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Flavonoids isolated frommedicinal herbs have been utilized as valuable health-care agents
due to their virous biological applications. Alpinetin is a natural flavonoid that emerges in
many widely used medicinal plants, and has been frequently applied in Chinese patent
drugs. Accumulated evidence has demonstrated that alpinetin possesses a broad range of
pharmacological activities such as antitumor, antiinflammation, hepatoprotective,
cardiovascular protective, lung protective, antibacterial, antiviral, neuroprotective, and
other properties through regulating multiple signaling pathways with low systemic toxicity.
However, pharmacokinetic studies have documented that alpinetin may have poor oral
bioavailability correlated to its extensive glucuronidation. Currently, the reported
pharmacological properties and pharmacokinetics profiles of alpinetin are rare to be
scientifically reviewed. In this article, we aimed to highlight the mechanisms of action of
alpinetin in various diseases to strongly support its curative potentials for prospective
clinical applications. We also summarized the pharmacokinetics properties and proposed
some viable strategies to convey an appreciable reference for future advances of alpinetin
in drug development.
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INTRODUCTION

Flavonoids are a large number of polyphenolic substances including a fundamental configurational
unit of 2-phenylchromone, that can be found in the plants’ flowers, leaves, stems or the fruits (Ji et al.,
2020; Wen et al., 2021). Natural flavonoids are principally classified into chalcones, flavones,
flavonols, flavanols, flavans, flavanones, anthocyanidins, isoflavonoids, and others on the basis of
heterocyclic ring substituted patterns (Wen et al., 2017). To date, more than 4,000 varieties of
identified flavonoids have been characterized (Kumar and Pandey, 2013). Simultaneously, flavonoid
monomers have been emphasized and gained extensive attention attributed to their versatile
biological applications and potential medicinal values, such as anticancer, antidiabetic, protective
effects against mitochondriopathies and associated pathologies, antiviral, antibacterial, anti-
inflammatory properties, protective effects against autoimmune and cardiovascular diseases, and
anti-oxidant. (Pietta, 2000; AI-Ishaq et al., 2019; Rengasamy et al., 2019; Ciumărnean et al., 2020;
Čulenová et al., 2020; Koklesova et al., 2021; Liskova et al., 2021).

Alpinetin (7-hydroxy-5-methoxyflavanone; C16H14O4; Figure 1), a natural dihydroflavone, was
firstly extracted from the plants of Alpinia intermedia Gagnep. [Zingiberaceae] in Japan (Qiao et al.,
2001). For decades, alpinetin was also widely found in many other medicinal herbs and has been
abstracted from Alpinia hainanensis K. Schum. [Zingiberaceae] (Rao and Lin, 1998; Liang et al.,

Edited by:
Michał Tomczyk,

Medical University of Bialystok, Poland

Reviewed by:
Wei Dong Chen,

Anhui University of Chinese Medicine,
China

Sherif T. S. Hassan,
Czech University of Life Sciences

Prague, Czechia

*Correspondence:
Nan Zeng

19932015@cdutcm.edu.cn
Weixiao An

1259891895@qq.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Ethnopharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 13 November 2021
Accepted: 12 January 2022

Published: 04 February 2022

Citation:
Zhao G, Tong Y, Luan F, Zhu W,
Zhan C, Qin T, An W and Zeng N
(2022) Alpinetin: A Review of Its

Pharmacology and Pharmacokinetics.
Front. Pharmacol. 13:814370.

doi: 10.3389/fphar.2022.814370

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8143701

REVIEW
published: 04 February 2022

doi: 10.3389/fphar.2022.814370

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.814370&domain=pdf&date_stamp=2022-02-04
https://www.frontiersin.org/articles/10.3389/fphar.2022.814370/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.814370/full
http://creativecommons.org/licenses/by/4.0/
mailto:19932015@cdutcm.edu.cn
mailto:1259891895@qq.com
https://doi.org/10.3389/fphar.2022.814370
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.814370


2007; Liu et al., 2007; Wang et al., 2007; Liu and Wu, 2009; Li
et al., 2010; Zou and Lu, 2011; Zhao et al., 2013; Bi et al., 2018),
Alpinia mutica Roxb. [Zingiberaceae] (Malami et al., 2016;
Malami et al., 2017a), Alpinia pinnanensis T. L. Wu & S.
J. Chen [Zingiberaceae] (Giang et al., 2005), Amomum
subulatum Roxb. [Zingiberaceae] (Rao et al., 1976; Singh et al.,
2015), Boesenbergia rotunda (L.) Mansf. [Zingiberaceae]
(Tewtrakul et al., 2003; Morikawa et al., 2008; Wangkangwan
et al., 2009; Tan et al., 2015; Liew et al., 2020; Nguyen et al., 2020),
Campomanesia phaea (O.Berg) Landrum [Myrtaceae]
(Lorençoni et al., 2020), Carya cathayensis Sarg. [Juglandaceae]
(Cao et al., 2012), Combretum albopunctatum Suess.
[Combretaceae] (Katerere et al., 2004), Dalbergia odorifera
T.C.Chen [Fabaceae] (Zhao et al., 2020), Dalbergia parviflora
Roxb. [Fabaceae] (Umehara et al., 2008), Mikania micrantha
Kunth [Asteraceae] (Jiang et al., 2001; But et al., 2009), Persicaria
ferruginea (Wedd.) Soják [Polygonaceae] (López et al., 2006),
Persicaria limbata (Meisn.) H. Hara [Polygonaceae] (Kuete et al.,
2014), Populus canadensis var. fremontii (S. Watson) Kuntze
[Salicaceae] and Populus sargentii Dode [Salicaceae] (English
et al., 1992), Scutellaria amabilis H. Hara [Lamiaceae]
(Miyaichi et al., 2006), Scutellaria barbata D. Don
[Lamiaceae]- Oldenlandia diffusa (Willd.) Roxb. [Rubiaceae]
herb pair (Yang et al., 2018), Scutellaria indica L. [Lamiaceae]
(Miyaichi et al., 1987), and Vitex tripinnata (Lour.) Merr.
[Lamiaceae] (Pan et al., 2014). The natural sources of alpinetin
were listed in Table 1. The accurate methods for the separation
and determination of alpinetin were developed by high-
performance liquid chromatography (HPLC), combination of
flow injection (FI)-micellar electrokinetic chromatography
(MEKC), reverse micelle electrokinetic capillary
chromatography (RMEKC), sensitive resonance Rayleigh light
scattering (RLS) assay, and liquid chromatography-tandem mass
spectrometry (LC-MS/MS) (Liu et al., 2007; Wang et al., 2007;
Singh et al., 2015; Bi et al., 2018; Lorençoni et al., 2020).

Alpinetin is the major component of Chinese patent drugs
such as Jianweizhitong tablet, Fufangcaodoukou tincture,
Baikoutiaozhong pill, and Xingqiwenzhong granule, which
have been used clinically in the treatment of digestive
disorders, including epigastric pain, belching, nausea,
vomiting, and anorexia (Gan, 2005; Huang, 2016; Chen et al.,

2018; Xiang et al., 2019). Abundant researches have been
performed and centralized on the pharmacological activities of
alpinetin, and elucidated its prospective potential for carcinoma
(Wang P et al., 2017; Zhang et al., 2020), inflammatory diseases,
(Huo et al., 2012), bacterial infection (Huang et al., 2006), virus
infection (But et al., 2009), liver injury (Liu T. G et al., 2019),
cardiovascular diseases (Jantan et al., 2004), and neuro disorders
(Liu E. Y. L et al., 2019) associated with modulating multiple
signaling pathways (Figure 2). Additionally, pharmacokinetic
assessment has become vitally important for estimating and
optimizing clinical efficacy of drugs (Walker, 2004). The
pharmacokinetic profiles of this compound have been
investigated to explore its biological feature in the body. For
example, alpinetin was subjected to profound first-pass
glucuronidation as a flavonoid with one hydroxyl group, and
exhibited poor oral bioavailability (Qiu et al., 2019). Besides,
alpinetin was previously reported to include low systemic toxicity
properties, which may be determined by its metabolism (He et al.,
2006; Costa et al., 2014).

At present, the systemic overview on the pharmacological
activities and pharmacokinetics features of alpinetin is absent.
Thereby, this article comprehensively summarized these
properties that have been reported to date, and devoted to
provide scientific basis of alpinetin for the development of
new drugs and assess its future research opportunities. The
literature searches (1976–2021) were conducted in electronic
databases such as PubMed, Web of Science, Elsevier, Springer,
Wiley, Science Direct, ACS Publications, China National
Knowledge Infrastructure, Google Scholar, Scopus, The Plant
List Database and related scientific journals. Key words utilized
for the systematic searches were: “Alpinetin”, “Flavonoids”,
“Mechanisms of action”, “Pharmacokinetics” and
“Pharmacology”. The publications and further relevant papers
featured in this review were screened and optimized based on the
themes as follows: natural sources, pharmacological activities,
and pharmacokinetics profiles along with concerned
improvement strategies. The ultimately yielded studies
regarding alpinetin in different languages were carefully
checked and completely cited.

PHARMACOLOGICAL ACTIVITIES

Anticancer Activity
Cancer is one of the most critical and prevalent health problems
in late years, characterized by hyperproliferative disorder induced
through the dysfunction of numerous important genes,
metabolism and signaling (Millimouno et al., 2014). Natural
flavonoids are important sources of antitumor drugs.
Numerous studies on alpinetin have illustrated its anticancer
properties against a wide variety of human carcinoma cell lines
including 4T1, MCF-7 and MDA-MB-231 breast tumor cell lines
(Zhang et al., 2020), A549, NCI-H460, SK-MES-1, NCI-H292
and A549/cis-diammined dichloridoplatium (CDDP) lung tumor
cell lines (Wu et al., 2015; Hou et al., 2021), SKOV3 and OVCAR-
8 ovarian cancer cell lines (Zeng et al., 2018; Zhao et al., 2018),
TCA-8113 and CAL-27 tongue squamous carcinoma cell lines

FIGURE 1 | The chemical structure of alpinetin.
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(Guo et al., 2020), U-87, U-251 and U-373 Glioma cell lines (Wang
et al., 2016), HepG2 hepatic tumor cell line (Tang et al., 2012), BxPC-
3, PANC-1 and AsPC-1 pancreatic carcinoma cell lines (Du et al.,
2012), AGS andN87 gastric cancer cell lines (Wang et al., 2013), HT-
29 and HCT116 colon cancer cell lines (Malek et al., 2011; Malami
et al., 2017a), Hela cervical carcinoma cell line (Cao et al., 2012),
CCRF-CEM and multidrug-resistant P-glycoprotein over-expressing

CEM/ADR5000 leukemia cell lines (Kuete et al., 2014), and EC9706
esophageal cancer cell line (Tang et al., 2021). Furthermore, alpinetin
could suppress the growth of mouse Lewis lung carcinoma cells
(LLC) (Hou et al., 2021) and N1-S1 hepatic cancer cells (Tang et al.,
2012). The therapeutic effects of alpinetin on various carcinoma cells
throughmultiplemolecularmechanismswere summarized as follows
(Table 2 and Figure 3).

