF-I is also needed to promote susceptibility to infec-
tion (Figure 7). However, the effect of IFN-γ and interplay
with IGF-I on L. amazonensis proliferation need further
studies.

Thus, the susceptibility and resistance observed in L.
major- and L. amazonensis-infected mouse strains may be
due to cytokines to some extent, but the susceptibility essen-
tially depends on the presence of IGF-I.

6. IGF-I in Susceptible and Resistant
Leishmaniasis Mouse Models

In light of our findings showing IGF-I ruling susceptibility
and resistance to L. major infection in vitro, we proceeded
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Figure 6: The effects of IGF-I siRNA and IL-4 on components of the IGF-I signaling pathways: levels of phosphorylated p44 (ERK), p38
(MAPK), and AKT proteins. L. major promastigote-infected or noninfected RAW 264.7 cells transfected with or without IGF-I siRNA
were stimulated for 30 minutes with IL-4 (2 ng/mL; R&D Systems, EUA) and recombinant IGF-I (50 ng/mL; R&D Systems, EUA). Cells
were lysed, the proteins were separated in 10% SDS-PAGE, and subsequently, a Western blotting was performed using anti-phospho-p44
(137F5, Cell Signaling Technology, USA), anti-phospho-p38 (D13E1, Cell Signaling Technology, USA), and anti-phospho-AKT (Ser473,
Cell Signaling Technology, USA) antibodies. Protein bands corresponding to protein expression levels were submitted to a densitometric
analysis (AlphaEaseFC™ software 3.2 beta version; Alpha Innotech Corporation, USA), and data are expressed in arbitrary units (adapted
from Reis et al. [65]).
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to evaluate the participation of IGF-I in vivo in L. major-
infected susceptible (BALB/c) and resistant (C57BL/6)
mouse strains. In control BALB/c mice, the lesion continu-
ously progressed as expected, while in those animals
injected with parasites preincubated with IGF-I, the lesion
development was accelerated, becoming larger when com-
pared with the control. In contrast, in control C57BL/6
mice, the lesions progressed for three weeks and then stabi-
lized and tended to diminish, but in those animals infected
with parasites preincubated with IGF-I, the lesion interest-
ingly progressed continuously, and it was significantly
greater than that in the control, although smaller than that
in the BALB/c mouse.

The previous data, showing that the transfer of BALB/c
highly expressing IL-4 cells to genetically resistant chimeric
mice on a C57BL/6 background did not result in susceptibil-
ity [15], suggested that the infection outcome is not governed
only by the type of cytokine produced. Then, we asked
whether IGF-I expression in mouse strains may explain the
L. major infection outcome. The IGF-I expression in suscep-
tible BALB/c mice and resistant C57BL/6 mice infected with
L. major was indeed different. We evaluated the Igf-I mRNA
by qPCR and IGF-I expression in anti-IGF-I labeled cells
under confocal microscopy. By both approaches, IGF-I was
detected in higher levels in BALB/c mice-derived peritoneal
macrophages than in C57BL/6 mice-derived cells [65], sug-
gesting that background expression of IGF-I may count
determining susceptibility to L. major infection in mice.

Remarkably, in the L. braziliensis-infected mice, the dis-
ease development is not tangible, with tiny lesions [104].
The same is observed in a visceral leishmaniasis murine
model using L. donovani or L. infantum that presents self-
controlled disease [105, 106]. Coincidentally, the IGF-I
in vitro effect on these Leishmania species was different from
that observed with L. major and L. amazonensis. Whether
these features are somehow related to IGF-I is an open ques-
tion that deserves further studies.

7. IGF-I in Human Leishmaniasis

In human leishmaniases, the infection development is related
to the host’s genetic and immunological characteristics and
the Leishmania species’ characteristics. We should emphasize
the differences presented here on the IGF-I effect on the infec-
tion development, depending on the Leishmania species. We
should also consider the sizable differences between the dis-
eases seen in human patients and murine models.

In murine CL, in the mouse strains susceptible to L.
major and L. amazonensis, the lesions’ development is pro-
gressive. In these lesions, we find macrophages full of Leish-
mania amastigotes in proliferation [105]. In human active
CL caused by these Leishmania species, the lesion presents
different chronic inflammatory processes and scanty amasti-
gotes [106, 107]. Only in rare diffuse cutaneous leishmania-
sis, caused by L. amazonensis, the lesions are in some way
similar to those observed in the susceptible murine CL model
with abundant amastigotes in the lesion [107].

