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ABSTRACT: Intrinsically disordered proteins (IDPs) represent a new frontier in structural biology
since the primary characteristic of IDPs is that structures need to be characterized as diverse
ensembles of conformational substates. We compare two general but very different ways of combining
NMR spectroscopy with theoretical methods to derive structural ensembles for the disease IDPs
amyloid-β 1−40 and amyloid-β 1−42, which are associated with Alzheimer’s Disease. We analyze the
performance of de novo molecular dynamics and knowledge-based approaches for generating structural
ensembles by assessing their ability to reproduce a range of NMR experimental observables. In
addition to the comparison of computational methods, we also evaluate the relative value of different
types of NMR data for refining or validating the IDP structural ensembles for these important disease
peptides.

■ INTRODUCTION

Experimental approaches such as X-ray and electron crystallog-
raphy and microscopy have traditionally excelled at determining
the structure of single folded proteins1,2 and large protein
complexes.3 However, intrinsically disordered proteins (IDPs)
are not amenable to these static structural determination
methods.4 IDPs represent a new frontier in structural biology in
that the IDP structure must be characterized as a diverse
ensemble of interconverting conformational substates, as
opposed to a single dominant 3D structure.5 This necessitates
an adjustment in the core methodology of protein structure
determination for this class of protein.
The experimental identif ication of proteins with global

intrinsic disorder can be performed using various spectroscopic
techniques including circular dichroism (CD), NMR, infrared
spectroscopy (IR), UV spectroscopy, and fluorescence spec-
troscopy.6,7 CD and IR report on the amount of secondary
structure, while lack of chemical shift dispersion in NMR
spectra is a good indication of high flexibility. Hydrodynamic
techniques such as SAXS, gel filtration, and dynamic light
scattering can also aid in IDP identification as they report on
the radius of the protein, which is often larger for an IDP or
denatured protein than a folded protein of the same mass. Lack
of a cooperative folding transition, solubility at high temper-
atures, and proteolytic sensitivity are also attributes of IDPs that
are useful in forming a complete picture of a certain protein’s
level of disorder. A subset of these techniques is generally
employed to determine that a protein is an IDP.
Recently increased importance has been placed on character-

izing the conformational substates within IDP ensembles since
they each may have distinct functional roles7−13 or could lead

to hypotheses about disease origin.14 In order to achieve both
better ensemble classification and a detailed description of
conformational substates, we must critically assess how we
build these complex structural ensembles from experimental
data and theoretical models. NMR is the experimental tool of
choice for characterizing the solution structure and dynamics of
biological molecules since it reports on the native distribution
of conformations in an aqueous environment, and more
importantly is a dynamical experiment that probes the
nanosecond to millisecond time scales of conformational
motion.4,15,16 Observables from these experiments include
chemical shifts, which are characteristic of functional groups
and their surrounding environment, and spin−spin couplings
(J-couplings), which independently report on backbone
dihedral angles. In addition, through-space dipole−dipole
interactions give rise to the nuclear Overhauser effect (NOE)
that reports on tertiary structure contacts, and more recently,
residual dipolar couplings (RDCs) have been used to describe
the relative orientation of spatially separated regions of a
protein.17−20 Paramagnetic relaxation enhancements (PREs),
which can produce longer distance restraints than NOEs have
also been used in the context of IDPs;21−24 however, this
measurement requires chemical modification of the protein
with a nitroxide spin label or an amino-terminal copper binding
motif, which sometimes requires sequence modification to
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attach the probe, and which may perturb the monomeric IDP
conformations.25,26

IDPs typically convert between conformations faster than the
ca. nanoseconds−milliseconds time scale of the NMR experi-
ment, leading to an averaging of the NMR observables across
structural subpopulations. This uniform average hinders the
structural characterization of all the conformational substates,
and can even obscure the overall ensemble classification, as we
will see for the amyloid peptides in this study. Building the
connection between the averaged NMR observables and the
complete IDP structural ensemble therefore depends critically
on computational models.27 The goal of the computational
model is to provide a properly weighted set of the diverse
subpopulations of the IDP most consistent with the NMR
observables and perhaps other experimental measures such as
circular dichrosim,28 small-angle X-ray scattering,29,30 or
PREs.23,31 Thus, multiple types of NMR or other experimental
observables are necessary for validation of the computational
model.16,30