TABLE 1 | Natural sources of alpinetin.

Botanical families Botanical names Analyzed plant
parts

Tested extracts Quantitative content
(mg/g, or %)

References

Asteraceae Mikania micrantha Kunth Aerial parts Methanolic
extract

0.048 mg/g Jiang et al. (2001); But et al. (2009)

Combretaceae Combretum albopunctatum Suess Fruits, leaves Extracted with
CH2Cl2

1.190 mg/g Katerere et al. (2004)

Fabaceae Dalbergia odorifera T.C.Chen Heartwood
samples

Methanolic
extract

0.011–0.087 mg/g Zhao et al. (2020)

Fabaceae Dalbergia parviflora Roxb Dried heartwood Methanolic
extract

0.667 mg/g Umehara et al. (2008)

Juglandaceae Carya cathayensis Sarg Leaves Ethanol extract - Cao et al. (2012)
Lamiaceae Scutellaria indica L Rhizomes Ethanol extract 1.639 mg/g Miyaichi et al. (1987)
Lamiaceae Scutellaria amabilis H.Hara Rhizomes Methanolic

extract
0.667 mg/g Miyaichi et al. (2006)

Lamiaceae Vitex tripinnata (Lour.) Merr Leaves, twigs Extracted with
CH2Cl2

0.087 mg/g Pan et al. (2014)

Lamiaceae and
Rubiaceae

Scutellaria barbata D.Don-Oldenland-ia
diffusa (Willd.) Roxb. herb pair

Dry grass Deionized water
extract

(0.036 ± 0.003)
×10−3 mg/g

Yang et al. (2018)

Myrtaceae Campomanesia phaea (O.Berg) Landrum Leaves Ethanol extract - Lorençoni et al. (2020)
Polygonaceae Persicaria ferruginea (Wedd.) Soják Leaves Methanolic

extract
0.296 mg/g López et al. (2006)

Polygonaceae Persicaria limbata (Meisn.) H.Hara Leaves - 3.846% Kuete et al. (2014)
Salicaceae Populus canadensis var. fremontii (S.

Watson) Kuntze, Populus sargentii Dode
Bud exudates - Percent of total ion

current (0.3)
English et al. (1992)

Percent of total ion
current (<0.1)

Zingiberaceae Alpinia hainanensis K.Schum Seeds Ethanol extract 0.500–1.450% Rao and Lin (1998)
Ethanol extract 5.800 ± 0.200 mg/g Liu et al. (2007)
Ethanol extract 0.970 mg/g Wang et al. (2007)
Ethanol extract 4.843–5.156 mg/g Zou and Lu. (2011)
Ethanol extract 4.380–6.710 mg/g Zhao et al. (2013)
Methanol extract 1.073–1.463% Liang et al. (2007)
Methanol extract 0.140–6.460 mg/g Liu and Wu. (2009)
Methanol extract 0.328–0.891% Li et al. (2010)
Methanol extract 6.380 mg/g Bi et al. (2018)

Zingiberaceae Alpinia intermedia Gagnep Seeds - - Qiao et al. (2001)
Zingiberaceae Alpinia mutica Roxb Rhizomes Crude

chloroform
extract

1.327 mg/g Malami et al. (2016); Malami et al.
(2017a)

Zingiberaceae Alpinia pinnanensis T.L.Wu & S.J.Chen Rhizomes Crude
methanolic
extract

6.308 mg/g Giang et al. (2005)

Zingiberaceae Amomum subulatum Roxb Seeds Extracted with
Et2O

−0.011–0.016% Rao et al. (1976)

Methanolic
extract

Singh et al. (2015)

Zingiberaceae Boesenbergia rotunda (L.) Mansf Rhizomes, leaves,
ste-ms

Methanolic
extract

0.081–3.738 mg/g Tan et al. (2015); Morikawa et al.
(2008); Nguyen et al. (2020)

Rhizomes Crude ethanolic
extract

1.730% Wangkangwan et al. (2009)

Rhizomes Crude ethanolic
extract

6.522 mg/g Tewtrakul et al. (2003)

Transgenic B.
rotunda cells

Methanolic
extract

0.927 mg/g Liew et al. (2020)
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Induction of Cancer Cell Apoptosis
Apoptosis, an extremely controlled and regulated process, has
important functions in the development and treatment of tumors
(Ameisen, 2002; Gerl and Vaux, 2005; Elmore, 2007). Apoptosis
primarily processes via the mitochondrial (intrinsic) and the
death receptor-mediated (extrinsic) molecular transduction
pathways. Interior and exterior apoptotic pathways motivate
caspases-9/8, which subsequently activate caspases-3, PARP,
and finally lead to the evolution of cell apoptosis body (Putcha
et al., 2002; Martinvalet et al., 2005).

Previous investigations showed that alpinetin (40–160 μM)
was certified to transform the membrane potential of
mitochondrial, which resulted in cytochrome c delivering and
caspase inciting, and causing apoptosis in human gastric
carcinoma AGS and N87 cells (Wang et al., 2013). Likewise,
alpinetin concentration-dependently restrained cell proliferation
and provoked apoptosis in BxPC-3 and A549 cells (Du et al.,
2012; Wu et al., 2015). The mechanisms involved in intrinsic and
extrinsic apoptotic pathways through elevating protein
production of Bax, caspases-3, caspases-8 and caspases-9,
inhibiting the expression levels of Bcl-2, Bcl-xL and XIAP, and
promoting the release of cytochrome c to the cytoplasm.
Afterwards, Zhao et al. assessed the apoptosis of SKOV3 cells
activated by alpinetin. The results described that administrated
with alpinetin (50–400 μM) noticeably enhanced the expression
of Bax, caspase-3 and PARP, and reduced Bcl-2 secretion by
inhibiting the STAT3 signaling pathway in a dose and time
dependent manner (Zhao et al., 2018). In addition, p53
signaling pathway is a crucial regulator of cell cycle arrest and
apoptosis (Zhang and Lu, 2009). Studies have suggested that

alpinetin (6.25–400 μM) specifically targeted to the uridine-
cytidine kinase 2 (UCK2) enzyme involved in gene synthesis,
and induced p53 dependent mitochondrial apoptosis in HT-29
cells (Malami et al., 2016; Malami et al., 2017a). Recently, Zhang
et al. demonstrated that alpinetin (at dose of 25–100 μM) induced
mitochondria associated apoptosis in 4T1 and MDA-MB-231
cells through excitation of caspase-3, caspase-9 and PARP,
remarkably boosting the ratio of Bax to Bcl-2, and stimulating
cytochrome c release frommitochondria to the cytoplasm (Zhang
et al., 2020). Furthermore, Tang et al. unveiled that alpinetin
significantly induced apoptosis and autophagy in EC9706 cells.
The administration of alpinetin (25–100 μM) boosted caspase-3,
caspase-9, Beclin1 and ATG8 expressions, elevated the ratio of
LC3II/LC3I, and reduced Ki67, PCNA, and P62 generation by
suppressing PI3K/Akt/mTOR signaling pathway (Tang et al.,
2021).

Therefore, alpinetin may be available in inducing cytotoxicity
against diverse types of carcinoma cells through the enablement
of apoptosis. Definitely, we acknowledge that pyroptosis and
ferroptosis are the other major cell death patterns (Chen X
et al., 2021). Further experiments are required to monitor
molecular mechanisms of alpinetin regulating these cell death
patterns in tumor cells, and to detect potential therapeutic
markers in the prevention and treatment of cancers.

Inhibition of Invasion and Metastasis of Cancer Cells
Tumor invasion andmetastasis, the main characteristics of tumor
biology, are the critical hurdles in the prolific treatment of cancers
(Kang et al., 2015). Matrix metalloproteinase (MMPs) and tissue
inhibitor of metalloproteinase (TIMPs) are the crucial factors for

FIGURE 2 | The main pharmacological activities of alpinetin.
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TABLE 2 | Pharmacological effects of alpinetin.

Pharmacological
effects

Cell lines/Model Application Doses/Duration Effects/Molecular
mechanisms

References

Anticancer activity 4T1, MCF-7 In vitro 25–100 μM for 24 or 48 h caspase-9↑, caspase-3↑, PARP↑, Bax↑,
Bcl-2↓

Zhang et al.
(2020)

cytochrome-c↑, p-p65↓, p-IκBα↓, HIF-1α↓
MDA-MB-231 In vivo 100 mg/kg, i.p., tiw, for 28 days caspase-3↑, PARP↑, Bax↑, Bcl-2↓, p-p65↓ Zhang et al.

(2020)p-IκBα↓
LLC In vivo 5 and 10 mg/kg, i.p., daily, for

3 weeks; 25 and 50 mg/kg, i.g.,
daily, for 2 weeks

MuRF1↓, Atrogin-1↓, CDK6↓, CyclinD1↓ Hou et al.
(2021)

FASN↓, SCD↓, CD11b↓, F4/80↓, CD163↓ Zhang et al.
(2021)

IL-10↓, CCL-2↓, CCL-7↓
NCI-H460 In vitro 30 μM for 24 h CDK6↓, CyclinD1↓, FASN↓, SCD↓, CD11b↓ Hou et al.