We addressed the VL caused by L. infantum and tegu-
mentary leishmaniasis caused by L. braziliensis to study the
participation of IGF-I in human leishmaniases in Brazil.

7.1. IGF-I in Human Visceral Leishmaniasis. As shown
above, the disease progression was initially attributed to
Leishmania antigen-specific immunosuppression in active
VL, but what we notice is an immune activation and imbal-
ance of the immune response. Immunopathogenesis of VL is
still not clear, and recently, CD8+ T cells were characterized
by a gene signature observing the increased expression of spe-
cific cytolytic (granzymes A, B, and H and perforin), cytokine
signaling (SOCS3, STAT1, JAK2, and JAK3), and immune
checkpoint genes (LAG-3, TIM-3, and CTLA-4) [108].

When we evaluated both IGF-I and IGF-binding protein-
3 (IGFBP3) serum levels in samples collected from active VL
patients, we observed low levels of both IGF-I and IGFBP3
[109]. Based on these unexpected data, mainly in VL, where
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Figure 7: Parasitism in response to cytokine treatments and IGF-I siRNA transfection. Parasitism (median number of parasites per 100 cells)
in L. amazonensis-infected RAW 264.7 cells transfected with or without 150 μM IGF-I siRNA for 6 hours and then were stimulated with IFN-
γ (200U/mL; R&D Systems, EUA), IL-4 (2 ng/mL; R&D Systems, EUA), or IL-13 (5 ng/mL; R&D Systems, EUA) for 24 (a) and 48 (b) hours.
One representative experiment from three independent assays is shown. ∗p < 0:05 (ANOVA and Tukey’s tests).

10 Journal of Immunology Research



we observe massive parasite proliferation in inner organs and
considering experimental data showing no evident IGF-I
effect on parasite growth, we should consider the participa-
tion of IGF-I in another way in the biology of Leishmania.
Further IGF-I low levels in active VL were also seen in canine
VL [109, 110] and human VL patients [111]. We do not have
any element to envisage whether an IGF-I low level seen in
active VL cases influences nonspecific processes related to
parasite growth or adaptive immune response.

Alternatively, considering IGF-I’s pleiotropic effect, we
regarded it as IGF-I participation in other aspects of disease
pathogenesis. High levels of IFN-γ and TNF-α in active VL
may explain low IGF-I serum levels [66, 112]. We noticed
that IGF-I is linked to hematopoiesis and anemia [113,
114]. Both IGF-I and IGFBP3 serum levels showed a positive
correlation with hemoglobin levels in active human VL and
canine VL. Thus, we suggested that IGF-I has a pathogenic
role in VL anemia without any correlation with cytokine
levels. IFN-γ was shown negatively correlated with anemia;
thus, we suggested that both IFN-γ and IGF-I contribute to
the pathogenesis of anemia in active VL but independently
[109]. The experimental data in murine VL showing CD4+

T cells producing IFN-γwith alteration in the stromal micro-
environment in bone marrow linked to anemia development
reinforced the importance of IFN-γ in the pathogenesis of
anemia in active VL [115].

7.2. IGF-I in Human Tegumentary Leishmaniasis. Tegumen-
tary leishmaniasis in Brazil is mostly caused by L. (Viannia)
braziliensis, which presents as CL, ML, and DL. Studies on
pathogenesis show that immune response participates not
only in parasite growth control but also in lesion development
[116]. In CL, there is a strong T cell response with Th1 cyto-
kine production, such as IFN-γ and IL-12, related to infection
control, but if uncontrolled, it may cause tissue damage [117].
The ML has a high specific T cell response, both Th1 and Th2,
directed to a Th1-type response. High levels of proinflamma-
tory cytokines, TNF-α and IFN-γ, are produced, which are
poorly regulated by IL-10 and TGF-β [118, 119].

Further, comparing infected asymptomatic, CL, and ML
cases, a higher level of TNF-α was seen in CL and ML lesions
than in asymptomatic individuals. This higher level of TNF-α
is involved in lesion development even though it has known
anti-Leishmania effect [120]. Another study showed that
both CD8+ T cells and granzyme were related to lesion devel-
opment [121]. In a more recent study, transcriptomic analy-
sis in skin samples compared gene expression in cured and
noncured CL patients after 90 days of treatment. Gene sets
related to cytolytic machinery were significantly more
expressed, with higher expression of granzyme (GZMB gene),
perforin (PRF1 gene), and granulysin (GNLY gene) [122] in
noncured CL patients. Thinking on the participation of
IGF-I in the pathogenesis of L. braziliensis-caused CL, the
role of IGF-I would be more related to inflammatory and
healing processes than to parasite growth.

