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Abstract

Motivation: Predictive models are a powerful tool for solving complex problems in computational

biology. They are typically designed to predict or classify data coming from the same unknown

distribution as the training data. In many real-world settings, however, uncontrolled biological or

technical factors can lead to a distribution mismatch between datasets acquired at different times,

causing model performance to deteriorate on new data. A common additional obstacle in computa-

tional biology is scarce data with many more features than samples. To address these problems,

we propose a method for unsupervised domain adaptation that is based on a weighted elastic net.

The key idea of our approach is to compare dependencies between inputs in training and test data

and to increase the cost of differently behaving features in the elastic net regularization term. In

doing so, we encourage the model to assign a higher importance to features that are robust and

behave similarly across domains.

Results: We evaluate our method both on simulated data with varying degrees of distribution mis-

match and on real data, considering the problem of age prediction based on DNA methylation data

across multiple tissues. Compared with a non-adaptive standard model, our approach substantially

reduces errors on samples with a mismatched distribution. On real data, we achieve far lower

errors on cerebellum samples, a tissue which is not part of the training data and poorly predicted

by standard models. Our results demonstrate that unsupervised domain adaptation is possible for

applications in computational biology, even with many more features than samples.

Availability and implementation: Source code is available at https://github.com/PfeiferLabTue/

wenda.

Contact: lisa.handl@uni-tuebingen.de or pfeifer@informatik.uni-tuebingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Machine learning has gained wide popularity in recent years and has

proved its potential to solve important problems in computational

biology on many occasions (Almagro Armenteros et al., 2017;

Angermueller et al., 2017; Farh et al., 2015; Jansen et al., 2003;

Krogan et al., 2006). Enabled by the increasing amounts of available

data, predictive models have the potential to uncover new relation-

ships, e.g. between genotypes and phenotypes (Leffler et al., 2017;

Stranger et al., 2011), and to improve health care by offering treat-

ment decision support systems to predict critical events (Hoiles and

van der Schaar, 2016) or a patient’s response to treatment

(Lengauer and Sing, 2006).

Traditionally, machine learning assumes that the training data

originates from the same distribution as the data on which the learn-

ed model is later applied. While this assumption forms the statistical

basis of all standard models, it is often violated in real-world set-

tings. If new data does not have exactly the same distribution as the

training data, learned relationships may no longer be valid, causing

model performance to deteriorate.

For example, a model may be developed in a highly controlled

setting, but when it is later put to use in the real world, the
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conditions are less ideal. New data might be measured in different

institutions with different devices or protocols, or batch effects

might lead to differences in the distributions of data acquired at dif-

ferent times (Akey et al., 2007; Leek et al., 2010). Biological vari-

ability can also lead to a distribution mismatch, e.g. when cell

composition or other confounders cannot be precisely controlled

(Saito and Sætrom, 2012). A distribution mismatch may even arise

intentionally, if training data for the problem of interest are not dir-

ectly available and different but related data are used as a replace-

ment, e.g. for knowledge transfer between species.

Building predictive models that perform well even on data with a

certain distribution mismatch with respect to the training data is

known as domain adaptation (Pan and Yang, 2010; Patel et al.,

2015). The general setting considers data from two domains with

different but related underlying distributions: a source domain, from

which a sufficient amount of labeled data is available, and a target

domain, from which little or no labeled data are available. The goal

is to predict well on the target domain while training (mostly) on

source domain data. There are multiple flavors of domain adapta-

tion, differing in how much information from the target domain is

known.

A particularly challenging variant is unsupervised domain adap-

tation (Margolis, 2011), where only unlabeled examples from the

target domain are available for training. In this setting, there is no

direct way to measure a model’s predictive performance on the tar-

get domain during training. It is necessary to make assumptions on

the structure of the distribution mismatch, which can vary with the

data type or application of interest. Otherwise, the source and target

distributions could be arbitrarily far apart, eliminating any chance

of successful prediction. For some applications, e.g. in computer vi-

sion for object recognition from digital images, unsupervised do-

main adaptation has been studied extensively with promising results

(Aljundi et al., 2015; Gong et al., 2012, 2013) and especially do-

main adaptation methods based on (deep) neural networks have

proven successful (Ganin et al., 2016; Long et al., 2016).

Despite the recent success of deep learning methods, applications

in computational biology often demand other approaches since

models are required to be interpretable and data are less abundant.

A popular example are regularized regression models like the elastic

net (Zou and Hastie, 2005), which limit the complexity of a model

by penalizing large coefficients. Such models are well suited for pre-

diction problems with a much larger number of possibly correlated

features than samples, and are thus frequently used in computation-

al biology (Garnett et al., 2012; Hughey and Butte, 2015; Schmidt

et al., 2017). Specifically, the elastic net uses a convex combination

of L1 and L2 penalty, combining advantages of LASSO (Tibshirani,

1996) and ridge regression (Hoerl and Kennard, 1970) regarding

sparsity and the handling of correlated features.

In this article we propose wenda (weighted elastic net for un-

supervised domain adaptation). Our method compares the depend-

ency structure between inputs in source and target domain to

measure how similar features behave. It then encourages the use of

similarly behaving features using a target domain-specific feature

weighting. We build on ideas from Jalali and Pfeifer (2016) to meas-

ure the similarity of features in source and target domain, but do not

use strict feature selection or a predefined set of weak learners.