Currently there are two primary but very different computa-
tional approaches to building an IDP structural ensemble,
which can be loosely contrasted as first principle or de novo
molecular dynamics (MD) methods versus knowledge-based
approaches. The de novo approach implements MD simulations
based on the theoretical foundations of statistical mechanical
sampling and model-derived potential energy force fields. De
novo MD generates a structural ensemble that is representative
of given thermodynamic conditions according to the force field
employed, i.e., a Boltzmann weighted ensemble of conforma-
tional subpopulations and their time scales, independent of
experimental input. The MD trajectories also allow calculation
of the time correlation functions that underlie the NMR
experiment. The complementary use of MD and NMR data to
determine structure and dynamics of folded and unfolded
proteins has been a highly active area over the last two
decades,32,33 particularly for relaxation measurements that
require a dynamical interpretation of the NMR data at the
picosecond and nanosecond time scales.34 For the de novo MD
method, multiple NMR or other experimental data are
necessary to validate the MD ensemble through direct back-
calculation of observables, many of which depend on the time
scales of motion, in order to directly compare to the
experiment. Once validated, MD simulations provide a
prediction of the complete IDP structural ensemble, allowing
overall classification as well as the study of individual
conformational substates, which can be analyzed with some
confidence.
In contrast, we define knowledge-based approaches as those

that use experimental NMR information directly to derive the
structural ensemble. Such methods are the foundation of NMR
structure determination of folded proteins using experimentally
derived conformational constraints based on chemical shifts, J-
couplings, and NOE data embodied in software packages such
as CANDID,35 CYANA,36 and X-Plor-NIH.37,38 While MD is
often used to generate atomistic predictions independent of
NMR experimental input, as in our de novo method, a number
of researchers have advanced the combination of applying
knowledge from NMR to restrain the MD ensemble.22,24,39−41

For example, MD simulations have been combined with RDC
restraint data for folded proteins40 that then allows for the
analysis of other features of the ensemble, such as conforma-
tional fluctuations. NMR restrained MD has also been applied
to IDPs such as α-synuclein, a disease protein indicted in

Parkinson’s disease. This study incorporated distance restraints
derived from PRE experiments in order to guide the MD so
that the protein’s radius of gyration distribution is in good
agreement with the experimental value.39

Other knowledge-based approaches for IDPs forego MD
simulations altogether and instead use an extensive set of
statistical coil conformations;16,42 this starting pool, which can
be generated using a variety of heuristics, can be thought of as a
basis set of structures. Subsequently, the starting pool of
structures is then culled for the subset of conformations that are
in best agreement with experimental data to create the IDP
ensemble. In the energy-minima mapping and weighting
(EMW) method, Stultz and co-workers used end-to-end
distance restraints to develop a pool of conformations with
varying radii of gyration; they then selected, via Monte Carlo, a
weighted ensemble of 15 structures to optimize the agreement
with experimental 13C and 15N chemical shifts and J-
couplings.43,44 Blackledge and co-workers have developed the
program Flexible-Meccano to create a pool of structures based
on random coil backbone dihedral angles, on which they
employ a genetic search algorithm in their ASTEROIDS
software program to select structures that together best match
experimental chemical shifts, PREs, or RDCs.16,45,46

The ENSEMBLE method, developed by Forman-Kay and
co-workers, typically defines the starting pool of IDP
conformational states as an ensemble of extended or random
coil states generated using TraDES, with an option for biasing
the secondary structure of the ensemble at certain places in the
sequence that are known to be partially structured.23,29,42,47

Structures are selected from this pool using a Monte Carlo
selection algorithm with an energy-weighting scheme for each
type of experimental input. The ENSEMBLE program includes
modules for several different experimental data types including
chemical shifts, RDCs, PREs, J-couplings, and contact distances
derived from NOEs, and is a user-friendly and publically
available software package.42 Although there are some specific
differences, ENSEMBLE is largely representative of the
knowledge-based approaches and is qualitatively equivalent to
the combination of Flexible-Meccano and ASTEROIDS
software.16,45,46 It is important to note that such techniques
largely ignore the inherent dynamical information of certain
types of the NMR data that can be important for discriminating
between different IDP structural ensembles.
The primary objective of this work is to compare the de novo

and knowledge-based approaches for deriving IDP structural
ensembles in context of the intrinsically disordered Alzheimer’s
disease peptides amyloid-β 1−40 (Aβ40) and amyloid-β 1−42
(Aβ42). We implement the ENSEMBLE knowledge-based
method by building an ensemble from a pool of statistical coil
structures, and compare this knowledge-based ensemble to MD
generated ensembles, which are qualitatively different in that
they are comprised of mostly cooperative secondary structure
and tertiary contacts. This comparison also exposes the relative
utility of different types of NMR data for refining or validating
the IDP computational ensemble. We find that chemical shifts
and J-coupling constants are not particularly useful for
distinguishing between qualitatively different IDP ensembles
of the amyloid-β peptides. Finally we show that the
combination of de novo MD methods that provide Boltzmann
weighted samples with the ability to measure time correlation
functions, and knowledge-based methods for conformation
selection, provides the best agreement with the NMR data.
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■ METHODS
Back-Calculation of NMR Observables. In order to

evaluate the alternative ensembles produced by knowledge-
based and de novo approaches, we need a method of calculating
the chemical shifts, J-coupling constants, RDCs, and 1H−1H
NOEs as averages over the entire computationally generated
structural ensemble for comparison with experimental values.48

General purpose chemical shift calculators such as SHIFTX49

and SHIFTS50 describe the isotropic shielding of the applied
magnetic field for the given atom, a quantity that depends
sensitively on the local electronic structure environment.49−51