(2021)F4/80↓, CD163↓, IL-10↓, CCL-2↓, CCL-7↓
A549, SK-MES-1 In vitro 50–400 μM for 24, 48 or 72 h caspase-9↑, caspase-3↑, caspase-8↑,

cytochrome-c↑, Bax↑, Bcl-2↓, XIAP↓, Akt↓,
PI3K↑

Wu et al. (2015)
NCI-H292

A549/(CDDP) In vivo 50 mg/kg, i.p., weekly for 4 weeks MRP-1↓, MRP-5↓, P-gp↓ Wu et al. (2015)
OVCAR-8 In vitro 25–400 μM for 24, 48, or 72 h p-STAT3↓, c-Myc↓, survivin↓, caspase-3↑,

caspase-9↑, Bax↑, Bcl-2↓
Zeng et al.
(2018)

Hela In vitro IC50 (>100 μM) Cao et al.
(2012)

SKOV3 In vitro 50–400 μM for 48 h caspase-3↑, Bax↑, Bcl-2↓, PARP↑,
CyclinD1↓, CDK4↓, CDK6↓, TIMP-1↑, TIMP-
2↑, MMP-2↓, MMP-9↓, p-STAT3↓, c-Myc↓,
survivin↓

Zhao et al.
(2018)

TCA-8113 In vivo 50 mg/kg, i.p., once every 2 days,
for 12 days

miR-211-5p↑ Guo et al.
(2020)

CAL-27 In vitro 100–500 μM for 24 h p-p53↑, p21↑, PARP↑, CyclinD1↓, miR-211-
5p↑, NICD↓, HES1↓

Guo et al.
(2020)

U-87 In vivo 25, 75 mg/kg, i.v., once every
2 days, for 2 weeks

Cleaved Notch1↓ Wang et al.
(2016)

U-251, U-373 In vitro 20–80 μM for 48 h HES↓, c-Myc↓, Cleaved Notch1↓ Wang et al.
(2016)

HepG2 In vitro 20–80 μg/ml for 24, 36 or 48 h p-MKK7↑ Tang et al.
(2012)

HCT116 In vitro IC50 (39.6 μg/ml) Malek et al.
(2011)

BxPC-3, PANC-1,
AsPC-1

In vitro 20–80 μg/ml for 24, 48, or 72 h caspase-9↑, caspase-3↑, caspase-8↑, Bax↑,
Bcl-2↓, Bcl-xL↓, XIAP↓, cytochrome-c↑

Du et al. (2012)

AGS, N87 In vitro 40–160 μM for 24, 48, or 72 h Bax↑, Bcl-2↓, cyto-c↑, caspase-9↑, caspase-
3↑, CDK1↓, CDK2↓, CyclinB1↓

Wang et al.
(2013)

CEM; CEM/ADR5000 In vitro IC50 (88.22 ± 8.78 μM); IC50 (116.07 ±
7.93 μM)

Kuete et al.
(2014)

HT-29 In vitro 6.25–400 μM for 48 or 72 h UCK2↓, MDM2↓, p53↑, caspase-3↑, Bax↑,
Bcl-2↓, cytochrome-c↑

Malami et al.
(2017a)

EC9706 In vitro 25–100 μM for 48 h caspase-9↑, caspase-3↑, Ki67↓, PCNA↓,
Beclin1↑, ATG8↑, LC3II↑, p-PI3K↓, p-Akt↓,
p-mTOR↓

Tang et al.
(2021)

Anti-inflammatory
activity

LPS-induced mouse
acute lung injury

In vivo 50 mg/kg, i.p., 1 h prior to
administration of LPS

TNF-α↓, IL-6↓, IL-1β↓ Huo et al.
(2012)

RAW 264.7 In vitro 25 μM for 24 h TNF-α↓, IL-6↓, IL-1β↓, p-IκB↓, p-p65↓,
p-ERK↓, p-p38↓, PPAR↑, DNMT3A↑

Yu et al. (2020)
80–240 μg/ml for 24 h Huo et al.

(2012)
50–1,000 μg/ml for 24 h Hu et al. (2020)

LPS-induced mouse
mastitis

In vivo 10–50 mg/kg, i.p MPO↓, TNF-α↓, IL-6↓, IL-1β↓, TLR4↓, p-IκB↓,
p-p65↓

Chen et al.
(2013)

DSS-induced mice colitis In vivo 25–100 mg/kg, i.g., daily, for
7 days

TNF-α↓, IL-6↓, IL-1β↓, TLR4↓, p-IκB↓,
p-p65↓, MPO↓

He et al. (2016)

THP-1 In vitro 50–200 μg/ml NLRP3↓, ASC↓, caspase-1↓, TNF-α↓, IL-6↓,
IL-1β↓, TLR4↓, p-IκB↓, p-p65↓, p-JNK↓,
p-ERK↓, p-p38↓, PPAR-γ↑

He et al. (2016)
Hu et al. (2013)

DMM-induced mice
osteoarthritis

In vivo 1 mM, intra-articular knee injection
daily for 4 days

COL2A1↑, ADAMTS-5↓, MMP-13↓, BCL-2↑,
CDK1↑, p-IκBα↓, p-ERK↑

Gao et al.
(2020)

(Continued on following page)
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TABLE 2 | (Continued) Pharmacological effects of alpinetin.

Pharmacological
effects

Cell lines/Model Application Doses/Duration Effects/Molecular
mechanisms

References

HPMECs In vitro 40–320 μg/ml for 48 h ICAM-1↓, TNF-α↓, AQP-1↑ Wang et al.
(2017)

Mouse T lymphocytes In vitro 20–60 mg/ml for 48 h IL-2↓, IFN-γ↓, IL-4↓, IL-6↓, p-IκB↓, p65↓ Guan et al.
(2014)

LPS-induced mouse
chondrocytes damage

In vitro 0.3125–50 mg/ml for 24 h COL2A1↑, IL-1β↓, IL-6↓, iNOS↓, TNF-α↓,
MMP-13↓

Dai et al. (2020)

LPS-induced mouse
endometritis

In vivo 10–40 mg/kg, i.p., 1 h before LPS
treatment

MPO↓, TNF-α↓, IL-6↓, IL-1β↓, TLR4↓, p-IκB↓,
p-p65↓, PPAR-γ↑

Liang et al.
(2018)

Carrageenan induced
acute inflammation

In vivo 10–40 mg/kg, i.g., daily, for 7 days MPO↓, TNF-α↓, IL-1β↓, PPAR-γ↑, p-p65↓ Cui et al. (2019)

Severe acute
pancreatitis caused
acute lung injury

In vivo 40–320 μg/ml, i.g., for 6, 12, 24 h AQP-1↑, TNF-α↓ Liang et al.
(2016)

Cecal ligation and
puncture induced sepsis
rats

In vivo 40–160 mg/kg, i.p., for 24 h MIP-2↓, TNF-α↓, IL-18↓, IL-10↑, MPO↓,
SOD↑, MDA↓, GSH↑, p-AKT↑, Nrf2↑, HO-1↑

Ren et al.
(2021)

Ovalbumin-induced
allergic asthma mice

In vivo 25–100 mg/kg, i.p., daily on days
21–23

IgE↓, IL-4↓, IL-5↓, IL-13↓, p-p65↓, p-IκB↓,
p-Akt↓, p-PI3K↓, HO-1↓

Wu et al. (2020)

COPD in rat model In vivo 20 mg/kg, i.g., daily, for four
consecutive weeks

TNF-α↓, IL-6↓, IL-10↑, caspase-9↓, caspase-
3↓, TGF-β1↓, α-SMA↓

Su et al. (2020)

DSS-induced mouse
colitis

In vivo 7.5–30 mg/kg, i.g., daily, for
10 days

MPO↓, TNF-α↓, IL-1β↓, IL-17↓, IL-10↑,
RORγt↓, Foxp3↑, CYP1A1↑, AhR (cytosol)↓,
AhR (nuclear) ↑, ARNT↑, miR-302↑, DNMT-1↓

Lv et al. (2018)

25–100 mg/kg, i.p., daily, for
7days

CREB↑, Occludin↑, ZO-1↑, Claudin-2↓,
MDA↓, SOD↑, MPO↓, Nrf2↑, HO-1↑

Tan and Zheng.
(2018)

Caco-2, NCM460 In vitro 3–30 μM for 24 h Claudin-7↑, Occluding↑, E-cadherin↑,
caspase-3↓, LC3B↑, Beclin-1↑, Atg5↑, Atg7↑,
p-RPS6↓, p-p70S6K↓, AhR↑, suv39h1↑,
TSC2↑, PTEN↓, p-ERK↓, p-AMPKα↓, p62↓

Miao et al.
(2019)

CLP-induced PICS In vivo 50 mg/kg, intravenously infu-sed,
daily, for 8 days

TNF-α↓, IL-6↓, CD4+ T↑, CD8+ T↑, MPO↓,
ROS↓, SOD↑

Liu et al. (2021)

DSS-induced colitis in
mice

In vivo 50 mg/kg, i.g., daily, for 9 days MPO↓, TNF-α↓, IL-6↓, iNOS↓, ICAM-1↓,
MCP-1↓, COX-2↓, IFNγ↓, IL-1β↓, IL-1α↓,
Cyp3a11↑, Mdr1a↑, PXR↑

Yu et al. (2020)

Hepatoprotective
activity

LPS/D-Gal-induced
mouse liver injury

In vivo 12.5–50 mg/kg, i.p., 1 h before
LPS/D-gal treatment

ALT↓, AST↓, MDA↓, MPO↓, TNF-α↓, IL-1β↓,
p-IκB↓, p-p65↓, Nrf2↑, HO-1↑

Liu et al. (2019)

Hepatic ischemia/
reperfu-sion injury in
mouse

In vivo 50 mg/kg, i.p., 1 h before ischemia ALT↓, AST↓, LDH↓, TNF-α↓, IL-1β↓, IL-8↓,
MCP-1↓, BAX↓, BCL2↑, caspase-3↓, p-p65↓,
p-IKKβ↓, Iκbα↑, p-p38↓, p-JNK↓

Pan et al.
(2021)

Carbon tetrachloride
indu-ced mouse liver
fibrosis

In vivo 15 and 60 mg/kg, i.p., daily, for last
4 weeks

ALT↓, AST↓, LDH↓, Hydroxyproline↓, α-
SMA↓, Fibronectin↓, α1(I) procollagen↓, TNF-
α↓, IL-1β↓, IL-6↓, IL-10↑, MDA↓, GSH↑, CAT↑

Zhu et al.
(2021)

GSH-Px↑, SOD↑, VEGF↓, PDGF↓, HIF-1α↓,
VEGFR2↓, PDGF-βR↓, NLRP3↓, Caspase-
1↓, ASC↓, IL-18↓, GCLC↑, HO-1↑, NQO1↑,
GCLM↑, Nrf2↑

High fat diet-induced In vivo 12.5–50 mg/kg, i.g., daily, for
8 weeks

ALT↓, AST↓, SOD↑, CAT↑, GPx↑, MDA↓,
XO↓, HO-1↑, Nrf2↑, XO↓, TXNIP↓, TNF-α↓, IL-
1β↓, IL-4↓, IL-6↓, IL-17↓, TLR4↓, p-IκBα↓,
p-NF-κB↓, SCD1↓, FAS↓, PPARα↑, SREBP-
1c↓, LXR-α↓, ELOVL-2↓, p-JNK↓, p-IRS1↑

Zhou et al.
(2018)NAFLD

Cardiovascular
protective activity

Rabbit platelets In vitro 1.8–18.2 μg/ml IC50 (41.6 ± 2.7 μM) Jantan et al.
(2004)Platelet-activating factor antagonistic

activities
Coronary heart disease
rat model

In vivo 40–160 mg/kg, i.g., daily, for
4 weeks

LVEDV↓, SV↑, TG↓, TC↓, HDL-C↑, LDL-C↓,
NO↑, ET-1↓, PGI2↑, TNF-α↓, MCP-1↓, ICAM-
1↓, p-ERK↓, p-MEK↓

Dai et al. (2021)