Instead, we learn a full weighted model for each considered target

domain. Wenda retains all advantages of the standard elastic net

regarding interpretability and the effects of regularization, but pri-

oritizes features according to how well they agree in both domains.

As a concrete application example, we consider the problem of

age prediction from DNA methylation data across tissues. DNA

methylation is a well-studied epigenetic mark, which has been

shown to play a role in important gene regulatory processes like the

long-term repression of genes, genomic imprinting and X-chromo-

some inactivation (Schübeler, 2015). In addition, DNA methylation

patterns of genomic DNA have been found to be associated with its

donor’s chronological age (Bell et al., 2012; Heyn et al., 2012;

Teschendorff et al., 2013a). Several studies used DNA methylation

data to predict donor age and elastic net models turned out to be

particularly useful for this task (Florath et al., 2014; Hannum et al.,

2013; Horvath, 2013). While these models were trained on the

DNA methylation and chronological age of healthy donors, their

predictions are interpreted as a biological epigenetic age. Increased

epigenetic aging could be linked to lifestyle factors and disease his-

tory, suggesting that the epigenetic age contains useful information

on an individual’s health status.

DNA methylation patterns are known to be highly tissue specific

(Varley et al., 2013; Ziller et al., 2013). While some age-associated

changes in DNA methylation are similar across tissues (Christensen

et al., 2009; Zhu et al., 2018), this does not hold for all of them

(Day et al., 2013; Fraser et al., 2005). Predicting age on different tis-

sues than the ones that are available for training can therefore be

seen as an unsupervised domain adaptation problem. As more

tissue-specific data have recently become available (Aguet et al.,

2017), predicting age on data from multiple tissues can serve as an

example for many future prediction scenarios, making this problem

an ideal candidate for evaluating wenda on real biological data.

We consider DNA methylation data from multiple tissues and

explicitly unmatched tissue compositions in training and test set.

Compared with a non-adaptive standard model, we show that our

method strongly improves performance on samples from the cerebel-

lum of the human brain, which were not part of the training data

and very poorly predicted by a non-adaptive standard model. In

addition, we study the performance of wenda in simulation experi-

ments, where it is possible to vary the severity of the distribution

mismatch between domains in a controlled setting. We show that

our method reduces test error compared with a simple elastic net

without domain adaptation also in this scenario, suggesting a wide

applicability in computational biology.

2 The wenda method

We assume to have n labeled examples, ðx1; y1Þ; . . . ; ðxn; ynÞ, from

the source domain and m labeled examples, ð~x1; ~y1Þ; . . . ; ð~xm; ~ymÞ,
from the target domain. In both domains, the inputs, fxign

i¼1 and

f~xigm
i¼1, are p-dimensional vectors with p 2 N, and the outputs,

fyign
i¼1 and f~yig

m
i¼1, are scalars. The goal of our method is to use the

source domain examples and the target domain inputs to come up

with a good prediction of target domain output. The data in source

and target domain follow two different joint probability distribu-

tions PSðX;YÞ ¼ PSðYjXÞ � PSðXÞ and PTðX;YÞ ¼ PTðYjXÞ � PTðXÞ,
respectively. A classical assumption in domain adaptation, called the

covariate shift assumption, is that the difference between these dis-

tributions arises only from the inputs, i.e. PSðXÞ 6¼ PTðXÞ, while the

conditional distributions, PSðYjXÞ ¼ PTðYjXÞ, are identical. We

weaken this assumption by allowing some features to have a differ-

ent influence on the output in source and target domain. More pre-

cisely, we assume that a subset M of all p features, M � f1; . . . ; pg,
that shares the same dependency structure in source and target do-

main will also have the same influence on Y in both domains.

Features which are not in M might influence Y differently in source

and target domain. More formally, the core assumption is
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PSðXf jX:f Þ � PTðXf jX:f Þ for all f 2M

) PSðYjXMÞ � PTðYjXMÞ;
(1)

where Xf and X:f denote feature f and all features except f in X, re-

spectively, and XM is the subvector of X containing only features in

M. We propose a model-based approach to quantify how well

PSðXf jX:f Þ and PTðXf jX:f Þ agree for different features. Instead of

strictly including or excluding features, we enforce stronger regular-

ization on features for which larger differences exist. This allows for

a tradeoff between a feature’s suitability for adaptation and its im-

portance for prediction. If PSðYjXf1;...;pgnMÞ and PTðYjXf1;...;pgnMÞ
differ noticeably, reducing the influence of features outside M on the

model should improve its robustness and capability to transfer be-

tween domains.

Wenda consists of the following three main components, which

we describe in detail in the following sections:

1. Feature models: We estimate the dependency structure between

inputs in the source domain using Bayesian models.

2. Confidence scores: We evaluate the estimated input dependency

structure on the target domain to quantify the confidence into

each feature for domain adaptation.

3. Final adaptive model: We train the final model on source domain

data while adjusting the strength of regularization for each fea-

ture depending on its confidence.

For simplicity, we explain this method considering only one target

domain even though it can easily be applied to multiple target

domains as we do in Sections 3 and 4.

