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Abstract
Spatial proteomics is the systematic study of protein sub-cellular localisation. In
this workflow, we describe the analysis of a typical quantitative mass
spectrometry-based spatial proteomics experiment using the   and MSnbase

 Bioconductor package suite. To walk the user through thepRoloc
computational pipeline, we use a recently published experiment predicting
protein sub-cellular localisation in pluripotent embryonic mouse stem cells. We
describe the software infrastructure at hand, importing and processing data,
quality control, sub-cellular marker definition, visualisation and interactive
exploration. We then demonstrate the application and interpretation of
statistical learning methods, including novelty detection using semi-supervised
learning, classification, clustering and transfer learning and conclude the
pipeline with data export. The workflow is aimed at beginners who are familiar
with proteomics in general and spatial proteomics in particular.
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Introduction
Quantitative mass spectrometry-based spatial proteomics involves elaborate, expensive and time consuming experi-
mental protocols and considerable effort is invested in the generation of such data. Multiple research groups have 
described a variety of approaches to establish high quality proteome-wide datasets (see for example1 for a review, 
and 2–6 for recent examples). However, data analysis is as critical as data production for reliable and insightful 
biological interpretation. Here, we walk the reader through a typical pipeline for the analysis of such data using 
several Bioconductor7 packages for the R statistical programming environment.

The main package to analyse protein localisation data is pRoloc, which offers a set of dedicated functions for the 
analysis of such data. pRoloc itself relies on MSnbase to manipulate and process quantitative proteomics data.  
Many other packages are used by pRoloc for clustering, classification and visualisation. Support for interactive  
visualisation is offered by the pRolocGUI package.

In this workflow, we will describe how to prepare the spatial proteomics data starting from a spreadsheet contain-
ing quantitative mass spectrometry data, through to some essential data processing steps, and finish with different  
applications of machine learning (Figure 1). We focus on a recent pluripotent mouse embryonic stem cells  
experiment2. These data, as well as additional annotated and pre-formatted datasets from various species are  
readily available in the pRolocdata package.

Figure 1. Schematic overview of the pRoloc pipeline from data import, through to data processing, machine 
learning and data export.

            Amendments from Version 1

In response to the reviewers’ comments we have added a paragraph to the ‘Visualising markers’ section of the 
manuscript reiterating the purpose of PCA and motivating the choice of looking at PC’s 1 and 7. Figure 9 now follows on 
from this (now Figure 8), along with the corresponding code and an explanation of the plotDist function.

An Appendix of R code detailing how to directly load the pre-computed results of the phenoDisco, SVM optimisation and 
transfer learning results has been added to the end of the manuscript to allow readers to exactly reproduce the results in 
text if they so wish.

Finally, in response to the reviewers’ comments, a few sentences have been added to the end of the “Unsupervised 
machine learning” section to explain the suitability of classification over clustering for this type of data. The final section 
of the document has also been renamed to “Session Information and Getting Help” for clarity.

See referee reports
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Installation of Bioconductor packages is documented in detail on the Bioconductor installation help page. Below,  
we show how to install the four main packages used in this workflow:

source("https://bioconductor.org/biocLite.R")
biocLite(c("MSnbase", "pRoloc", "pRolocdata", "pRolocGUI"))

This procedure is also applicable to any packages, from CRAN as well as GitHub. Once a package has been  
installed, it needs to be loaded for its functionality to become available in the R session; this is done with the  
library function e.g. to load the pRoloc package one would type library("pRoloc") after installation.

If you have questions about this workflow in particular, or about other Bioconductor packages in general, they are 
best asked on the Bioconductor support site following the posting guidelines. Questions can be tagged with specific  
package names or keywords. For more general information about mass spectrometry and proteomics, the readers  
are invited to read the RforProteomics package vignettes and associated papers8,9.