Even for folded proteins with a dominant native conformer,
each atom type can exist in many different local environments,
and for disordered peptides and proteins the ensemble average
reflects an even more diverse set of chemical environments.
This makes an accurate calculation of chemical shifts quite a
challenge for IDPs. Whether one uses SHIFTX (used in
ENSEMBLE) or SHIFTS to calculate chemical shifts, the
results generated by the two programs are consistent when
applied to amyloid-β and averaged over the structural
ensembles.14,48,52 We report results using SHIFTX in this work.
To calculate the scalar coupling constants, 3JHNH

α, we used
the Karplus equation53

ϕ ϕ ϕ= − + − +J A B C( ) cos ( 60) cos( 60)2
(1)

where ϕ indicates the protein backbone dihedral angle, with
coefficients A = 6.51, B = −1.76, and C = 1.60 corresponding to
the parameter set by Vuister and Bax.54 However, Sgourakis
and co-workers55,56 and our own previous work on Aβ4214,48

found that the MD results exhibited a systematic shift of
calculated J-couplings with the experimental scalar couplings of
Wang and co-workers. We delved into this issue more deeply
and derived an analytical correction, described in recent work,14

that must be applied to the original experimental J-coupling
data from Wang and co-workers.57 In particular, it has been
corrected for a missing relaxation that makes scalar couplings
determined from the HNHα 3D experiment consistently lower
than those from COSY splittings by a small amount54 (from
∼1−5%). The J-coupling values are also averaged over all
structures in the ensemble as in,14,48,52 and then the calculations
can be compared to the corrected experimental 3JHNH

α values
for both amyloid peptides.
The standard method in the field for calculation of RDCs is

the PALES58 program, which we have used previously for the
Aβ40 and Aβ42 MD ensembles.14,48,52 The program computes
the RDC by using steric properties of the molecule to generate
a global alignment orientation. Then, the angle between the
backbone amide bond vectors and the external magnetic field is
used to calculate the RDC for each conformation, and the
RDCs are averaged over all conformations of a given ensemble.
The ENSEMBLE program by contrast, evaluates RDCs using a
local alignment program developed in the Forman-Kay lab,
where 15 residue segments along the protein are aligned
separately over the ensemble of structures.18 The local RDCs
(L-RDCs) are also averaged over all conformations of a given
ensemble. This local alignment has lower computational cost
and has been shown to give similar results to PALES, hence L-
RDCs, rather than RDCs generated from a global alignment
algorithm, are optimized in the standard implementation of the
ENSEMBLE approach. Similarly, the ASTEROIDS program by
default employs a local alignment tensor to optimize ensemble
agreement with experimental RDC data.59 We also note that

the PALES alignment and RDC calculation were developed for
folded proteins, and their application to IDPs assumes
individual IDP conformations behave similarly to folded
proteins during the RDC experiment, which may not be the
case for IDPs such as amyloid-β.
We also evaluate the 1H−1H NOESY (or ROESY) spectra as

we have described in previous studies14,48,52 by calculating the
intensity of the NOE cross-peaks

= −Λ −I t Xe X I( ) (0)t
mix

1mix (2)

where X and Λ are the eigenvectors and eigenvalues of the full
relaxation matrix, composed of diagonal elements
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density functions
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evaluated at the relevant Larmor frequencies, ω, and where K is
given by

μ
π

γ= ℏK
r4

0
3

eff
H

2

(5)

γH is the gyromagnetic ratio of 1H, μ0 is the permeability of free
space, and ℏ is Planck’s constant. reff is the distance between the
hydrogen atoms raised to −6 power, averaged over all
structures in the ensemble and then raised to the −1/6
power to convert back to units of distance. These calculations
account for all hydrogen atoms explicitly (including all methyl
or methylene groups) and hence reff and correlation functions
for every pair of hydrogen atoms are evaluated.14,48,52 The
spectral density function for each atom pair is calculated as the
Fourier transform of the correlation function for the pair vector
and water proton coordinates are ignored, as is the standard
assumption in the NMR experiment.
Finally we calculate 1H−15N NOEs as we did in refs 14 and

48 by evaluating the steady state NOE enhancement factor of
the 15N spin by the 1H NOE according to

ε
γ σ

γ
= +

R
1NOE

H HN

N Z
(N)

(6)

where γH and γN are the gyromagnetic ratios of 1H and 15N,
respectively. The 1H−15N cross-relaxation rate constant is given
by
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and the 15N self-relaxation by
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In this case, JHN(ω) is the spectral density function for the
1H−15N covalently bonded pair.
Note that the homonuclear and heteronuclear NOE

calculations require correlation time information about the
vector between each pair of atoms given by τ in eq 4. This
dynamic information is naturally supplied by the de novo MD
method, which allows direct measurement of the autocorrela-
tion of the interatomic vector over the time of the simulation.
However, dynamics are not considered in the generation of
ensembles that are used in the knowledge-based approach. This
is an inherent limitation of ensembles generated from a static
perspective only, which we discuss further below.