2.1 Feature models
We capture the dependency structure between inputs in the source

domain using Bayesian models. For each feature f, we train a

model gf which predicts f based on all other features using the

source domain inputs, x1; . . . ;xn, as training data. These feature

models estimate all conditional distributions PSðXf jX:f Þ. Since we

consider high-dimensional feature spaces, we use Gaussian process

models (Rasmussen and Williams, 2006) with a simple linear ker-

nel and additive noise. This model has two hyper parameters, the

variance of the prior on the coefficients r2
p, and the variance of the

noise r2
n, which we determine by maximum marginal likelihood for

each feature. More precisely, we write x�;f ¼ ðx1;f ; . . . ;xn;f Þ> for

the vector containing feature f, and x�;:f for the ðn� ðp� 1ÞÞ-ma-

trix containing all remaining features of the training samples, and

maximize

log pðx�; f jx�;:f Þ ¼ �
1

2
x>�; f ðKþ r2

nInÞ�1x�; f

�1

2
log jKþ r2

nInj �
n

2
logð2pÞ:

(2)

Here K ¼ r2
p; x�;:f ; x>�;:f is the linear kernel matrix, In is the n-di-

mensional identity matrix and j:j denotes the determinant. Given r2
p

and r2
n, the posterior distribution of the coefficients, x, of the linear

model is Gaussian and has the closed-form solution

pðxjx�;f ; x�;:f Þ � N ðr�2
n A�1 x>�;:f ; x�;f ;A

�1Þ; (3)

where A ¼ r�2
n ; x>�;:f ; x�;:f þ r�2

p Ip�1. The advantage of using

Bayesian models in this step is that they offer not only a single predic-

tion, but a posterior distribution including uncertainty information.

2.2 Confidence scores
This uncertainty information can be used to define a score that

quantifies how closely each feature in the target domain follows the

source-domain dependency structure. Consider a given test input,

~xi, and feature, f. We denote the value of f in ~xi by ~xi;f , and the val-

ues of all features except f in ~xi by ~xi;:f . Given ~xi;:f , the feature

model gf outputs a posterior distribution, describing which values of

~xi;f would be expected according to the source-domain dependency

structure. For Gaussian processes this is a normal distribution,

Nðlgf
ð~xi;:f Þ;rgf

ð~xi;:f ÞÞ. We quantify how well the observed value,

~xi;f , fits to this predicted distribution using the confidence proposed

by Jalali and Pfeifer (2016),

cf ð~xiÞ ¼ 2 � U �
~xi;f � lgf

ð~xi;:f Þ
rgf
ð~xi;:f Þ

�����
�����

 !
; (4)

where U denotes the cumulative distribution function of a standard

normal distribution. This confidence is the probability that a value as

far from lgf
ð~xi;:f Þ as ~xi;f or further occurs in the posterior distribution

predicted by gf. We define the confidence of feature f for prediction on

the target domain as the average of cf ð~xiÞ over all target inputs,

cf ¼
1

m

Xm
i¼1

cf ð~xiÞ: (5)

For each feature, cf describes how well the source-domain dependen-

cies of feature f fit in the target domain and, according to the core

assumption stated in Equation (1), how suitable f is for the consid-

ered domain adaptation task.

2.3 Final adaptive model
To predict the output, ~y1; . . . ; ~ym, in the target domain, we train a

final model on the source domain data using the confidences defined

in Equation (5) to prioritize features. Here we use a weighted ver-

sion of the elastic net, which scales the contributions of features to

the regularization term according to predefined feature weights. The

weighted elastic net solves the problem

b̂ ¼ arg min
b
ðRSSðbÞ þ kJðbÞÞ (6)

JðbÞ ¼ a
Xp

f¼1

wf jbf j þ
1

2
1� að Þ

Xp

f¼1

wf b
2
f ; (7)

where RSSðbÞ denotes the residual sum of squares on the training

data, wf are the feature weights, k > 0 is the regularization parameter

and a 2 ½0; 1� determines the proportion of L1 and L2 penalty. If

wf ¼1 for all features, Equation (7) reduces to the standard elastic net

penalty. We choose these feature weights based on the confidences

defined in Equation (5) to encourage the use of features which were

estimated to be useful for domain adaptation. More precisely, we set

wf ¼ ð1� cf Þk; (8)

where k>0 is a user-specified model parameter. This means that

coefficients of features with a low confidence are penalized more se-

verely than coefficients of high-confidence features. The parameter k

controls how exactly confidences are translated into weights. For

k¼1, the feature weight increases linearly with decreasing confi-

dence, for higher values of k the model puts an increasingly high

penalty on very low confidences while penalizing medium to high
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confidences less severely. The resulting model still attempts to pre-

dict well on the training data by achieving a small RSSðbÞ, but is

encouraged to prefer features with high confidence. It takes into ac-

count both a feature’s importance for predicting the output accord-

ing to the source domain data and its confidence, i.e. its estimated

suitability for domain adaptation.

2.4 The challenge of parameter selection
Wenda has three external parameters: the weighting parameter k,

the proportion of L1 and L2 penalty a and the regularization param-

eter k. Parameters a and k are inherited from the standard elastic net

and usually optimized via cross-validation on the training data.

Alternatively, a is sometimes treated as a design choice (Horvath,

2013; Hughey and Butte, 2015), as its effect, i.e. the interpolation

between ridge regression and LASSO, is fairly straightforward to

interpret.

Cross-validation approximates the error on unseen samples

drawn from the same distribution as the training data. The goal of

unsupervised domain adaptation, however, is to achieve low error

on samples from the target domain, which follow a different distri-

bution. The absence of labeled output examples from the target do-

main for training is an obstacle for model selection. While

parameters can be optimized with respect to the source-domain dis-

tribution, it is uncertain whether they generalize to the target do-

main. Furthermore, simultaneously optimizing multiple parameters

constitutes a non-negligible computational burden.