THP-1, HMDMs In vitro 50–150 μg/ml for 24 h PPAR-γ↑, LXR-α↑, ABCA1↑, ABCG1↑ Jiang et al.
(2015)

Rat myocardial cells In vitro 40–120 mg/ml for 48 h Activates δ receptor, PKC↑, ERK↑, Bcl-2↑,
Bax↓, caspase-9↓, caspase-3↓

Suo et al.
(2014)

Mouse VSMC In vitro 10−7–10–9 mol/L for 12 h NO↓, LDH↓ Li and Du.
(2004)

(Continued on following page)
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tumor invasion (Sun et al., 2016; Jia et al., 2017). MMPs stimulate
tumor invasion, whereas TIMPs behave as inhibitors of MMPs.
Alpinia hainanensis K. Schum. [Zingiberaceae] was previously
tested to possess anti-migratory and anti-invasion properties
handling with HT-1080 cells (Park et al., 2013). As a natural
flavonoid amply existed in the seeds of Alpinia hainanensis K.
Schum. [Zingiberaceae], alpinetin (20–80 μM) could also
evidently attenuated the invasion of U-87, U-251, and U-373
cells by suppressing Notch pathway (Wang et al., 2016).
Afterwards, Zhao et al. confirmed that alpinetin obviously
suppressed the migration of SKOV3 ovarian tumor cells via
decreasing MMP-2 and MMP-9 expression levels and
improving TIMP-1 and TIMP-2 secretion (Zhao et al., 2018).
Similarly, after treated with 100 μM alpinetin for 24 h, the
migration capacity of OVCAR-8 cells was repressed related to
the inhibition of STAT3/c-Myc axis (Zeng et al., 2018). In a recent
study, the wound-scraping assay of 4T1 and MDA-MB-231 cells

also illustrated that alpinetin markedly inhibited the migration of
human breast tumor cells (Zhang et al., 2020). Furthermore,
Aminopeptidase N (APN) activation is of great importance to
tumormetastasis. Morikawa et al. isolated and evaluated alpinetin
for the inhibitory effect on APN activity. The data revealed that
alpinetin (30 μM) showed a potent restriction effect measured to
36.4%, and could be applied as an APN inhibitor to abrogate
tumor metastasis (Morikawa et al., 2008).

These outcomes indicate that alpinetin seemes to be effective
in regressing the metastasis of tumor cells. Nevertheless, the
premise of assessing anti-metastasis activities of alpinetin in
added neoplasm models is to conduct more studies and probe
auxiliary mechanisms.

Induction of Cancer Cell Cycle Arrest
Cell cycle arrest, regulated by a class of enzymes (cyclin-dependent
kinases, CDKs), is considered as one of the major causes for

TABLE 2 | (Continued) Pharmacological effects of alpinetin.

Pharmacological
effects

Cell lines/Model Application Doses/Duration Effects/Molecular
mechanisms

References

Mouse mesenteric artery In vitro 10–100 μM Inhibition of Ca2+ influx, NO↑, PKC↓ Wang et al.
(2001)

Antimicrobial activity Helicobacter pylori In vitro for 3 days MIC (1.25 μg/ml) Huang et al.
(2006)

Escherichia coli In vitro for 16–18 h MIC (>3.85 mg/ml) Huang et al.
(2006)

Salmonella typhi In vitro for 16–18 h MIC (3.85 mg/ml) Huang et al.
(2006)

Klebsiella penumoniae In vitro for 16–18 h MIC (3.85 mg/ml) Huang et al.
(2006)

Pseudomonas
pyocyanea

In vitro for 16–18 h MIC (3.85 mg/ml) Huang et al.
(2006)

Enterobacter aerogenes In vitro for 16–18 h MIC (3.85 mg/ml) Huang et al.
(2006)

Pseudomonas
maltophilia

In vitro for 16–18 h MIC (3.85 mg/ml) Huang et al.
(2006)

Citrobacter diversus In vitro for 16–18 h MIC (3.85 mg/ml) Huang et al.
(2006)

Pseudomonas cepacia In vitro for 16–18 h MIC (1.925 mg/ml) Huang et al.
(2006)

Drug-resistant
Aeromonas hydrophila

In vitro for 24 h MIC (128–256 μg/ml)
MBC (512–1,024 μg/ml)

Chen et al.
(2021)

Antiviral activity Respiratory syncytial
virus

In vitro IC50 (77.0 μM), TI (6.0) But et al. (2009)

Parainfluenza type 3 In vitro IC50 (154.4 μM), TI (3.0) But et al. (2009)
influenza type A In vitro IC50 (308.5 μM), TI (1.5) But et al. (2009)
HIV-1 protease In vitro IC50 (>100 μg/ml) Tewtrakul et al.

(2003)
HIV-1 infectived HOG·R5 In vitro IC50 (130 μM) Pan et al.

(2014)
SARS-CoV-2 In vitro Docked into the active site pocket of SARS-

CoV-2 Mpro, binding energy (-7.51 kcal/mol),
inhibition constant (3.12 μM)

Gurung et al.
(2021)

Neuroprotective
activity

PC12 cells In vitro 1–10 μM for 48 h AChE↑, NF68↑, NF200↑ Liu et al. (2019)

Antioxidant activity UV radiation In vitro Displayed an extensive absorption in the
extent of harmful UV radiation (270–390 nm)

Shireen et al.
(2017)

↑, Up-regulation or activation; ↓, Down-regulation or inhibition.
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carcinoma cell death (Asghar et al., 2015; Benada and Macurek,
2015). Tang et al. reported for the first time that alpinetin (60 μg/ml)
caused human hepatic tumor cells arrested in the G0/G1 phase. The
results elucidated that alpinetin hampered HepG2 cells cycle
progression through activation of p-MKK7, whereas the arrested
effect was reversed by siRNA targeted on MKK7 (Tang et al., 2012).
Analogically, flow cytometry explored that alpinetin treatment
(40–60 μg/ml) dramatically stimulated cell cycle arrest in the G0/
G1 phase in BxPC-3, PANC-1 and AsPC-1 cells (Du et al., 2012).
Whereafter, Wang et al. evaluated that alpinetin (40–160 μM)
evidently lowered CDK1, CDK2 and cyclin B1 expressions, and
provoked the cell cycle of AGS and N87 cells arrested in the G2/M
phase (Wang et al., 2013). Zhao et al. also illustrated that alpinetin
remarkably decreased CyclinD1, CDK4 and CDK6 production, and
arrested SKOV3 cells in the G1 phase (Zhao et al., 2018).
Furthermore, Guo et al. suggested that alpinetin (100–500 μM)
inhibited OSCC cells proliferation and arrested cells in the G1

phase via upregulating miR-211-5p level and disturbing the Notch
pathway (Guo et al., 2020). The latest research executed by Hou et al.
likewise reported that alpinetin administration (30 μM) notably
decreased the transcription of CDK6 and CyclinD1, and
hindered cell cycle progression in A549 and NCI-H460 cells (Hou
et al., 2021).

According to the aforesaid reports, alpinetin is found to induce
the G0/G1 and G2/M phases of the cell cycle arrested through
modulating CDKs, thus generate antiproliferative effects in

various tumor cells. Alpinetin may act as a cell cycle
nonspecific agent for future tumor treatment.

Reversion of Multidrug Resistance
Multidrug resistance-associated protein (MRP) and
P-glycoprotein (P-gp) play important roles in drug resistance,
which has become an inevitable issue for successful
chemotherapy (Wesolowska, 2011; Ma et al., 2014). As
reported, after administrated with alpinetin at 60 µg/ml and
CDDP at 20 µg/ml for 24 h, alpinetin strongly boosted the
chemosensitivity of HepG2 hepatoma cells to CDDP. The
results found that co-administered with alpinetin and CDDP
exerted a synergy effect for suppressing HepG2 cell proliferation
and growth. The efficacy was identified with MKK7/JNK
transduction pathway enabling (Tang et al., 2012). Afterwards,
Kuete et al. appraised the antiproliferative activity of alpinetin
toward CCRF-CEM and multidrug-resistant P-glycoprotein
over-expressing CEM/ADR5000 leukemia cells. The recorded
IC50 values being 88.22 ± 8.78 μM and 116.07 ± 7.93 μM,
respectively. The degree of resistance was 1.32-fold, suggesting
that alpinetin could be available to turn over multidrug-resistant
in leukemia cells (Kuete et al., 2014). Furthermore, therapeutic
doses of alpinetin (50 mg/kg) overturned the drug fastness to
CDDP (2 mg/kg) in A549/CDDP cells by restraining MRP-1,
MRP-5 and P-gp generation, and restoring the sensitivity of cells
to CDDP (Wu et al., 2015). Interesting, the tumor volume was

FIGURE 3 | Molecular pathways involved in the anti-cancer activities of alpinetin.
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also apparently smaller in alpinetin combination with CDDP
treated group than in the group administrated with CDDP alone
from 14 days after vaccination. Therefore, alpinetin is worthy of
further exploration for the therapeutic regimen of malignant
tumors, either as a promising chemosensitizer or adjuvant.
Combined alpinetin with CDDP or other chemotherapeutic
drugs may bring about more beneficial opportunities to treat
malignant tumors.

Anti-Cancer Cachexic
Cancer cachexia, featured with a polyfactorial musculi skeleti loss
syndrome, has been illustrated to bring serious untoward effects
while antitumor agents are adhibited (Fearon et al., 2013).
Administrated with 25 and 50 mg/kg alpinetin conspicuously
mitigated LLC-acquired medium-activated C2C12 depauperating
myotube, decreased Atrogin-1 and MuRF1 levels in cachectic
muscle, reduced muscular dystrophy in LLC tumor-bearing mice,
and inhibited cancer cachexia in a dose-dependent manner.
Meanwhile, the underlying molecular mechanisms have been
evaluated and revealed that alpinetin obviously promoted
PPARγ expression, thereby restraining NF-κB and STAT3
activation both in vitro and in vivo (Zhang et al., 2021).
Importantly, the researchers were taking the lead, and initially
afforded new perceptions of alpinetin against cancer cachexia
ascribed to PPARγ activation. The portion of the alpinetin effect
on cancer cachexia related with other molecule mechanisms
needs to be further quested.

Overall, through disparate signaling mechanisms, alpinetin is
effective in modulating genes and proteins correlated to the control
of cancer cell apoptosis, autophagy, invasion, metastasis, cell cycle
arrest, multidrug resistance, and cancer cachexic, suggesting that it
may be a promising agent for cancer treatment. Since tumor
immunotherapy has cumulatively become successful curative
strategies for the treatment of cancers in preclinical patterns and
clinic trials (Baxevanis et al., 2009), the competence of alpinetin to
initiate an alternative and vigorous host immune reaction against
cancer cells is a crucial new opportunity in the field of oncology.