■ RESULTS
To determine an IDP’s level of disorder, we first generate
several alternative ensembles, compare these ensembles to the
available NMR data, and select the best validated ensemble. We
consider the creation of three qualitatively different conforma-
tional ensembles that are typically used in the knowledge-based
approaches16,42,45,46 for the Aβ40 and Aβ42 peptides.
The common null hypothesis is that the disordered peptides

can be well represented by a random coil (RC) ensemble. The
second type of statistical coil (Pred-SS) ensemble is also
random, but incorporates bioinformatics-based knowledge
about what secondary structure category is more likely for a
given residue in the amino acid sequence. In this case, the
random ensemble is biased to contain a statistical probability of
predicted secondary structure on a per residue basis, but no
cooperative secondary structure such as α-helices, β-hairpins, or
β-sheets are generated from the random secondary structure
assignments. Computational methods such as TraDes and
Flexible-Meccano are used to generate these type of random or
statistical coil ensembles.16,42 Finally, a fully knowledge-based
approach is considered, which culls the RC or, in this case,
Pred-SS ensembles to derive a subset of conformations that
best agrees with the NMR data (Pred-SS-ENS). The
ENSEMBLE software package provides a working example of
the knowledge-based approach that performs this biased
selection and which has been successfully applied to a range
of IDPs. Each of the above three ensembles can then be
compared against the ensembles generated by de novo MD for
both of the IDPs Aβ40 and Aβ42. Details of the de novo MD
approach applied to amyloid-β can be found in other
publications.14,48,52 We also consider an additional fifth
ensemble (MD-ENS) that combines the knowledge-based
and de novo MD approaches, by using ENSEMBLE to select
structures from the de novo MD starting pool, and which is
described in our recent study.14

Table 1 shows the average radius of gyration (Rg) values for
each type of ensemble. We see that the order from most
extended to most compact proceeds as Pred-SS > RC > Pred-
SS-ENS > MD ∼ MD-ENS, and thus the alternative ensembles
span a range of IDP classifications by the ⟨Rg⟩ measure.14

Figure 1 provides the propensities for the Pred-SS, Pred-SS-
ENS, de novo MD, and MD-ENS ensembles to form turns,
antiparallel β-strands, or helical structure by residue for Aβ42.
We do not show the secondary structure profiles for the RC
ensemble since it is similar to the Pred-SS ensemble (see the
Supporting Information).
This plot emphasizes that the MD-based ensembles are

qualitatively different from the RC or Pred-SS ensembles, in
that the Aβ40 and Aβ42 peptides samples some type of
structured conformations in ∼99% of the MD ensemble,

including complex βstrand formation.14,48 From this, we
conclude that the radius of gyration trends stem from the
much larger propensity for the MD ensembles to form
cooperative secondary structure and collapsed tertiary contacts,
as opposed to the random or knowledge-based ensembles that
do not generate contiguous blocks of secondary structure, and
hence are more extended on average. Although the secondary
structure content of the MD-ENS ensemble resembles that of
the MD ensemble, Figure 1 shows that there is some variation
in the percentages with which certain residues adopt different
types of secondary structure.14

For analysis of Aβ40 and Aβ42 IDPs considered here, we
have utilized a wide range of previously published NMR data
including chemical shifts from the Zagorski group60 as well as J-
coupling constants, RDCs, and heteronuclear 1H−15N NOEs
for backbone amides from Wang and co-workers.57,61,62 Our
group has collected 1H chemical shifts and NOESY 1H−1H
homonuclear spectra for the full length Aβ40 and Aβ42
peptides as reported elsewhere.14,48 The data for the longer
peptides were processed as described in ref 48 in a similar
approach to that used for the Aβ21−30 fragment.52

First we consider the chemical shift data, for which we note
that the calculated chemical shifts have an uncertainty that is
independent of the quality or type of structural ensemble, and
results from approximations of the SHIFTX49 or SHIFTS50

calculators themselves. Other research groups have reported the
uncertainty, σ2 (ppm), for these calculators, with the value
depending on the atom type and its bonding chemistry.49,50

Therefore the best way validate the various IDP ensembles with
chemical shift data is to calculate the difference between the
experimental chemical shift and the shift calculated from each

Table 1. Comparison between Random Coil (RC), Predicted
Secondary Structure (Pred-SS), de novo MD (MD), and
ENSEMBLE Optimized Pred-SS-ENS and MD-ENS
Ensemblesa

Aβ40
peptide average property

ensemble
type Rg (Å)

χδ
2

(Hα)
χδ

2

(HN)
χδ

2

(Cα)
χδ

2

(Cβ) 3JHNH
α

RC 16.9 ± 3.2 0.20 0.13 0.29 0.34 0.80 (1.20)
Pred-SS 19.3 ± 3.6 0.45 0.10 0.67 0.49 1.09 (2.23)
Pred-SS-
ENS

15.6 ± 3.3 0.41 0.11 0.52 0.45 0.88 (1.46)

MD 14.7 ± 4.8 0.58 0.36 0.69 0.70 0.99 (1.82)
MD-ENS 15.0 ± 4.1 0.30 0.34 0.46 0.36 0.62 (0.72)
Aβ42
peptide average property

ensemble
type Rg (Å)