Considering these aspects, we treat a as a design choice and keep

it fixed at a ¼ 0:8. Parameter k determines the strength of regular-

ization and can thus not be globally set to one value that performs

well across different datasets. Since data-dependent tuning of k is in-

evitable, we evaluate and compare two approaches, which are

described in Sections 2.5 and 2.6. The parameter k is introduced by

our method, so we evaluate its sensitivity in the empirical studies

(Sections 3 and 4).

2.5 Wenda-pn: prior knowledge on size of mismatch
In wenda, k does not only affect the strength of regularization but

also how strongly the feature weights are taken into account. For

very small k, e.g. all features are weakly penalized and differences

among feature weights have only a minor influence. For large k,

redistributing coefficients between features with different weights

can strongly change the value of the objective function, giving fea-

ture weights a large influence on the final result. Hence, for any tar-

get domain T, the optimal value, kT
opt, depends on how much

adaptation is needed for transfer between the source and target

domain.

If the size or severity of the distribution mismatch between

domains has a major influence on which k is optimal, prior know-

ledge on the similarity between the domains could help to choose k.

Note that prior knowledge here refers to information known from

other sources, but not to a prior distribution in the Bayesian sense.

This approach requires:

1. A quantitative measure of similarity or dissimilarity between

source domain and target domain(s).

2. A mapping from domain (dis)similarity to a good choice of k.

If and how prior knowledge on domain similarity is available

depends on the application and will be described in Sections 3.3 and

4.2 for the datasets used in this work.

The mapping usually has to be estimated from data, which is

possible if multiple target domains, T1; . . . ;T‘, are considered and

labeled examples are available for some of them. We model

logðkT
optÞ as a linear function of domain similarity since k is non-

negative and typically chosen from a grid of equidistant points on a

logarithmic scale (Friedman et al., 2010).

We call the version of wenda using prior knowledge wenda-pn

and evaluate it using the following cross-validation scheme. We first

partition the indexes f1; . . . ; ‘g of all available target domains into

two subsets, I1 and I2. For all i 2 I1 we determine kTi
opt by varying k

on a grid and choosing the value which leads to the lowest mean ab-

solute error (MAE) on the target domain Ti, disclosing the corre-

sponding labels. Next, we fit the model for the relationship between

domain similarity and kT
opt via least squares, using fkTi

optgi2I1
and the

corresponding domain similarities as training data. With this model

we predict kTi
opt for all i 2 I2 and measure the resulting performance

of wenda-pn. This process is repeated for multiple splits of the target

domains into subsets I1 and I2. The exact number and ratio of splits

is problem dependent and will be described in Sections 3.3 and 4.2.

2.6 Wenda-cv: cross-validation on training data
If no knowledge on domain similarity is available, an alternative op-

tion is to still use cross-validation on the training data to determine

k. Cross-validation will choose a regularization strength which is op-

timal on the source domain for the given feature weights, rather

than the target domain. Including the feature weighting can still lead

to an improvement compared with a standard elastic net, but choos-

ing k with cross-validation on source domain data may not fully ex-

ploit its potential. We call this version of our method wenda-cv.

2.7 Implementation
We implemented all models in python 3.5.4., the source code is

available on GitHub (https://github.com/PfeiferLabTue/wenda). For

computing the regularization paths of (weighted or unweighted)

elastic net models, we used python-glmnet (Civis Analytics, 2016), a

python wrapper around the original Fortran code which is also the

basis of the R package glmnet (Friedman et al., 2010). For optimiz-

ing the Gaussian process models needed for the feature models

described in Section 2.1, we used the python package GPy (GPy,

2012).

3 Experiments on simulated data

To evaluate how wenda performs on datasets with varying degrees

of domain mismatch in a controlled setting, we simulate multiple

datasets with dependent inputs and a defined distribution mismatch

between source and target domain. In each simulated dataset we use

1000 inputs, 3000 training samples from the source domain and

1000 test samples from the target domain. To account for variabil-

ity, we run 10 fully independent simulations.

3.1 Source domain model
We model the complex dependency structure between inputs using

Bayesian networks (Pearl, 1988) with Gaussian marginal distribu-

tions. For each simulation, we first randomly generate 20 directed

acyclic graphs (DAGs) with 50 nodes each and a maximum degree

of 5 (indegree þ outdegree) using BNGenerator (Ide and Cozman,

2002). These graphs model 20 groups of input variables with

dependencies within but not between groups. BNGenerator uses a

Markov chain Monte Carlo approach to sample uniformly from all

possible DAGs which satisfy the specified constraints. It additionally

outputs categorical distributions and conditional distributions for

the nodes, which we ignore for this application. Instead of
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categorical distributions, we assign independent standard normal

distributions to all root nodes and define the distributions of all

child nodes as linear combinations of their parent nodes plus a fixed

amount of Gaussian noise. To control the variance of child nodes,

we move through each graph according to its topological ordering,

draw random weights for parent edges from a standard normal dis-

tribution, and scale them to achieve a total variance of 1 (including

noise). We set the noise variance for input dependencies to r2
e ¼ 0:1,

i.e. 10% of the marginal variance of each node.