Anti-Inflammatory Activity
Inflammation is an accommodative response encompassing vital
phylactic function in the organic immunity system against harmful
states comprising physiological damage and infection. Chronic or
immoderate inflammation are responsible for many disorders of the
host, such as pneumonia, cancer, dementia, auto-immune ailments,
multiple sclerosis, etc. (Xu and Larbi, 2018; Pu et al., 2020). Immune
cells are firstly activated by injurious stimuli in the pathological
processes of inflammation. Subsequently, various inflammatory
mediators are secreted with multiple signal transduction pathways
enabled, which ultimately contribute to partial or general
inflammatory injuries (Varela et al., 2018). Alpinetin is capable of
inhibiting various inflammatory disorders and exhibiting potential
therapeutic effects through numerous signaling mechanisms
(Table 2 and Figure 4).

Inhibition of NF-κB
Nuclear factor-κB (NF-κB) is a family of transcription factors,
and has long been considered the central mediator of the process

in inflammation and immunity (Kim et al., 2017; Zhang et al.,
2017). TLR4 is one of the most critical upstream signaling axis
molecules for NF-κB pathway activation, which in turn manage
the secretion of varieties of proinflammatory cytokines,
chemokines, and adhesion molecules (Yoshimura, 2006; Gong
et al., 2021).

Huo et al. originally appraised that alpinetin markedly
downregulated tumor necrosis factor-α (TNF-α), interleukin-
1β (IL-1β), and interleukin-6 (IL-6) expression levels in
lipopolysaccharide (LPS)-irritated RAW 264.7 macrophages
in vitro and LPS-provoked acute lung injury mice model in
vivo. Alpinetin was investigated to possess promising anti-
inflammatory property through disturbing the activation of
NF-κB and ERK/p38/MAPK signaling pathways (Huo et al.,
2012). Chen et al. evaluated the anti-inflammatory abilities of
alpinetin against LPS-induced mastitis both in vitro and in vivo.
The results displayed that alpinetin evidently weakened
neutrophilic granulocytes invasion and the vitalization of
myeloperoxidase, decreased TNF-α, IL-1β and IL-6 production
by suppressing TLR4/IκB-α/NF-κB signal transduction pathway
(Chen et al., 2013). Similarly, He et al. assessed that alpinetin
significantly attenuated inflammatory responses in phorbol
myristate acetate (PMA)-derived monocytic THP-1
macrophages and dextran sulfate sodium (DSS)-induced acute
colitis model. In vitro, alpinetin (50–200 μg/ml) considerably
decreased the expression levels of TNF-α and IL-1β, and TLR4
mediated NF-κB and NLRP3 inflammasome sensitization. More
importantly, administrated with alpinetin (25–100 mg/kg)
generated favorable protective effectiveness against diarrhea,
colonic shortening and histological injury in vivo (He et al.,
2016). As reported, alpinetin (at dose of 1 mM) has been
explored to improve cartilage degradation and exert excellent
anti-inflammatory activities in destabilization of the medial
meniscus (DMM)-induced mice osteoarthritis model via
blocking the NF-κB/ERK1/2 signaling pathway (Gao et al.,
2020). Recently, another report also demonstrated that
alpinetin (0.3125–50 mg/ml) effectively suppressed the
expression levels of IL-1β, IL-6, inducible nitric oxide synthase
(iNOS), TNF-α and human matrix metalloproteinase-13 (MMP-
13) gene, and protected the inflammatory damages of
chondrocytes induced by LPS in vitro (Dai et al., 2020).

Guan et al. has confirmed that oral administrated with
alpinetin (10–40 mg/kg) for 7 days exhibited prominently
immunomodulatory activity in ConA-induced murine model.
The research revealed that alpinetin dramatically restrained
murine splenic T lymphocytes growth, CD4+ T cell total
quantity, Th1/Th2 cytokines secretion, as well as T-cell-
mediated delayed-type hypersensitivity reaction tightly
correlated with deactivating the immune system aimed NF-kB/
NFAT2 pathway (Guan et al., 2014). Thereafter, the researches
have described that employing with alpinetin markedly alleviated
LPS induced human pulmonary microvascular endothelial
(HPMVEC) cells injury in vitro and severe acute pancreatitis
(SAP)-caused acute lung injury (ALI) in vivo. Specifically,
alpinetin enabled HPMVEC cells proliferation, enhanced
protein aquaporin-1 (AQP-1) generation thereby strengthening
water penetrability in the cytomembrane, and restrained
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pulmonary edema through restricting intercellular cell adhesion
molecule-1 (ICAM-1) and TNF-α secretion (Liang et al., 2016;
Wang Z. R et al., 2017). In ovalbumin-induced allergic asthma
model, Wu et al. illustrated that intraperitoneal administrated
with alpinetin (25–100 mg/kg) showed remarkable anti-
inflammatory function, and the molecular mechanism was
associated with disorganizing PI3K/Akt/NF-κB and activating
HO-1 pathways (Wu et al., 2020). Furthermore, Su et al.
elucidated that alpinetin was unveiled with a protective effect
on chronic obstructive pulmonary disease (COPD). Alpinetin (at
dose of 20 mg/kg) treatment positively improved lung function,
restored deformation of bronchus lumen, attenuated lumen wall
thickness, refrained inflammatory cells infiltration, and inhibited
pulmonary fibrosis in alveolar tissue by disturbing inflammatory
factors and biochemical markers such as TNF-α, α-smooth
muscle actin (α-SMA), IL-6, and transforming growth factor-
β1 (TGF-β1), coupled with the downregulation of caspase family
(Su et al., 2020).

In summary, these findings demonstrate that alpinetin
possesses prospective anti-inflammatory properties through
suppressing TLR4/NF-κB, and NF-κB interrelated PI3K/Akt,
NFAT2, and ERK/p38/MAPK signaling pathways. Alpinetin is
hopeful to be further exploited as a therapeutic agent for instant
and chronic inflammatory disorders.

Activation of PPAR-γ
Peroxisome proliferators-activated receptor-γ (PPAR-γ), belonging
to the nuclear receptor superfamily, is a ligand enabled transcription
element which plays critical roles in modulating inflammatory and
immune reactions (Vetuschi et al., 2018). Currently, it has been
extensively documented that PPAR-γ activators can efficiently block

the TLR4/NF-κB signaling pathway and conduct obvious anti-
inflammatory activities (Appel et al., 2005).

In THP-1-derived macrophages, Hu et al. found that alpinetin
(50–200 μg/ml) markedly excited PPAR-γ and attenuated LPS
induced inflammatory mediator response through decreasing
TLR4 and NF-κB levels, and inhibiting the phosphorylation of
ERK, JNK, and p38MAPK (Hu et al., 2013). Studies also validated
that alpinetin managed curative effects against LPS-induced mice
endometritis and carrageenan-induced mice acute inflammation
in vivo. The results both reported that alpinetin as a PPAR-γ
agonist notably suppressed TLR4 signaling pathway and
exhibited substantial effect of diminishing inflammation (Liang
et al., 2018; Cui et al., 2019). Moreover, Hu et al. calculated that
alpinetin administration (50–1,000 μg/ml for 24 h) apparently
activated PPAR and reduced proinflammatory cytokines IL-6
generation in RAW246.7 cells. The mechanism analysis clarified
that alpinetin firstly enabled PPAR, whereafter activated
DNMT3A and boosted cytimidine methylation of the IL-6
promoter region, and finally reduced IL-6 secretion (Hu et al.,
2020).

These existed data reveal that alpinetin is a promising agonist
for PPAR-γ to remedy inflammatory disorders. Interestingly,
PPAR-γ activation could also mediate lipid metabolism,
improve insulin sensitivity in adipose tissue, and exert
appreciable hypoglycemic function in diabetic patients (Gross
and Staels, 2007). Thereby, the hypoglycemic activity of alpinetin
is worth anticipating later.

Activation of Nrf2/HO-1
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been
ascertained as a well-known redox-sensitive transcriptional

FIGURE 4 | Molecular pathways involved in the anti-inflammation activities of alpinetin.
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regulator of the antioxidants and detoxifying enzymes including
glutathione peroxidase, coenzyme II (NADPH) and heme
oxygenase (HO-1) (Kubo et al., 2019; Gong et al., 2021). The
Nrf2/HO-1 signaling pathway is sensitized in response to ROS,
and preserve cells through antagonizing oxidative stress damage
triggered by inflammation (Hennig et al., 2018).

For example, treated with alpinetin (25–100 mg/kg)
powerfully secured the integrity and perviousness of the
intestinal epithelial barrier through regulating tight junction
proteins production in DSS-induced ulcerative colitis model.
The underlying molecule mechanism was embroiled with
enabling the phosphorylation of Nrf2/HO-1 and further
restricting oxidative stress (Tan and Zheng, 2018). Identically,
a recent study has supported that administrated with alpinetin
(40–160 mg/kg) significantly attenuated serious lung damage in
cecal ligation and puncture (CLP) provoked sepsis rats through
downregulating inflammation and oxidative stress via PI3K/
Nrf2/HO-1 pathway (Ren et al., 2021). Hence, it is rational to
suppose that Nrf2/HO-1 signaling pathway was involved in the
anti-inflammatory activity of alpinetin.

Activation of AhR
Aryl hydrocarbon receptor (AhR) is a ligand-respondent
transcription factor pertaining to the basic-helix-loop-helix/
Per-Arnt-Sim (bHLH/PAS) family (Shinde and McGaha,
2018). AhR has been confirmed to regulate differentiation of
multiple T cells such as Th17/Treg balance through binding with
both endogenous and exogenous ligands (Neavin et al., 2018).

Lv et al. documented that alpinetin (7.5–30 mg/kg) potently
exerted anti-inflammatory effectiveness correlation with AhR
activation in DSS-induced mouse colitis. Briefly, alpinetin
directly promoted Treg differentiation in CD4+T cells of
mesenteric lymph nodes (MLNs), restored Th17/Treg balance
in colons, and then inhibited symptoms of colitis in vivo through
elevating AhR expression and coordinating miR-302/DNMT-1/
CREB signaling pathway (Lv et al., 2018). Additionally, Miao et al.
farther elucidated the mechanism involved in alpinetin regulating
mouse colitis. The results demonstrated that alpinetin (3–30 μM)
remarkably upregulated AhR level, modified transepithelial
electrical resistance in Caco-2 cells induced by TNF-α,
decreased the apoptosis and restored the feature of intestinal
epithelial cells, and alleviated inflammation in vivo by conducting
suv39h1, TSC2 and mTORC1 generation (Miao et al., 2019).
These data suggest that alpinetin present a unique role in the
treatment of ulcerative colitis by vitalizing AhR.