χδ
2

(Hα)
χδ

2

(HN)
χδ

2

(Cα)
χδ

2

(Cβ) 3JHNH
α

RC 17.3 ± 3.3 0.22 0.15 0.41 0.25 0.49 (0.46)
Pred-SS 19.9 ± 3.8 0.49 0.10 1.06 0.38 0.85 (1.34)
Pres-SS-
ENS

16.2 ± 3.6 0.40 0.12 0.71 0.29 0.67 (0.85)

MD 13.1 ± 4.3 0.54 0.48 0.98 0.52 0.99 (1.83)
MD-ENS 13.1 ± 2.8 0.33 0.37 0.51 0.34 0.60 (0.67)
aFor the radius of gyration (Rg) values, we report both the ensemble
average and RMSD. For chemical shifts, we report χ2 that measures
agreement between the computational ensembles and the exper-
imentally measured chemical shifts: χ2 < 1 indicates no disagreement
with experiment within SHIFTX calculator error. We also report the
3JHNH

α RMSD (χ2). Some data reproduced from ref 14.
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of the structural ensembles, normalizing it by the calculator
uncertainty, to generate χδ

2 values

∑χ
δ δ

σ
=

⟨ ⟩ −
δ

δ=N
1 ( )

i

N
i i2

1

,calc ,exp
2

2
(9)

Reported uncertainties (root mean squared difference, RMSD,
from experiment) for the SHIFTX calculator49 are σ = 0.23
ppm for Hα, σ = 0.49 ppm for HN, σ = 0.98 ppm for Cα, and σ
= 1.10 ppm for Cβ. Any dominant error due to the underlying
structural ensemble would then correspond to values of χδ

2 > 1.
Table 1 displays the χδ

2 agreement between experimentally
measured proton48 and carbon60 chemical shifts with those
generated from each candidate ensemble for both Aβ40 and
Aβ42.14,48,52 Experimental chemical shift data reported for the
monomeric Aβ40 and Aβ42 peptides do not differ greatly from
random coil values, and therefore the RC ensemble falls within
χδ

2 uncertainty.14,48 Since the Pred-SS ensemble shows almost
no DSSP defined secondary structure (Figure 1a), it remains
largely equivalent to the RC ensemble as deduced by chemical
shifts. The de novo MD structural ensemble is also in good
agreement with the chemical shift data;14,48 however, ∼99% of
the MD generated Aβ conformations contain one or more
elements of cooperative secondary structure somewhere along
the peptide sequence (Figure 1b). The reason that the MD
ensemble is also in good agreement with the experimental
chemical shifts is that averaging over a large ensemble of
cooperatively formed secondary structure and tertiary contacts

yields average chemical shifts that are consistent with random
coil values.14,48 For example, averaging the chemical shifts of all
folded proteins in the PDB results in averages very similar to
random coil values.48,63 We have found that the ENSEMBLE
optimization of the Pred-SS and MD starting pools improves
the χδ

2 values, but all are within the calculator uncertainty. Not
surprisingly, if the knowledge-based ENSEMBLE approach
were biased by chemical shift data alone, they would show little
deviation from their starting “soup”, and the structural
interpretation would be highly dependent on the starting
ensemble. For this reason we conclude that NMR chemical
shifts alone do not provide any qualitative discrimination
between the alternative ensembles, at least not for the Aβ40
and Aβ42 disease IDPs.14,48 It may still be useful to apply
chemical shift constraints in combination with other exper-
imental observables to optimize an IDP ensemble, as we have
done when generating the MD-ENS ensemble. In this context
the chemical shift constraints might provide a ‘sanity check’
against ensembles that fit other observables, such as NOEs, but
lead to unphysical chemical shift values.
Similarly, J-couplings alone also do not discriminate between

random coil IDPs and those that are more structured with
cooperative secondary structure and tertiary structure contacts.
Figure 2 illustrates this by plotting the agreement between
experimentally measured 3J(HN,Hα),

55,57 and those calculated
from the RC, Pred-SS, Pred-SS-ENS, de novo MD, and MD-
ENS ensembles for Aβ40 and Aβ4. Table 1 shows that all

Figure 1. Percentage of Aβ42 simulated ensemble in different types of secondary structure by residue for (a) the Pred-SS, (b) Pred-SS-ENS, (c) de
novo MD, and (d) MD-ENS ensembles. The red line represents helix, the blue line for antiparallel sheet, and the black line for β-turns. We note that
the blue line represents only antiparallel sheet structure (the most common) and not all sheets.
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ensembles yield an RMSD across all residues of 0.60−1.09 Hz,
and also reports