For the output, we use a sparse linear model with Gaussian

noise. We randomly choose 20 out of 1000 coefficients to be non-

zero, one in each of the 20 graphs. As for the relationships between

inputs, we set the noise variance to r2
out ¼ 0:1, draw the nonzero

coefficients from a standard normal distribution and scale them to

achieve variance 1.

3.2 Target domain model
To model target domain data with a distribution mismatch, we start

from the source domain model, but make changes to some of the

variables and their influence on the output. The Bayesian networks

allow us to directly change dependencies between inputs in the

model, instead of just distorting simulated data. Depending on the

degree of domain mismatch we wish to introduce, we randomly pick

a certain number of the 20 graphs representing the inputs and multi-

ply the weights of all their edges with �1, thus inverting the depend-

encies they have in the source domain. This is an attractive choice

because it specifically changes the dependencies of inputs while not

strongly distorting their marginal distributions. In addition, we

change the influence of these altered variables on the output by set-

ting the corresponding coefficients in the output model to zero. In

each simulation, we consider four different target domains with

varying size of distribution mismatch: no mismatch, 10%, 20% and

30% altered variables. When training the weighted models, we aver-

age confidences only over groups of 100 samples at a time, to ac-

count for the variability in feature weights caused by smaller target

domain sample sizes.

3.3 Prior knowledge on domain mismatch
Incorporating knowledge on the size of the domain mismatch is sim-

ple for simulated data since the ground truth of how many variables

were altered is known. We define domain similarity as the fraction

of unchanged variables and use leave-one-out cross-validation on

the four sizes of distribution mismatch to evaluate the performance

of wenda-pn (Section 2.5). When predicting with wenda-pn for the

target domains with a certain size of distribution mismatch, we use

the remaining target domains (from all simulations) to learn the rela-

tionship between domain similarity and kT
opt.

3.4 Baseline models
We compare the results of wenda-pn and wenda-cv on the simulated

datasets to two baseline models. The first is a simple elastic net with-

out feature weights (en), which is the natural baseline for our adap-

tive model. Here we choose a ¼ 0:8 in agreement with wenda, and

determine k via 10-fold cross-validation on the training data.

The second baseline is a weighted elastic net with a simpler fea-

ture weighting, for which we use the abbreviation wenda-mar. This

model has the same structure as proposed in Section 2, but feature

weights are computed based on the marginal distributions of fea-

tures instead of the dependency structure between them, eliminating

the need to train feature models as described in Section 2.1. It still

detects differences between the distributions of inputs in source and

target domain, but does not utilize dependencies between features to

do so. More precisely, the confidence defined in Equation (4) is

replaced by the simplified version

cs
f ð~xiÞ ¼ 2 �minfF̂ f ð~xi;f Þ;1� F̂ f ð~xi;f Þg; (9)

where F̂ f denotes the empirical cumulative distribution function of

feature f in the training data. As in wenda-pn and wenda-cv, we

average these confidences over all target-domain inputs and trans-

late them to feature weights in analogy to Equations (5) and (8).

Consistently with wenda-pn and wenda-cv, we keep a ¼ 0:8 fixed

and report results for multiple values of k. To determine the regular-

ization parameter k, we use 10-fold cross-validation on the training

data.

The score cs
f ð~xiÞ is chosen to be very similar to Equation (4). A

comparison of wenda-mar to an alternative score based on KL diver-

gence can be found in Supplementary Figures S1 and S2.

3.5 Results on simulated data
Figure 1 summarizes the MAE of wenda-pn, wenda-cv and wenda-

mar on the simulated test data. We report all errors relative to the

MAE of the standard (unweighted) elastic net (en), the error bars in-

dicate mean and standard deviation over 10 simulations. A similar

plot of the correlation between true and predicted output is shown

in Supplementary Figure S3.

With wenda-pn we obtain considerable improvements for the

intermediate target domains with 10% and 20% altered variables,

reducing the MAE of en by up to 18.7% and 26.2%, respectively.

For the more extreme target domains the results are mixed. With

30% altered variables we still observe an improvement for some val-

ues of k, but the variability is very high (both within one choice and

between choices of k). For the target domain without mismatch, the

MAE even increases compared with en for high values of k. This can

be explained by the cross-validation scheme we employ to learn the

Fig. 1. Mean absolute error (MAE) of wenda-pn, wenda-cv and wenda-mar on

simulated test data. Each row shows results on one target domain (no mis-

match, 10–30% altered variables). We report all errors relative to the MAE of

en showing the mean6standard deviation over 10 simulations
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relationship between kT
opt and domain similarity (Section 3.3). For

each size of distribution mismatch, the model describing this rela-

tionship has been trained on the remaining target domains. This is

an interpolation for the intermediate target domains (10% and 20%

altered variables), but an extrapolation for the target domains with

30% altered variables and no mismatch. Extrapolation is a harder

problem and can lead to a less accurate estimate of kT
opt and

increased variability.

It should be noted that using domain adaptation even though

prior knowledge suggests that there is no distribution mismatch be-

tween domains is not a realistic scenario. We include the results of

wenda-pn on data without distribution mismatch for the sake of

completeness.

The other two weighted models, wenda-cv and wenda-mar show

no or only very little improvement over en. On target domains with

mismatch, wenda-cv consistently receives a slightly lower MAE than

en, but the improvement is only 7.6% at best. It uses the same fea-

ture weights as wenda-pn, but obviously chooses a less suitable

value for k. The simpler confidences used by wenda-mar can only

pick up changes in the marginal distributions of features, not in their

dependency structure, leading to almost the same results as en. Only

for 30% altered variables a slight improvement can be noted. Since

marginal distributions are only altered very subtly in the target do-

main model, we expected a weak performance of wenda-mar in this

simulation study.