We initially addressed IGF-I in human cases of leishman-
iasis, measuring both IGF-I and IGFBP3 serum levels in
patients presenting different clinical forms, CL, ML, and
DL. In this analysis, both IGF-I and IGFBP3 levels were lower

in ML and DL than CL and healthy controls [89]. Consider-
ing the pleiotropic effects of IGF-I and observing a low level
of IGF-I in patients with worse clinical presentations such
as ML and DL, we may speculate on IGF-I’s role in the mod-
ulation of the inflammatory process and the maintenance of
epidermis and healing process [123–127].

Searching the role of IGF-I by immunohistochemistry in
the lesion of 51 human CL caused by L. braziliensis, IGF-I
was seen related to chronicity and good response to treat-
ment, but not parasite growth, and we relate the findings to
the efficient anti-inflammatory response and the known
action of IGF-I in wound repair [128].

8. Perspectives on the Use of IGF-I in
Therapeutic Interventions in
Human Leishmaniasis

IGF-I was associated with other skin diseases where delayed
wound healing was related to IGF-I’s low production at the
injury sites. In conditions like diabetes mellitus, IGF-I has
been used in skin ulcer treatment observing the healing with
an increase in the IGF-I local level upon hyperbaric oxygen
therapy or using IGF-I cream locally [129, 130].

Interference on the IGF-I pathway has been proposed to
address treatment strategies in diseases such as cancer, auto-
immune diseases, and atherosclerosis [131–133]. One of the
suggested targets is the Th17/Treg axis. Th17 cells were asso-
ciated with protection in VL but were associated with infiltra-
tion and disease pathology in human CL and ML [134]. In
autoimmune disorders with the participation of Th17 cells,
beneficial effects of a systemic recombinant IGF-I treatment
were seen through an increase of regulatory T cell levels in
affected tissues. Regulation of Th17 cells by IGF-I may occur
through modulation of AKT-mTOR and STAT3 signalings
[72]. Another target is the Vascular Endothelial Growth Fac-
tor A (VEGFA), a key factor in angiogenesis and wound heal-
ing process [135].

The possibility to explore the therapeutic use of IGF-I
encourages us to proceed with the studies on IGF-I in the
pathogenesis of different forms of leishmaniases.

9. Conclusions

In leishmaniases, because the adaptive immune response
does not fully explain Leishmania infection’s outcome, we
addressed the participation of IGF-I in infection and disease
outcome. Here, we reviewed the role of IGF-I in leishmania-
sis experimental models and human patients. IGF-I’s effect
extends over the biology of Leishmania, Leishmania-macro-
phage interaction hitting arginine metabolic pathway in both
cells, cytokine modulation, and pathogenic mechanisms of
different disease manifestations. The direct effect of IGF-I
on Leishmania results in its growth in vitro at a specific par-
asite stage. It influences the disease’s course inducing an
increase in the skin lesion size and parasite load, especially
with L. major- and L. amazonensis-infected mouse cutaneous
leishmaniasis. With other species of Leishmania, L. brazilien-
sis and L. infantum, parasite growth is not evident, bringing
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question on the differences in arginine metabolic pathway
activation dependent on the parasite species.

IGF-I interacts with cytokines where IFN-γ inhibits, while
IL-4 and IL-13 increase its expression in macrophages. In the
interaction with IL-4, a cytokine that is a hallmark of suscep-
tibility to L. major in murine leishmaniasis, we show IGF-I
as an effector element of the IL-4, an unprecedented finding.

Moving to human leishmaniasis, IGF-I was not proven as
a factor promoting parasite growth in cutaneous leishmania-
sis caused by L. braziliensis and visceral leishmaniasis by L.
infantum. Since patients with more severe diseases such as
mucosal, disseminated, and visceral forms presented low
IGF-I serum levels, alternative roles were searched. We
observed that low IGF-I levels might contribute to the
inflammatory response persistence and delayed lesion heal-
ing in human cutaneous leishmaniasis and the anemia devel-
opment in visceral leishmaniasis. We must highlight the
complexity of infection revealed depending on the Leish-
mania species and the parasite’s developmental stages.
Because IGF-I exerts pleiotropic effects on the biology of
interaction and disease pathogenesis and can trigger and/or
modulate more than 200 genes in certain cells and tissues,
IGF-I turns up an interesting tool to explore biological and
pathogenic processes underlying infection development. Fur-
ther, IGF-I pleiotropic effects open the possibility to
approach IGF-I as a therapeutical target.
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