∑χ
σ

=
⟨ ⟩ −

=N

J J1 ( )
J

i

N
i i

J

2

1

,calc ,exp
2

2
(10)

with σJ = 0.73 Hz. J-couplings report on the backbone ϕ
dihedral angle, and therefore could in principle distinguish
between an unstructured peptide and a peptide with a defined
secondary structure; however, in the case of the disease IDP
Aβ, the presence of diverse secondary structure in the MD
ensemble is not apparent from the calculated J-couplings. We
believe that this stems from the fact that good agreement with
scalar coupling data for IDPs can largely be predicted by
sampling over the allowed regions of residue-specific
Ramachandran plots without needing to assume any structure
adopted by the full length sequence. Thus J-couplings also do
not provide an experimental measure for discriminating among
qualitatively different structural ensembles for the amyloid
peptides.
Table 2 provides the assessment of the five alternative

ensembles for Aβ40 and Aβ42 using RDC values evaluated
residue by residue using the PALES program58 and L-RDCs
based on local alignments.18 While the RC and Pred-SS
ensembles yield lower RMSD values, 1.3−1.5 Hz, they are

marginally better than the de novo MD RMSD of 2.2 Hz.14,48

This is in part due to the fact that experimental RDC
uncertainties for IDPs are larger (∼0.9 Hz for Aβ40 and ∼0.5
Hz for Aβ42) than the uncertainty observed for folded proteins
of ∼0.1 Hz.64 In addition, there are large uncertainties in the
accuracy of RDC calculators using programs such as PALES.58

In fact, the reported RMSD of the PALES calculator for folded
proteins is ∼2.0 Hz, on the same order as the RMSD for the de
novo MD ensemble. While the ENSEMBLE method does
significantly lower the RMSD for L-RDCs for the Pred-SS-ENS
and MD-ENS ensembles, the corresponding RMSD based on
the global alignment using PALES is marginally better than the
Pred-SS and de novo MD starting pools.14,48 Hence for this
particular application on disordered amyloid peptides, we have
found that RDCs are not a particularly good experimental
metric for differentiating among the different ensembles, and
substantial disagreement between RDCs based on local and
global alignments are observed.
Finally, we consider the performance of the different

ensemble methods for reproducing 1H−1H homonuclear
NOE cross-peaks. We have presented the NOE data collection
for the Aβ42 peptide in which ∼700 cross-peaks are observed
in the NOE spectra, but only ∼200 can be uniquely assigned
from experimental information alone.14,48 The remaining cross-
peaks do not have a clear independent assignment (and in fact

Figure 2. J-coupling constants for backbone amides for Aβ40 and Aβ42. (a) Aβ40 experimental J-coupling constants (red squares) compared to RC
(green triangles) and de novo MD (solid blue circles). (b) Aβ40 experimental J-coupling constants (red squares) compared to Pred-SS-ENS (black
diamonds) and MD-ENS (blue circles). (c) Aβ42 experimental, RC, and de novo MD J-coupling constants. (d) Aβ42 experimental, Pred-SS-ENS,
and MD-ENS J-coupling constants. The experimental data are from Yan et al.57 has been corrected to account for T1sel relaxation and bring J-
couplings determined from a HNHα 3D experiment to be consistent with those from COSY splittings.60
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require a computational model to interpret them14,48).
Therefore we have only compared the different methods
against the NOE cross-peaks that can be assigned by
experiment alone. We note that quantitatively reproducing
NOE intensities is a very high bar since peak volumes are
extremely sensitive to r−6 distance averaging, that also involve
an appropriate time scale that is heterogeneous across proton
pairs. Geometric imperfections in the conformational ensemble
where contact differences differ by a factor of 21/6 (difference
between 1 Å and 1.12 Å) will double the corresponding
intensity value, thereby driving up the RMSD error for all
ensembles.14,48,52 Large absolute NOE intensities especially
tend to dominate the RMSD error, and therefore we have
mitigated this effect by normalizing the RMSD (RMSDN) by
the experimental intensity for each NOE as in ref 14.
Table 2 shows that the predicted set of 1H−1H NOEs from

de novo MD is better than any other ensemble, with RMSDNs
that are lower than the RC and Pred-SS ensembles values by
2−3 fold and with much higher correlation coefficients.14 The
Pred-SS-ENS ensemble performs better for Aβ40 and Aβ42
than the randomly generated ensembles because the NOE
restraints are used in the knowledge-based ensemble selection.
However, the Pred-SS-ENS ensemble still does not reproduce
the data as well as the de novo MD ensemble. The NOE
validation clearly indicates that the de novo MD ensemble with
its cooperative secondary structure is a better representation of
Aβ40 and Aβ42 than are the RC, Pred-SS, or Pred-SS-ENS
ensembles, which have no cooperative secondary structure.
Since time information is not available for the static ensembles,
we can only evaluate the NOEs for the statistical ensembles
under the assumption of one uniform correlation time applied
to all pairs of protons, for which we use a 1 ns correlation time,

which is on the same order as those observed in the MD
simulations. Of course the de novo MD method can account for
the time scales explicitly and more importantly for the fact that
different pairs of hydrogen atoms do decay on different time
scales. Thus the statistically generated and knowledge-based
ensembles agree relatively poorly with the NOE observables
since the heterogeneity in correlation times are unknown, and
hence even the MD-ENS ensemble is in somewhat worse
agreement with the experimental NOEs than the de novo MD
ensemble (Table 2). The NOE validation emphasizes that an
IDP’s diverse set of conformations gives rise to a heterogeneous
set of correlation times that must be described in order to
validate against experimental NOEs.
We further emphasize that the calculation of heteronuclear