4 Age prediction from DNA methylation data

Now we consider our primary application on real data, i.e. the prob-

lem of age prediction from DNA methylation data across multiple

tissues.

4.1 DNA methylation dataset and preprocessing
We use DNA methylation data and donor age from two sources, the

Cancer Genome Atlas (TCGA; Chang et al., 2013) and the Gene

Expression Omnibus (GEO; Edgar et al., 2002). We include only

DNA methylation data which were measured with the Illumina

Infinium HumanMethylation450 BeadChip and only samples from

healthy tissue. Using RnBeads (Assenov et al., 2014), we perform

several preprocessing steps on the DNA methylation data. In par-

ticular, we remove SNPs and gonosomal CpGs, and normalize the

data with the BMIQ method (Teschendorff et al., 2013b). In add-

ition, we impute missing values (<0.5% of all measurements) using

10-nearest-neighbor imputation in the R package impute (Hastie

et al., 2017). Finally, we split the dataset into a training and test set

with 1866 and 1001 samples, respectively.

The final training set contains data from 19 different tissues,

with a focus on blood, and from donors with a chronological age

ranging from 0 to 103 years. The test set consists of data from 13

different tissues initially, including blood as well as tissues which are

not present in the training data, e.g. samples from the cerebellum of

the human brain. We slightly aggregate them, combining ‘blood’,

‘whole blood’ and ‘menstrual blood’, as well as ‘Brain

MedialFrontalCortex’ and ‘Brain FrontalCortex’ to increase sample

sizes per tissue. The range of ages represented in the test set is 0–

70 years. When applying wenda, we keep the training set fixed and

consider each tissue in the test set as a separate target domain.

To limit the computational burden of training feature models,

we reduce the initial number of 466 094 features to 12 980 using a

standard elastic net model with a ¼ 0:8 and fixed regularization par-

ameter, k¼1.1�10�4. Furthermore, we use the following

transformation for the chronological ages, which was proposed by

Horvath (2013). We transform all training ages with the function

FðyÞ ¼ logðyþ 1Þ � logðyadult þ 1Þ; if y 	 yadult

ðy� yadultÞ=ðyadult þ 1Þ; otherwise

�

with adult age yadult ¼ 20 prior to training, and later re-transform

the model’s predictions with the inverse function, F�1. This trans-

formation is logarithmic for ages below and linear for ages above

yadult, which is motivated by the fact that the methylation landscape

changes more quickly and dramatically in childhood and adoles-

cence than later in life. Subsequently, we standardize all data to zero

mean and unit variance.

4.2 Prior knowledge on domain mismatch
As prior knowledge for wenda-pn (Section 2.5), we make use of

published data on similarities between human tissues. The GTEx

consortium published an analysis of a large dataset of (among

others) genotype and gene expression data across 42 human tissues

(Aguet et al., 2017). In this article, Aguet et al. (2017) identified

tissue-specific expression quantitative trait loci (eQTLs), i.e. loca-

tions in the genome where genetic variants have a significant effect

on gene expression levels. Furthermore, the authors estimated

tissue-specific effect sizes for each eQTL using a linear mixed model,

and reported the correlation (Spearman’s q) of effect sizes between

all pairs of tissues (see Figure 2a in Aguet et al., 2017), providing a

comprehensive measure of tissue similarity. Here we focus on the

correlations reported for cis-eQTLs, where the location of the genet-

ic variation is within 1 Mb of the target gene’s transcription start

site, since these were identified in larger numbers and with a lower

false discovery rate than trans-eQTLs.

We map each tissue in our data to the corresponding tissue(s)

contained in the GTEx study, allowing multiple matches if the

GTEx classification is more detailed than the one available for our

data (Supplementary Table S1). Next, we compute similarities be-

tween tissues in our data by looking up (and potentially averaging)

the similarities between matched GTEx tissues. Finally, we define

the similarity between each target domain and the source domain as

the average over all pairwise similarities between samples from the

two sets. Our data contains several samples from tissues for which

no close match is available in the GTEx data (240 samples in the

training set, 56 in the test set). For these we impute the similarity to

other tissues with the mean of all pairwise tissue similarities.

When evaluating the performance of wenda-pn, we repeatedly

split the test tissues into one part for fitting the relationship between

domain similarity and kT
opt and one part for evaluation (Section 2.5).

Here, we iterate over all combinations of 3 tissues with at least 20

samples each for training and evaluate the performance on the

remaining tissues.

4.3 Baseline models
We compare wenda-pn and wenda-cv to the two baseline models

described in Section 3.4 with the following minor modification:

instead of using a simple elastic net directly, we use en followed by a

linear least-squares fit based only on features which received non-

zero coefficients in en. We refer to this baseline as en-ls. This model

type was suggested by Horvath (2013) for age prediction from DNA

methylation data, who reported that the subsequent least-squares fit

reduced test errors on his dataset. We observe a similar effect on our

data, where en-ls produces lower test errors than en on cerebellum

samples while making almost no difference on the remaining

samples.
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4.4 Results on DNA methylation data
We compare the results of wenda-pn, wenda-cv and the two baseline

models on the dataset described in Section 4.1 and measure perform-

ance by MAE on the test set (Supplementary Figure S4 for correl-

ation instead of MAE). Due to the heterogeneous nature of the data,

the random split of the training data used for 10-fold cross-

validation has a large influence on the results, especially for en-ls.