Activation of PXR
Pregnane X receptor (PXR), affiliating to the nuclear receptor
superfamily, is a transcription factor capable of binding to a broad
range of exogenous and endogenous ligands (Mani et al., 2013).
Current reports have verified that PXR exerts a key role in
eliminating xenobiotic and toxicant, and performing vigorous
anti-inflammatory effectiveness against inflammatory bowel
disorders (Shah et al., 2007; Cheng et al., 2012).

Recently, Yu et al. investigated that alpinetin bound to PXR-
ligand-binding domain as a PXR agonist and notably enabled
anti-inflammatory activities in LPS-induced RAW264.7

macrophages, TNF-α-stimulated LS174T colorectal cells, and
DSS-induced mice colitis. In vitro, administration of alpinetin
(25 μM) remarkably inhibited NF-κB activation, and decreased
p-p65 production in RAW264.7 and LS174T cells in a PXR
dependent manner. Importantly, alpinetin (50 mg/kg)
significantly restrained the sensitization of NF-κB, reduced
TNF-α, IL-6 and other proinflammatory cytokines expressions,
and decreased MPO generation by activating PXR in vivo (Yu
et al., 2020). The research provided novel perception concerning
alpinetin that it manifested as both PXR ligand and activator, and
possessed the potential to handle human inflammatory bowel
diseases in future.

Additionally, a novel feature of alpinetin was assessed by Liu
et al. in ameliorating CLP-induced persistent inflammation,
immunosuppression, and catabolism syndrome (PICS). The
results exhibited that administration of alpinetin (50 mg/kg
intravenously infused for 8 days) remarkably enhanced the
survival of septic mice and improved organ dysfunction via
inhibiting the release of proinflammatory cytokines, decreasing
apoptosis in T lymphocytes, attenuating lung injury, and
repressing oxidative stress (Liu et al., 2021). Thereby, alpinetin
may be a hopeful curative agentia to prevent PICS. Further
clinical trials are inevitable to confirm the therapeutic effects
of alpinetin in PICS.

In general, these findings together confirm that alpinetin
exerts considerable therapeutic effects on multitudinous
inflammatory diseases, including acute lung injury, mastitis,
colitis, osteoarthritis, delayed-type hypersensitivity, allergic
asthma, COPD, endometritis, and PICS mainly via
suppression of NF-κB and excitation of PPAR-γ, Nrf2/HO-1,
AhR, and PXR. The energetic anti-inflammatory properties
provide convenience for the future clinical utilization of alpinetin.

Hepatoprotective Activity
Liver is the major organ of human metabolism, and possesses
numerous functions including the production of bile, metabolism
of nutrients, elimination of endogenous and exogenous
substances, glycogen storage, and plasma protein synthesis
(Pan et al., 2010; Baghbanan et al., 2014). Recent years, nature
flavonoid monomers have emerged as potential hepatoprotective
agents due to their safety and efficacy (Ben et al., 2017).

Non-alcoholic fatty liver disease (NAFLD) is reputed as an
elementary public health issue globally, which accelerates the
pathological progress of various disease such as type II diabetes
and cardiovascular disorder (Liu et al., 2014; Sheldon et al., 2014).
Zhou et al. certified that alpinetin (at dose of 12.5–50 mg/kg)
obviously ameliorated high fat diet-induced NAFLD in mice. The
results revealed that alpinetin considerably suppressed oxidative
stress and inflammatory damage through promoting PPARα/
SOD1/HO-1/Nrf2 secretion and inhibiting the activation of
TLR4/NF-κB pathway. Moreover, alpinetin strongly moderated
abnormal lipids metabolism in NAFLD by decreasing
thioredoxin-interacting protein (TXNIP)/xanthine oxidase
(XO), Stearoyl-CoA desaturase1 (SCD1), and fatty acid
synthase (FAS) expression levels (Zhou et al., 2018). Liu et al.
assessed the therapeutic effect of alpinetin in LPS/D-Gal
(Lipopolysaccharide/D-galactosamine)-induced mice liver
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damage model. Alpinetin administration (12.5–50 mg/kg)
appreciably attenuated the activation of NF-κB, enhanced Nrf2
generation, and ultimately decreased inflammatory and oxidative
response in vivo (Liu et al., 2019). Whereafter, Pan et al.
illustrated that alpinetin exhibited profitable protective effects
on hepatic ischemia/reperfusion (I/R) injury both in vitro and in
vivo. The study demonstrated that alpinetin (50 mg/kg)
suppressed the expression of alanine aminotransferase,
aspartate transaminase and proinflammatory cytokines, and
inhibited the pathological progress of hepatocyte damage
caused by hepatic I/R via inhibiting NF-κB/MAPK signaling
pathways (Pan et al., 2021). Interesting, alpinetin also exerted
anti-fibrotic effect in mice model with carbon tetrachloride
(CCl4)-induced liver fibrogenesis. Alpinetin treatment (15 and
60 mg/kg) displayed anti-inflammatory and anti-oxidative
properties through reducing NLRP3 expression level,
activating Nrf2 pathway, and limiting hepatic angiogenesis
(Zhu et al., 2021).

As mentioned above, alpinetin is capable of exhibiting
potential therapeutic effects in the treatment of various hepatic
disorders by facilitating the activation of PPARα, SOD1, HO-1
and Nrf2, dropping the expression of NLRP3, TXNIP, XO, SCD1,
FAS, and inhibiting TLR4/NF-κB and MAPK signaling pathways
(Table 2). However, many challenges for researchers are still
remained. More specific and novel molecular targets of alpinetin
in hepatic disorders therapy are required to be illustrated in
further experiments, such as glucagon-like peptide-1 (GLP-1)
(Milani et al., 2019), Sirtuin 1 (SIRT1) (Farghali et al., 2019), Yes-
associated protein (YAP) (Xie et al., 2021), etc.

Cardiovascular Protective Activity
Cardiovascular disease (CVD) has become the largest cause of
morbidity and premature death worldwide. According to some
estimates, the number of CVD-attack deaths in the world exceed
17 million per year (Haouari and Rosado, 2019; Aryan et al.,
2020). The most commonly cardiovascular risk factors are age,
gender, genetic factors, atherosclerosis, cardiac failure, obesity,
coronary heart disease, hypertension, hyperglycemia and
dyslipidemia (Ciumărnean et al., 2020). As a promising
reagent for cardiovascular disorders, alpinetin exhibited
multiple therapeutic effects targeted on platelets, myocardial
cells, vascular smooth muscle cells, and lipid accumulation
(Table 2).

Protective Effect on Atherosclerosis
Atherosclerosis is one of the primary causes contributed to
cardiovascular disease. Atherosclerosis is distinguished by the
lipids abnormally accumulated in the arteriosus wall (Hansson
and Hermansson, 2011). Simultaneously, platelet is marked as the
critical factor in thrombus and atherosclerosis during the
pathogenetic process (McNicol and Israels, 2003; Kang et al.,
2013). In the study evaluated by Jantan et al., alpinetin
represented conspicuous inhibitory effects on platelet-
activating factor (PAF) with IC50 values of 41.6 μM, suggesting
that alpinetin was relatively potent PAF receptor binding
inhibitors (Jantan et al., 2004). Enabling cholesterol exocytosis
from lipid-loaded cells is a reliable strategy for the treatment of

atherosclerosis (Luo et al., 2010). Jiang et al. elucidated that
administrated with alpinetin (50–150 μg/ml for 24 h) exhibited
profitable effect on cholesterol transportation in human
peripheral blood monocyte derived macrophages (HMDMs)
and THP-1 macrophage cells. The data obtained demonstrated
that alpinetin significantly strengthened cholesterol excretion,
restricted oxidized low-density lipoprotein (ox-LDL)-induced
lipid aggregation by enhancing PPAR-γ, LXRα, ABCA1 and
ABCG1 levels (Jiang et al., 2015). Vascular smooth muscle
cells (VSMC) are a major cell type present at the pathology of
occluding arterial lesions during atherogenesis (Grootaert et al.,
2018). Li et al. investigated that alpinetin appreciably refrained
VSMC growth and invasion, and secured VSMC against peroxide
injury activated by TNF-α and H2O2 through decreasing NO and
LDH expressions (Li and Du, 2004). Besides, atherosclerosis is
compactly connected with coronary heart disease (CHD), which
is featured with the presence of arterial plaques principally
constructed by fatty substance, calcium and inflammatory cells
(Li et al., 2018). Dai et al. recently reported that alpinetin
(40–160 mg/kg) notably attenuated left ventricular end-
diastolic volume (LVEDV), inhibited serum triglyceride (TG),
endothelin-1 (ET-1) and TNF-α production, upregulated NO
expression, and finally improved heart function in CHD rat
model through suppressing MEK/ERK signaling pathway (Dai
et al., 2021).

Based on these findings, we are able to summarize that
alpinetin may hold a bright future to treat atherosclerosis and
its complications by restraining PAF, promoting cholesterol
efflux, protecting VSMC, and ameliorating cardiac functions.

Inhibition of Myocardial Apoptosis
Myocardial apoptosis, predominantly induced in myocardial
ischemia, anoxia and ischemia-reperfusion (Gottlieb et al.,
1994), is an important cytological factor in the evolution of
numerous heart diseases. Suo et al. found that alpinetin
administration (at dose of 40–120 mg/ml) demonstrated
satisfactory therapeutic effect on myocardial cell apoptosis
activated by serum expropriation in rats. The research revealed
that alpinetin stimulated the δ receptor, thus sensitized PKC/ERK
signaling pathway and inhibited caspase family generation, and
eventually improved the intrinsic protection in myocardial cells
(Suo et al., 2014).

Relaxation of Vascular
Vasodilators are efficient tactics to remedy diverse cardiovascular
diseases, including hypertension, acute heart failure and cardiac
arrythmias (Allam et al., 2020). Previous research substantiated
that alpinetin (10–100 μM) evidently exerted vascular relaxation
functions in both endothelium-dependent and independent
manner. The results suggested that alpinetin relaxed rat
mesenteric arteries through activating nitric oxide expression,
unconditionally restraining Ca2+ influx, limiting intracellular
Ca2+ release, and inhibiting protein kinase C regulated
excitation-contraction coupling (Wang et al., 2001).

Therefore, similar to many drugs clinically applicated in
patients with cardiovascular diseases, alpinetin enjoys
multiple directions and targets for CVD treatment, including
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anti-atherosclerosis, curbing myocardial apoptosis, and loosing
vascular. Although alpinetin seems to hold the capacious
therapeutic prospect for CVD, further in-depth researches
need to be pursued.