Reading and processing spatial proteomics data
The use-case: predicting sub-cellular localisation in pluripotent embryonic mouse stem cells
As a use-case, we analyse a recent high-throughput spatial proteomics dataset from pluripotent mouse embryonic 
stem cells (E14TG2a)2. The data was generated using hyperplexed LOPIT (hyperLOPIT), a state-of-the-art method 
relying on improved sub-cellular fractionation and more accurate quantitation, leading to more reliable classifica-
tion of protein localisation across the whole sub-cellular space. The method uses an elaborate sub-cellular fractiona-
tion scheme, enabled by the use of Tandem Mass Tag (TMT)10 10-plex and application of the MS data acquisition  
technique named synchronous precursor selection MS3 (SPS-MS3)11, for TMT quantification with high accuracy 
and precision. Three biological replicates were generated from the E14TG2a experiment, the first was to target low  
density fractions and the second and third were to emphasis separation of the denser organelles. The intersect  
of replicates 1 and 2 was treated as a 20-plex dataset for the analysis. As discussed in the publication2, it has been  
shown that combining replicates from different gradients can increase spatial resolution12. The combination of  
replicates resulted in 5032 proteins common to both experiments.

These, as well as many other data are directly available as properly structured and annotated datasets from the 
pRolocdata experiment package. In this workflow, we will start with a description of how to generate these ad hoc 
data objects starting from an arbitrary spreadsheet, as produced by many popular third-party applications.

While we focus here on a LOPIT-type dataset, these analyses are relevent for any quantitative spatial proteomics  
data, irrespective of the fractionation (i.e. density gradient or differential centrifugation3) or quantitation (i.e. labelled 
or label-free) methods.

The infrastructure: pRoloc and MSnbase packages
To make use of the full functionality of the pRoloc software, users need to import their data into R and prepare  
them as an MSnSet. The MSnSet is a dedicated data structure for the efficient manipulation and processing  
of mass spectrometry and proteomics data in R. Figure 2 illustrates a simplified view of the MSnSet structure; there 

Figure 2. Simplified representation of the MSnSet data structure (reproduced with permission from the MSnbase 
vignette).
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exists 3 key sub-parts (termed slots) to such a data object: (1) the exprs (short for expression data) slot for storing the  
quantitation data, (2) the fData slot (short for feature-metadata) for storing the feature meta-data, and finally  
(3) the pData slot (short for pheno-metadata, i.e. sample phenotypic data) for storing the sample meta-data.

Feature metadata typically contains general annotation about the proteins (accession numbers, description, …), 
information related to the identification search (confidence scores, number of peptides, …) as well as annotation  
about known sub-cellular location (see in particular the Markers section) and results from data analysis. The sam-
ple metadata would, for example, record what stable isotope labels were used for the respective fraction (when  
labelled quantitation is used), replicate number, fraction number along the gradient and pooling information.

Another slot of interest is processingData, that logs the processing MSnSet objects undergo. The processing  
log can be accessed with the processingData function and is displayed under Processing information in  
the textual object summary when an MSnSet’s name is typed in the R console (see example below).

Importing data
There are a number of ways to import quantitation data and create an MSnSet instance. All methods are described 
in the MSnbase input/output capabilities vignette. The simplest method is to use the function readMSnSet2. The 
function takes a single spreadsheet file name as input and extracts the columns containing the quantitation data, as  
identified by the argument ecol, to create the expression data, while the other columns in the spreadsheet are appended 
to the feature meta-data slot. By example, in the code chunk below we read in the csv spreadsheet containing the  
quantitation data from the intersect of replicates 1 and 2 of the mouse map2, using the readMSnSet2 function. The 
data is as available online with the manuscript (see tab 2 of the xlsx supplementary data set 1 in 2, which should  
be exported as a text-based spreadsheet). It is also available as a csv in the Bioconductor pRolocdata data  
package, which we make use of below.

To use the readMSnSet2 function, as a minimum one must specify the file path to the data and which columns of 
the spreadsheet contain quantitation data. In the code chunk below, we start by identifying the file that we want to  
use. The system.file function is used to return the path to the extdata directory from the pRolocdata pack-
age, which is where our file of interest resides. We then use the dir function to list the content of that directory and  
store the path that matches the file name of interest in the csvfile variable. Note that these two lines are only  
needed here to locate a file in a package; in a more general use case, the user would define the csvfile  
variable containing the file name of interest directly.