NOEs, being a purely dynamical measurement, is only possible
with the de novo MD method. Figure 3 shows a comparison of
the experimental 1H−15N NOE intensities, measured by Yan
and Wang,62 and those derived from our MD simulation for
Aβ42 and Aβ40, showing overall excellent agreement.14,48

Unlike the 1H−1H NOEs, these assignments are unambiguous
from experiment. We find that, as in the experiment, there is an
increase in 1H−15N NOE intensities calculated from simulation
for residues 35−40 for Aβ42 compared to Aβ40, indicating that
the longer peptide experiences slower dynamics at the C-
terminus.14,48 This difference in experimental 1H−15N NOEs
for Aβ42 and Aβ40 has previously been interpreted as evidence
that Aβ42 has greater structural rigidity in the C-terminus
compared to Aβ4062,65 and we provide more analysis on this
point in recently published work.7

■ DISCUSSION
We have shown that the MD and MD-ENS structural
ensembles for the IDPs Aβ40 and Aβ42 previously
characterized14,48 yield substantially better agreement with a
range of NMR data than the random coil or statistical
ensembles that are typically used with knowledge based
approaches. The MD ensembles are qualitatively different
from random coil or statistical ensembles in that the
subpopulations are richly structured, contain a diverse set of
secondary structures including α-helix, β-turns, and β-strands,
and span the full range of compact to fully extended
conformations. Furthermore, while MD generated ensembles
are Boltzmann weighted, the knowledge-based approaches give
equal statistical weight to all conformations and thus are likely
inconsistent with statistical mechanical weightings that are
inherent to the NMR experiment.
We have also shown that some types of NMR data may not

be helpful for discriminating among qualitatively different
structural ensemble of IDPs. In particular, averages over a
diverse set of cooperative secondary structure conformations
yield experimental values of chemical shifts that are superficially
consistent with values expected from a random coil ensemble.
Furthermore, if the chemical shifts are not highly dispersed
along the sequence of a particular IDP, such as is found for the
amyloid-β peptides, then the chemical shifts have limited value
as experimental refinement input or as a validation measure. J-
couplings also do not provide discrimination between randomly
generated conformations and a diverse population of
cooperative secondary structure. In fact, we found that scalar
couplings calculated as averages over the allowed regions of
each residue-specific Ramachandran plot gave as good
agreement with the experimental J-couplings for Aβ40 and
Aβ42 as did averages over the structural populations.

Table 2. Comparison between Random Coil (RC), Predicted
Secondary Structure (Pred-SS), de novo MD (MD), and
ENSEMBLE Optimized Pred-SS-ENS, and MD-ENS
Ensemblesa

Aβ40
peptide average property

ensemble
type

RDC-PALES
(Hz)

RDC-Local
(Hz) H2O NOEs D2O NOEs

RC 1.49 1.56 11.75 (0.47) 4.61 (0.54)
Pred-SS 1.54 1.36 4.68 (0.50) 3.75 (0.54)
Pres-SS-
ENS

1.85 0.48 1.85 (0.68) 3.54 (0.52)

MD 2.22 1.88 1.15 (0.74) 3.22 (0.55)
MD-ENS 1.69 0.18 1.22 (0.70) 3.66 (0.51)

Aβ42
peptide average property

ensemble
type

RDC-PALES
(Hz)

RDC-Local
(Hz) H2O NOEs D2O NOEs

RC 1.35 1.42 7.25 (0.38) 3.77 (0.44)
Pred-SS 1.37 1.27 3.28 (0.52) 1.26 (0.67)
Pres-SS-
ENS

1.17 0.42 1.81 (0.59) 0.75 (0.76)

MD 2.25 2.14 1.25 (0.67) 0.58 (0.80)
MD-ENS 2.13 0.33 1.51 (0.62) 0.73 (0.76)
aWe report RMSDs for the RDC calculator PALES and L-RDCs
evaluated with ENSEMBLE using local alignments. The NOEs are
back-calculated from the structural ensembles as described in Section
4. We evaluate the RMSD normalized by the largest NOE intensity,
RMSDN and (correlation coefficient, r) with the H2O and D2O
experiments. Some data reproduced from ref 14.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp410275y | J. Phys. Chem. B 2014, 118, 6405−64166411



Unlike others who have used RDC data to help interpret IDP
or unfolded protein structural ensembles, we found RDCs to be
only marginally useful for Aβ40 and Aβ42. This may be due to
limitations of RDC calculators such as PALES,58 which were
originally developed and successfully applied to folded proteins,
but which are reported to have large uncertainties in their

predicted RDC values. Furthermore, calculated RDCs based on
global alignment algorithms such as PALES58 diverge
significantly from RDCs evaluated from localized alignments18

for Aβ40 and Aβ42, indicating that in cases like this the
ENSEMBLE package should be employed using the PALES
calculator to fit RDCs, which is possible though not standard.66