Hence, we report the mean and standard deviation over 10 runs. For

wenda-pn, we do not perform cross-validation on the training data

but iterate over multiple splits of the test tissues to learn the relation-

ship between domain similarity and kT
opt. Here, we measure MAE

only on samples which were not used for the similarity-lambda fit,

and report mean and standard deviation over all splits.

When training the weighted models, we regard each tissue in the

test dataset as a separate target domain. To be precise, we average

the confidences defined in Equation (5) only over samples of the

same tissue and train a separate model for each tissue, using always

the same training data but tissue-specific feature weights.

With en-ls we obtain an MAE of 6.19 6 0.90 years on the full

test set. Figure 2a illustrates the MAE of en-ls and a representative

example of a weighted model (wenda-pn, k¼3) on each test tissue.

It shows that en-ls yields a considerably higher MAE on cerebellum

samples than on other tissues. Figure 2b shows the predicted versus

true ages for the test set in a typical cross-validation run, colored by

tissue, and reveals that the predicted age is consistently far below

the true chronological age. Both plots demonstrate that en-ls pre-

dicts age well on all test tissues except cerebellum. In fact, on cere-

bellum samples en-ls produces an MAE of 18.75 6 7.18 years.

Cerebellum samples are especially hard to predict for two rea-

sons: they are not represented in the training data and they are

known to be biologically very different even from other brain tissues

regarding function and gene expression patterns (Aguet et al., 2017;

Fraser et al., 2005). Therefore, the focus of our evaluation is

whether domain adaptation as implemented by wenda can improve

performance on these samples.

The predictions of wenda-pn with k¼3 versus the true ages are

shown in Figure 2c. Here, we plot the predictions of a typical run

for each tissue by choosing the model with closest to median per-

formance among all models with this tissue in the holdout set. The

ages predicted by wenda-pn for cerebellum samples are far closer to

the corresponding true ages than they were for en-ls (Fig. 2b), and

predictions of wenda-pn on the remaining test tissues are of a similar

quality as those of en-ls. This observation is confirmed by the quan-

titative comparison in Figure 2a, where wenda-pn has far lower

errors than en-ls on cerebellum samples, and similar or better per-

formance than en-ls on the remaining test tissues.

While en-ls predicts age far worse on cerebellum samples than

on other tissues, wenda-pn shows no major difference in prediction

quality between cerebellum samples and the remaining test tissues.

Consequently, wenda-pn demonstrates to be considerably more ro-

bust to the distribution mismatch between cerebellum samples and

the training data than en-ls.

Figure 3 shows the MAE of all models on cerebellum samples.

Here, all weighted models strongly improve upon en-ls. The lowest

errors on cerebellum samples are achieved by wenda-cv, reaching as

low as 6.07 6 0.10 years for k¼4. This is closely followed by

wenda-pn, which achieves an MAE between 7.60 and 8.70 years on

average on cerebellum samples for k 	 4. Even wenda-mar, which

uses only marginal distributions to weight features, improves upon

en-ls with an MAE of 9.42 6 0.69 years at best. All weighted models

achieve their best result for k between 2 and 4 with not too much

variation in this range. However, even when k is far from optimal

for cerebellum samples, they still perform better than en-ls.

A comparison of the MAE of all models on the full test set is

shown in Figure 4 and indicates an overall similar performance of

wenda and the two baselines. For k 	 4, wenda-cv and wenda-mar

yield a slightly lower MAE than en-ls, and for large k, wenda-cv and

wenda-pn yield a slightly higher MAE than en-ls. Given that en-ls al-

ready shows acceptable performance on all tissues except cerebel-

lum, we did not expect a big improvement here. The results show,

however, that the improvement on cerebellum samples is not bought

by a loss of performance on other tissues.

5 Discussion

Predictive models are widely used in computational biology, but dif-

ferences between the distribution of their training data and new data

to which they are later applied can severely threaten their

(a) (b) (c)

Fig. 2. (a) Mean absolute error of en-ls and wenda-pn with k¼ 3 per test tissue. We show the mean 6 standard deviation over 10 runs of 10-fold cross-validation

for en-ls, and over all splits of the test tissues where the tissue of interest was in the evaluation set for wenda-pn. Predicted versus true chronological age for typ-

ical runs of en-ls (b) and wenda-pn with k¼3 (c). In each plot, we show samples colored by tissue. As a typical run for en-ls we show the one with closest to me-

dian performance on cerebellum samples and full test set. For wenda-pn, we choose a typical run for each tissue: among all models with this tissue in the

holdout set, we plot predictions of the one with closest to median performance
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performance. In this article we propose wenda, a method for un-

supervised domain adaptation based on the elastic net. It detects dif-

ferences in the dependency structure between inputs in source and

target domain and enforces stronger regularization on features that

behave differently. Our method is different from previous studies on

the combination of the elastic net and domain adaptation techniques

(Li et al., 2015; Wachinger and Reuter, 2016). Both consider only

the easier problem of supervised domain adaptation, i.e. the situ-

ation where some labeled examples from the target domain are

available for training, and are not applicable in the setting we con-

sider. Our method is also different from the approach proposed by

Cortes and Mohri (2011), which uses a sample weighting rather

than a feature weighting and is thus better suited for situations with

n>p than for the ones we consider.