Antimicrobial Activity
In recent years, the anti-infective research of natural flavonoids
has attracted extensive attention. Numerous research teams have
isolated and identified the structures of flavonoids, and
investigated the antibacterial and antiviral activities of these
compounds (Cushnie and Lamb, 2005). Foregoing studies
reported that alpinetin displayed broad spectrum antibacterial
activity, particularly against Helicobacter pylori (Huang et al.,
2006). The bioactive minimum inhibitory concentration (MIC)
values of alpinetin against Helicobacter pylori was 1.25 μg/ml.
Moreover, alpinetin was active against Gram-negative bacteria
such as Escherichia coli, Salmonella typhi, Klebsiella penumoniae,
Pseudomonas pyocyanea, Enterobacter aerogenes, Pseudomonas
maltophilia, Citrobacter diversus, and Pseudomonas cepacianwith
the MIC ranged from 1.925 to 3.859 mg/ml (Huang et al., 2006).
Besides, Chen et al. presented that alpinetin performed excellent
antibacterial activities in drug-resistant Aeromonas hydrophila
(CW, 1G, Ah, WZ1 and S1D) in vitro. The results found that
alpinetin significantly refrained the proliferation of five fish-
differentiated Aeromonas hydrophila coupled with the MIC
and MBC (minimum bactericidal concentration) ranged from
128–256 μg/ml to 512–1,024 μg/ml, respectively. Afterwards, the
hiddenmechanism was testified, and the results indicated that the
antibacterial profile of alpinetin was prominently carried out
through destructing cell walls of bacteria as well as promoting
the penetrability of cell membranes (Chen H et al., 2021).

To sum up, alpinetin may possess a wide antimicrobial
spectrum and robust antimicrobial activity (Table 2), and can
be used for further antimicrobial drug discovery. However, there
are few reports focused on this domain, nor systemic researches
on the antibacterial mechanisms of alpinetin, which will be the
hits of future studies.

Antiviral Activity
Respiratory syncytial virus (RSV), parainfluenza type 3 (Para 3),
and influenza type A (Flu A) are often the cause of severe
respiratory diseases (Freymuth et al., 2004). Alpinetin was
explored for inhibitory effects against these kinds of viruses
utilizing cytopathic effect analysis in cell culture
monomolecular layers. Importantly, alpinetin exhibited
conducive antiviral activity against RSV (IC50 = 77.0 μM), Para
3 (IC50 = 154.4 μM), and Flu A (IC50 = 308.5 μM) with a
therapeutic index (TC50/IC50) surveyed to 6.0, 3.0 and 1.5,
respectively (But et al., 2009). Moreover, the HIV-1 pandemic
is undoubtedly the defining world-wide health crisis (Simon et al.,
2006). Alpinetin has been anteriorly separated from the ethanol
extract of Boesenbergia rotunda (L.) Mansf. [Zingiberaceae] in
Thailand, and was reported to exert inhibitory activity against
HIV-1 protease (HIV-PR), which is identified as a crucial
molecular marker for promoting targeted drugs against HIV
(Tewtrakul et al., 2003; Maridass et al., 2008). Thereafter, Pan
et al. isolated alpinetin from the branches and leaves of Vitex

tripinnata (Lour.) Merr. [Lamiaceae] using bioassay-guided
fractionation, and the antiviral activities of alpinetin has also
been investigated. The results suggested that alpinetin possessed
anti-HIV property with IC50 values of 130 μM (Pan et al., 2014).
Recently, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), an extremely contagious RNA virus, is liable
for contributing to the coronavirus disease 19 (COVID-19)
pandemic (Hu et al., 2021). Gurung et al. applied methods of
molecular docking and dynamic simulation to assess that
alpinetin could considerably block the reproduction of SARS-
CoV-2 by targeting the main protease. More specifically, alpinetin
strongly bound to the active site pocket of SARS-CoV-2-Main
protease principally stimulated by van der Waals forces. The
binding energy and inhibition constant of alpinetin were
-7.51 kcal/mol, and 3.12 μM, respectively (Gurung et al., 2021).
Therefore, alpinetin may be further developed as a promising
anti-SARS-CoV-2 candidate.

These researches uncover that alpinetin may hold inhibitory
effects against diverse viruses (Table 2). But the potential antiviral
mechanisms majorly remain unclear and need to be probed. More
interestingly, it will also be deserved to explore the pharmacological
roles of alpinetin in the confrontation of new emerging strains.

Other Pharmacological Properties
AChE, a member of the hydrolase enzyme family, has cholinergic
roles in the breakdown of acetylcholine (ACh) neurotransmitters
and terminating cholinergic signaling in mammals (Akıncıoğlu
and Gülçin, 2020). Alpinetin has formerly been certified to
activate AChE expression by modulating G protein-coupled
receptor 30 (GPR 30) in PC12 cells in vitro (Liu et al., 2019)
(Table 2). Despite there are few analogical studies of alpinetin in
neurology, Liu et al. provided a beneficial preliminary focused on
nervous disorder. Therefore, future researches should be carried
out to determine if alpinetin can be developed as a promising
candidate for some possible brain diseases.

Flavonoids are universally known as efficient antioxidants
account for the aspect of endowing phenolic hydrogens (Pietta,
2000). Recently, studies substantiated that several antioxidative
flavonoids could promote photo protection and perform as UV
filters to avert DNA injury, skin canceration, sun burn, etc (González
et al., 2008). Shireen et al. assessed the antioxidative activity and UV
spectral features of alpinetin by computational investigations, Time
dependent density functional theory (TD-DFT) and Natural bond
orbital (NBO)methods. The results revealed that alpinetin possessed
a potential antioxidative effect, and displayed an extensive
absorption in the extent of harmful UV radiation (270–390 nm)
due to the crucial configurable feature with the absence of C2-C3
double bond (Shireen et al., 2017) (Table 2). Therefore, alpinetin can
be regarding as a hopeful candidate in future research for
antioxidative UV filters in sunscreens.

Additionally, exploring the interactions between flavonoids
with protein or DNA can afford valuable information of the
structural features and pharmacodynamics of potential
compounds (Pal and Saha, 2014; Selvaraj and Singh, 2018).
For example, alpinetin bound on site III and led to a
conformational change of human serum albumin (HSA). The
binding features and conjugation site positions are potential to
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prohibit some harmful drug reactions such as hypoglycemia (He
et al., 2005). Thereafter, He et al. also studied the interactions
between alpinetin and lysozyme. The results demonstrated that
alpinetin exerted excellent affinity to lysozyme spurred by
hydrophobic and electrostatic effects with the binding distance
of 4.04 nm. The binding function provided avenues to ascertain
the toxicity effects of alpinetin on target proteins (He et al., 2006).
Similarly, alpinetin could bind to the subdomain IIA of Bovine
serum albumin (BSA) through hydrophobic force without non-
radioactive energy transfer, and the binding effect induced some
microenvironmental and conformational change of BSA (Ni
et al., 2010; Zhang et al., 2010). Moreover, Xu et al.
investigated the underlying mechanism of alpinetin interaction
with bovine hemoglobin (BHG) under physiological conditions.
The data elucidated that alpinetin strongly bound to the
hydrophobic lacuna of BHG driven by hydrophobic effect, and
extinguished the immanent fluorescence of BHG related with
altering conformation, hinting that alpinetin could be reserved
and delivered by BHG to some extent (Xu et al., 2017). On the
other side, Zhang et al. studied the recognition between alpinetin
and calf thymus DNA. Fluorescence and UV-visible spectrometry
experiments demonstrated that alpinetin bound to DNA with a
groove and single static model (Zhang et al., 2008). Furthermore,
recent reports found that alpinetin bound to the cavity of R273H
mutant p53 through mediately or directly impacting the DNA
binding domain with a dissociation constant calculated to
75.11 µM, indicating that alpinetin may definitely salvage
DNA-contact mutant p53 in tumor treatment (Malami et al.,
2017b). Summarizing these binding effects of alpinetin, we may
able to deduce that alpinetin is a capable and valid candidate
binding on DNA or protein to prevent and treat diseases.

Besides, Lu et al. investigated the inhibition activities of
alpinetin on seven major cytochrome P450 monooxygenases
(P450s), including CYP1A2, CYP3A4, CYP2E1, CYP2D6,
CYP2A6, CYP2C8, and CYP2C9 in human liver microsomes.
Alpinetin only competitively inhibited CYP1A2 at the
concentration of 100 μM, indicating that it may be used as a
selective CYP1A2 inhibitor (Lu et al., 2015). Furthermore,
alpinetin notably transactivated the CYP3A4 in LS174T cells
with 10 μM via activation of the PXR pathway (Dou et al.,
2012). These reports implied that alpinetin may be a potential
regulator in the metabolisms of CYP1A2 and CYP3A4
mediated drugs.

PHARMACOKINETICS AND
ENHANCEMENT STRATEGIES

Pharmacokinetics
Pharmacokinetics is mainly to quantitatively estimate the
absorption, distribution, metabolism and excretion properties
of drugs, which provide essential information for clinical
research (Rock and Foti, 2019; Wang et al., 2021). Recently,
the pharmacokinetic profiles of alpinetin have been investigated
by ultrahigh performance liquid chromatography-tandem mass
spectrometry (UHPLC-MS/MS) (Ye et al., 2018), ultra-
performance liquid chromatography tandem mass T
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spectrometry method with electrospray ionisation (UHPLC-ESI-
MS/MS) (Chen et al., 2015), and ultra-performance liquid
chromatography quadrupole time-of-flight mass spectrometry
(UPLC-Q-TOF-MS) primary in rats (Qiu et al., 2019) (Table 3).

Reports documented that alpinetin was rapidly absorbed into-
emocircular system. Specifically, the elimination half-life (T1/2)
after oral administrated with alpinetin (5 and 20 mg/kg) were
1.578 ± 0.24 h and 9.049 ± 4.21 h, respectively. Meanwhile, area
under the curve (AUC0~t), maximum concentration (Cmax) and
total clearance (CL) were 783.623 ± 296.957 μg/L×h, 385.633 ±
91.192 μg/L and 10.683 ±0.684 L/h/kg, and 906.058 ± 402.669 μg/
L×h, 167.020 ± 43.958 μg/L and 26.327 ± 13.708 L/h/kg,
respectively (Chen et al., 2015; Ye et al., 2018). Although the
results varied probably attributed to the application of different
dosages and detection methods. The conjectures could be drawn
that alpinetin might present pharmacological activity rapidly and
subject the elimination process quickly. Comparing with iv
dosing (2 mg/kg), the absolute bioavailability of alpinetin was
15.10 ± 5.72%, suggesting that alpinetin has a poor intestinal
absorption (Ye et al., 2018). Thereby, these pharmacokinetic
studies displayed a fast absorption, poor bioavailability, and
rapid clearance in vivo, which will severely hinder its
therapeutic effectiveness.