Figure 3. Agreement with experiment of simulated (a) Aβ40 and (b) Aβ42 1H−15N NOE. The red squares are experimental data from Yan and
Wang.66 The blue circles are the data calculated from the de novo MD ensemble.
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More research may be necessary to apply programs like PALES
to disordered proteins, which likely do not align in an
anisotropic medium in the same way as folded proteins, in
part due to the time scale of interconversion of the
conformational substates. For example, conventional methods
for calculating RDCs cannot be applied to the motion of
multidomain biomolecules,67 and the local conformational
sampling and long-range structure need to be simultaneously
accounted for because they both affect the experimental RDC
data.16 However, progress is being made in using RDCs to
provide meaningful structural information for other
IDPs.16,17,40,45,67,68 We speculate that success is greatest when
all subpopulations of the IDP ensemble are homogeneously
classifiable (as extended disordered conformations for exam-
ple), so that the IDP global alignment properties are uniform
and resulting averages provide meaningful and consistent
structural information.
We have demonstrated that homonuclear 1H−1H NOE

intensities and heteronuclear 15N−1H NOEs are by themselves
discriminating with regard to the tertiary contacts and
backbone dynamics, respectively, that define the important
validation of the MD-based ensembles over the statistical coil
ensembles.14,48 Furthermore, a correct picture of the IDP
ensemble based on the experimental NOE data would not be
possible without a computational model providing both details
of individual structures and the time scales for their
interconversion. In turn, although the homonuclear NOEs are
averaged over all subpopulations, they are still vital for deducing
whether a given ensemble contains subpopulations of structure
with the right tertiary contacts to give rise to the observed
cross-peaks in the spectra. Because these cross-peak intensities
rely directly on the decay time scales of correlated proton
distances, the NOEs for IDPs are reporting on a heterogeneous
population of time scales. One of the primary limitations of the
statically generated ensembles is that they are not associated
with any information about motional time scales that can be
used to calculate NOE observables. Relaxation times can be
used with the ENSEMBLE method, although they are
incorporated as structural rather than dynamic con-
straints.29,30,42 This dynamic information is a genuine strength
of the de novo MD methods, especially for 15N−1H NOEs,
which cannot be calculated from the static ensembles.
We believe that the primary limitation of knowledge-based

methods applied to the difficult amyloidβ case is 3-fold. We
note that while there will be quantitative differences between
ENSEMBLE and other knowledge-based approaches such as
ASTEROIDS, qualitatively the problems will be similar. First,
there is no requirement for generating a complete and
representative starting “basis set” of conformations to select
the final ensemble from; i.e., these methods cannot use the
NMR data effectively to select for compact structures with
elements of cooperative secondary structure if the initial pool of
structures is largely composed of extended random coil
structures. Both ENSEMBLE and ASTEROIDS have relied
on statistical coil ensembles as the starting pool of structures,
and while some “on-the-fly” addition of new structures is
possible with these methods, they do not yet support formation
of complicated β-sheet motifs.16,42 Metrics of ensemble
heterogeneity, such as those developed by the Onuchic and
Stultz research groups, will continue to be useful as we explore
the range of IDPs that cannot be easily classified based on their
level of disorder.69−71 Second, for certain classes of IDPs such
as amyloidβ optimization of structures to reproduce chemical

shifts and scalar couplings does not discriminate among
qualitatively different structural ensembles. Third, the opti-
mization phase of the knowledge-based approaches relies on
approximations to NMR observables, which may diverge from a
global property, as for L-RDCs, or from the dynamical origins
of NOE intensities.
At the same time, the de novo MD method is not

quantitatively perfect, and therefore the MD ensemble provides
an excellent start state for subsequent refinement by knowl-
edge-based approaches. An unambiguous future direction for
the structural biology of IDPs is the combined use of
knowledge-based approaches and MD that supplies Boltzmann
weighted conformational substates as well as heterogeneous
time scales of motion.
All together, the productive interplay between NMR

experiments, de novo MD simulations, and knowledge-based
approaches, along with supporting models, algorithms, and
computer hardware, gives us an ability to accurately identify
structures present in IDP ensembles and use that knowledge to
g a i n p r e v i o u s l y i n a c c e s s i b l e f u n c t i o n a l i n -
sights.14,22,24,39,43,44,48,52,55,72−83 To further improve techniques
for studying disordered proteins, we as a community could
establish a high throughput computational infrastructure to
predict IDP structural ensembles using a combination of MD
and NMR. This would be similar to the establishment of X-ray
crystallography beamlines for the rapid solution of folded
protein structures that was launched during the structural
genomics era. The ultimate goal in both cases is to use
structural information to drive the formation of hypotheses
about protein function. Based on the success of using structural
information for functional characterization of folded proteins
and complexes, we hope and expect that structural knowledge
of IDP ensembles can provide similar insight into IDP function
and enable development of molecular hypotheses for disease
IDPs.
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