The key idea of our approach, which separates it from many

other domain adaptation methods, is to learn the dependency struc-

ture between inputs for calculating feature weights. This property is

of particular relevance to applications within computational biology

where, in contrast to, e.g. image analysis, the dependency structure

is irregular and not known a priori. For example, even distant loca-

tions in the (epi)genome can interact and form complex gene regula-

tory networks, which vary with cell type and differentiation state

(Thompson et al., 2015). While we used Gaussian process models

with linear kernels as feature models, any other Bayesian model type

would be applicable in principle, subject only to the data and com-

putational resources.

Like any domain adaptation method, wenda makes the assump-

tion that source and target distribution are not too far apart, so that

some features are useful for predicting the output and behave simi-

larly in source and target domain. Another central assumption of

our method is that the dependency structure between inputs is in-

formative of which features are useful for domain adaptation. There

are certain extreme cases, where this is clearly violated. For ex-

ample, when features are entirely independent, the distribution pre-

dicted by each feature model gf would be approximately the

feature’s marginal distribution, and wenda-pn and wenda-cv would

behave similarly to wenda-mar. Another such case is the presence of

duplicates or extremely strong correlations between variables. These

could arise, e.g. in sequencing-based methylation assays, where the

DNA methylation of consecutive CpG sites is highly correlated in all

tissues. Thus, each feature would always be well predicted by its

neighbor, regardless of changes on a larger scale. In situations like

this, we suggest to aggregate extremely correlated features before

training, which is also advisable for a standard elastic net.

Our method is computationally demanding since it requires to

train one Bayesian model per feature (for confidence estimation)

and one weighted elastic net per target domain (for prediction).

While both of these steps can be parallelized to speed up calcula-

tions, fitting the feature models remains challenging for large data-

sets. For example, training 12 980 feature models for the DNA

methylation data on 10 CPUs of the type Intel Xeon CPU E7-4850

with 2.30 GHz takes about 51 h.

However, the structure of wenda allows additional speed-ups, as

feature models have to be trained only once (as long as the training

data remain fixed) and can be reused to predict on multiple target

domains or with different parameter settings. If the confidence scores

for a given test dataset are precomputed as well, the final model for

one target domain is only a weighted elastic net trained on the train-

ing data, whose regularization path can be computed quickly, e.g.

with glmnet. With the same computational setup as before and with

precomputed feature models and confidence scores, training all mod-

els required for wenda-pn with k¼3 (Fig. 2c) takes about 43 s.

Wenda allows to incorporate prior knowledge on the size of the

domain mismatch (wenda-pn), but a simplified version can also be

applied without it (wenda-cv). Wenda-cv uses cross-validation on

the training data to determine k, which is not ideal in a domain

adaptation setting. Nevertheless, our results on the DNA methyla-

tion data demonstrate that it can still lead to a surprisingly large im-

provement over a non-adaptive model. This makes it a valuable

alternative to wenda-pn, especially if no prior knowledge on the size

of domain mismatch is available.

Wenda introduces a new parameter k, which controls how confi-

dences are translated into feature weights. We empirically studied

the impact of choosing k on the MAE and observed satisfying per-

formance in the interval k 2 ½2;4�. Hence, k¼3 might constitute a

relatively robust choice for future applications, albeit it is unlikely

that any single parameter choice is optimal for each and every target

domain. We note that wenda never performs substantially worse

than the non-adaptive reference. Hence, the precise value of k deter-

mines only the magnitude of improvement obtained and a

Fig. 3. Mean absolute error of all models on cerebellum samples. We show

the mean and standard deviation over 10 runs of 10-fold cross-validation or,

in case of wenda-pn, over all splits where cerebellum samples were in the

evaluation set

Fig. 4. Mean absolute error (MAE) of all models on the full test set of DNA

methylation data. We show the mean and standard deviation over 10 runs of

10-fold cross-validation. In case of wenda-pn, we compute the MAE only

based on samples in the evaluation set, and plot the mean and standard devi-

ation over all considered splits of the test tissues
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suboptimal choice poses relatively little risk. Nevertheless, without

labeled training examples from the target domain, parameter selec-

tion remains a non-trivial problem. Finding a data-driven way to de-

termine an optimal choice for k, or evaluating whether a can be

optimized additionally, are challenging themes for future research.

6 Conclusions

In this article we propose wenda, a method for unsupervised domain

adaptation which is based on the elastic net and utilizes dependen-

cies between inputs to detect differences between source and target

domain. Using a weighted elastic net penalty, wenda enforces stron-

ger regularization on features that behave differently in the two

domains, reducing the effects of a distribution mismatch.

We compare two variants of our method, wenda-pn and wenda-

cv, on simulated datasets and on real data, where we considered the

problem of age prediction from DNA methylation data across tis-

sues. Our experimental results demonstrate that both variants can

reduce test errors on samples with a distribution mismatch. While

wenda-cv outperforms the non-adaptive reference only on real data,

wenda-pn strongly reduces errors on test samples with a distribution

mismatch both on real and simulated data, which makes it the more

promising variant for future applications.

From a wider perspective, this article demonstrates that the am-

bitious goal of unsupervised domain adaptation is indeed feasible

not only for big data analysis with deep learning methods, but also

for traditional machine learning methods that are useful for analyz-

ing relatively small datasets as they frequently occur in computation-

al biology and medicine.
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