Glucuronidation, a typical phase II metabolic reaction
catalyzed by UDP-glucuronosyltransferases (UGTs), is
identified as the prominent metabolic pathway for flavonoid
monomers in vivo (Tang et al., 2009). Qi et al. elucidated the
glucuronidation metabolic characteristics of alpinetin enabled by
intestine and human liver microsomes in vitro. The research
indicated that enzymes from UGT1A1, UGT1A3, UGT1A9, and
UGT2B15 subfamilies are the main contributors to accelerate
alpinetin metabolism. Importantly, in addition to UGTs, breast
cancer resistance protein (BCRP) has been confirmed as another
critical factor in regulating the dramatical glucuronidation of
alpinetin. The suppression of UGTs and BCRP both decreased
cellular glucuronidation and may be helpful to improve
pharmacokinetic features of alpinetin in vivo (Qi et al., 2019).
Afterwards, Qiu et al. verified that alpinetin experienced notable
glucuronidation in rats. The results validated that alpinetin
primarily absorbed into the small intestine with the manners
of phenolic acids and prototype. The entered substrates were
markedly glucuronidated to form glucuronide conjugates in the
blood and liver, then converted into bile or blood circulation, and
finally excreted through urine and feces (Qiu et al., 2019).

Enhancement Strategies
Since the terrible pharmacokinetics profiles may exceeding
dampen the in vivo bioactivity of alpinetin, more attention
should be focusing on some feasible means to improve its
activity in ameliorating various human ailments.

Hydroxypropyl-β-cyclodextrin host-guest system is a useful
approach to satisfactorily improve drug solubility, stability as well
as bioavailability (Garnero et al., 2012). Ma et al. firstly
demonstrated that alpinetin obviously enhanced the water
solubility and stability in the inclusion complex with HPβCD,
which may be beneficial for alpinetin in clinical application (Ma
et al., 2012). The inclusion complexation was a critical step for

alpinetin to devise novel dosage forms. Additionally, other
encapsulation systems, such as microemulsion and
phospholipid entrapment, have been designed to effectively
deliver flavonoids inside the body (Vazhappilly et al., 2021).
The possibility of utilizing these systems may improve the
bioavailability and curative effects of alpinetin.

Recently, the rapid nanoscience development has harvested
affluent admiration in the pharmaceutical industry. Novel
nanotechnologies mainly included nanoparticles, nanogel,
nanocrystals, nanoemulsion, nanosuspension, micelles,
liposome, solid lipid nanoparticles, self-nanoemulsifying drug
delivery systems (SNEDDS), and self-micro-emulsifying drug
delivery system (SMDDS) (Ahmad et al., 2016; Alothaid et al.,
2021; Jain et al., 2021). Utilizing nanotechnology has created
foremost progresses toward enhancing stability, bioavailability,
delivery, sustained release, and therapeutic index of flavonoids
(Ayala-Fuentes and Chavez-Santoscoy, 2021; Jannat et al., 2021).
Considering the promising therapeutic effects of alpinetin, these
novel nano-drug delivery systems as prospective approaches
should be exploited to deliver alpinetin in a managed and
specific way.

Making a comparison with flavonoid leads, methylated
flavonoids have been elucidated to possess much better
bioavailability (Wen et al., 2017). The structure-activity
relationships of methylated alpinetin may help to overcome
the following challenges, either in poor bioactivity or in
alpinetin-based drug discovery. Furthermore, given the
significant glucuronidation of alpinetin, it may be a potent
approach to upgrade the bioavailability by combining relevant
UGTs inhibitors, such as piperine and quercetin (Zeng et al.,
2017).

CONCLUSION AND FUTURE
PERSPECTIVES

Alpinetin is a nature flavonoid present in abundant medicinal
plants. Up to now, alpinetin is reportedly documented against
various diseases encompassing malignancies, inflammation, liver
disorders, cardiovascular diseases, bacterial infections, virus
infections, lung injury, brain disease, and oxidative damage.
The reported antineoplastic aspects are mainly associated with
ROS/NF-κB/HIF-1α, PI3K/Akt/mTOR, STAT3/c-Myc/survivin,
UCK2/MDM2/p53, PPAR-γ, Notch, and MKK7/JNK pathways.
Alpinetin exerts noteworthy anti-inflammatory functions via
modulating PI3K/Akt, TLR4/NF-κB, ERK/JNK/p38 MAPK,
PPAR-γ, PXR, Nrf2/HO-1, AhR/miR-302/DNMT-1/CREB,
and AhR/suv39h1/TSC2/mTORC1 signaling pathways in
versatile inflammatory models. The excellent anti-
inflammatory, anti-oxidation and lipid metabolism
amelioration properties both devote to notable
hepatoprotective activities of alpinetin, making it a prospective
reagent for remedying diverse hepatica illness, including liver
injury, NAFLD, and liver fibrosis. Many studies reveal that
alpinetin performs profound therapeutic effects on various
cardiovascular diseases through anti-platelet, anti-
atherosclerosis, anti-coronary heart disease, anti-myocardial
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apoptosis, and vasodilation. Alpinetin shows expansive
antibacterial property especially against Helicobacter pylori,
mainly involved in demolishing cell walls and enhancing the
penetrability of cell membranes. Alpinetin also possesses
considerable antiviral activities against RSV, Para 3, Flu A,
HIV, and SARS-CoV-2. The antioxidative activity and UV
spectral features endow alpinetin with the capacity to reduce
UV-induced skin damage. Moreover, alpinetin holds powerful
binding effects toward versatile DNA and proteins. All current
evidence demonstrates that alpinetin can be application in the
development of drugs that could be used in various diseases
managements. However, more pharmacological researches are
needed to elucidate novel viewpoints for disease treatment in the
field of modern medicine.

Besides medicinal plants, the present vegetables and fruits
extensively used as daily food are also known to possess a high
concentration of flavonoids. Flavonoids are strong nutraceutical
and medicinal candidates due to their pharmacological activities
and safety. Alpinetin has been frequently applied in compound
preparations, and mainly confirmed to include slight systemic
toxicity. However, reports in this crucial filed are deficient and
limited. It should be point out that sufficient toxicological
researches are imminent to justify clinical safety of alpinetin.
Drug development usually meets huge hurdles such as poor
pharmacokinetic properties and crappy in vivo activity.
Despite the current pharmacokinetic studies are not adequate,
the facts they revealed can not be neglected. Focused endeavors
are needed to improve the bioactivity of alpinetin through viable

strategies as we aforementioned or others, such as encapsulation
systems, nano-drug delivery systems, chemical modification,
adjuvants combination, etc. Therefore, for development of
alpinetin finally into successful drug, future researches need to
concentrate upon the evaluation of complete toxicological effects
and the enhancement of pharmacokinetic profiles with scientific
and technological advances.
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GLOSSARY

PARP poly ADP-ribose polymerase

Bcl-2 B-cell lymphoma-2

Bax BCL2-Associated X

NF-κB nuclear factor kappa-B

IκBα inhibitor of NF-κBα

HIF-1α hypoxia-inducible factor-1α

MuRF1 muscle RING-finger protein-1

Atrogin-1 muscle atrophy gene-1

CDK cyclin-dependent kinases

FASN fatty acid synthase

SCD stearoyl CoA desaturase

F4/80 mouse EGF-like module-containing mucin-like hormone
receptor-like 1

IL interleukin

CCL chemokine (C-C motif) ligand

XIAP X-linked inhibitor of apoptosis protein

Akt protein kinase B

PI3K phosphoinositol-3 kinase

MRP multidrug resistance-associated protein

P-gp P-glycoprotein

TIMP tissue inhibitor of metalloproteinase

MMP matrix metalloproteinase

STAT3 signal transducer and activator of transcription 3

NICD notch intracellular domain

HES hairy and enhancer of split

MKK-7 Mitogen-activated protein kinase kinase-7

UCK2 uridine-cytidine kinase 2

MDM2 human double minute 2

TNF-α tumor necrosis factor-α

LPS lipopolysaccharide

ERK extracellular signal-regulated kinase

PPAR peroxisome proliferator-activated receptor

MPO myeloperoxidase

TLR4 Toll-like Receptor 4

DSS dextran sulfate sodium

NLRP3NOD- NOD-LRR- and pyrin domain-containing protein 3

ASC apoptosis-associated speck-like protein containing a CARD

JNK c-Jun N-terminal kinase

DMM destabilization of the medial meniscus

COL2A1 collagen type II

ADAMTS a disintegrin and metalloprotease with thrombospondin type 1
motifs

iNOS inducible nitric oxide synthase

AQP-1 protein aquaporin

ICAM-1 intercellular adhesion molecule-1

IFN-γ interferon-gamma

MIP-2 macrophage inhibitory protein-2

SOD dismutase

MDA melanoma differentiation associate

GSH glutathione

Nrf2 nuclear factor-erythroid 2-related factor 2

HO-1 heme oxygenase-1

RORγt retinoic acid-related orphan receptor-γt

FOXP3 ranscription factor forkhead box protein P3

AhR aryl hydrocarbon receptor

ARNT AhR-nuclear translocator

CREB cAMP-response element binding protein

ZO-1 zonula occluden-1

LC3B microtubule-associated protein light chain 3B

Atg autophagy-related proteins

p70S6K 70 kDa ribosomal S6 kinase

TSC tuberous sclerosis complex

PTEN p and tensin homolog

AMPKα AMP-activated protein kinase alpha

TGF-β1 transforming growth factor-β1

α-SMA α-smooth muscle actin

ALT alanine aminotransferase

AST aspartate aminotransferase

MCP-1 monocyte chemoattractant protein-1

IKKβ nuclear factor kappa B kinase subunit beta

LDH lactate dehydrogenase

CAT catalase

GPx glutathione peroxidase

VEGF vascular endothelial growth factor

PDGF platelet-derived growth factor

GCLC glutamate-cysteine ligase catalytic subunit

NQO1 NAD(P)H quinone dehydrogenase 1

GCLM glutamate-cysteine ligase modifier subunit

TXNIP thioredoxin-interacting protein

SREBP-1c sterol element regulatory binding protein 1c

LXR-α Liver X Receptor-α

Elovl-2 elongases of very long-chain fatty acids-2

IRS1 p-insulin receptor substrate 1

ABCA1 ATP binding cassette transporter A1

ABCG1 ATP binding cassette transporter G1
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PKC Protein kinase C

NO nitric oxide

AChE acetylcholinesterase

NFs neurofilaments

MIC minimum inhibitory concentrations

IC50 half maximal inhibitory concentration

MBC minimum bactericidal concentration

LVEDV Left ventricular end-diastolic volume

SV stroke volume

TG triglyceride

TC total cholesterol

HDL-C high density lipoprotein cholesterol

LDL-C Low-density lipoprotein cholesterol

ET-1 Endothelin-1

PGI2 prostacyclin

PXR Pregnane X receptor

i.v. intravenous administration

i.p. intraperitoneal administration

i.g. intragastric administration

T1/2 elimination half-life

AUC0~t area under the curve

Cmax maximum concentration

CL total clearance

V apparent volume of distribution

MRT(0-t) mean residence time

Tmax peak time
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