A common pitfall here is to provide only the file name, rather than full path to the file (which is what is shown  
below with basename; we don’t print the full path, as it will vary from computer to computer). Note that only  
specifying the name of the file is sufficient when it exists in the working directory (i.e. the directory in which R is  
running, which can be queried and changed with the getwd and setwd functions respectively).

extdatadir <- system.file("��������extdata�", package = "�����������pRolocdata�")
csvfile <- dir(extdatadir, full.names = TRUE,
          pattern = "������������������������������������������hyperLOPIT-SIData-ms3-rep12-intersect.csv�")
basename(csvfile)

## [1] "hyperLOPIT-SIData-ms3-rep12-intersect.csv.gz"

Note that the file is compressed (as indicated by the gz, for gzip, extension), and will be decompressed  
on-the-fly when read into R.

Next, we need to identify which columns in the spreadsheet contain the quantitation data. This can be done  
using the getEcols function inside R. The spreadsheet deposited by the authors contains two headers, with the  
second header containing information about where the quantitation data is stored (Figure 3).

Figure 3. A screenshot of the data in the spreadsheet.
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We can display the names of the second header by calling the getEcols function with the argument n = 2 (the 
default value is n = 1), to specify that we wish to display the column names of the second line. We also specify the 
name of the spreadsheet file (defined as csvfile above) and the separator that splits cells.

getEcols(csvfile, split = ",", n = 2)

##  [1] ""
##  [2] ""
##  [3] ""
##  [4] "Experiment 1"
##  [5] "Experiment 2"
##  [6] "Experiment 1"
##  [7] "Experiment 2"
##  [8] "126"
##  [9] "127N"
## [10] "127C"
## [11] "128N"
## [12] "128C"
## [13] "129N"
## [14] "129C"
## [15] "130N"
## [16] "130C"
## [17] "131"
## [18] "126"
## [19] "127N"
## [20] "127C"
## [21] "128N"
## [22] "128C"
## [23] "129N"
## [24] "129C"
## [25] "130N"
## [26] "130C"
## [27] "131"
## [28] "phenoDisco Input"
## [29] "phenoDisco Output"
## [30] "Curated phenoDisco Output"
## [31] "SVM marker set"
## [32] "SVM classification"
## [33] "SVM score"
## [34] "SVM classification (top quartile)"
## [35] "Final Localization Assignment"
## [36] "First localization evidence?"
## [37] "Curated Organelles"
## [38] "Cytoskeletal Components"
## [39] "Trafficking Proteins"
## [40] "Protein Complexes"
## [41] "Signaling Cascades"
## [42] "Oct4 Interactome"
## [43] "Nanog Interactome"
## [44] "Sox2 Interactome"
## [45] "Cell Surface Proteins"

It is now easy for one to identify that the quantitation data, corresponding to the 10 TMT isobaric tags, is located 
in columns 8 to 27. We now have the two mandatory arguments to readMSnSet2, namely the file name (stored 
in the csvfile variable) and the quantitation column indices. In addition to these, it is also possible to pass the  
optional argument fnames to indicate which column to use as the labels by which to identify each protein in the  
sample. Here, we use fnames = 1 to use the UniProt identifiers contained in the first (unnamed) column of  
the spreadsheet. We also need to specify to skip the first line of the file (for the same reason that we used n = 2  
in getEcols above) to read the csv data and convert it to an MSnSet object, named hl (for hyperLOPIT).
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hl <- readMSnSet2(csvfile, ecol = 8:27, fnames = 1, skip = 1)

Below, we display a short summary of the data. The data contains 5032 proteins/features common across the 2 
biological replicates for the respective 2 × 10-plex reporter tags (20 columns or samples), along with associated feature 
meta-data such as protein markers, protein description, number of quantified peptides etc (see below).

hl

## MSnSet (storageMode: lockedEnvironment)
## assayData: 5032 features, 20 samples
##   element names: exprs
## protocolData: none
## phenoData: none
## featureData
##   featureNames: Q9JHU4 Q9QXS1-3 ... Q9Z2R6 (5032 total)
##   fvarLabels: X X.1 ... Cell.Surface.Proteins (25 total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)’
## Annotation:
## - - - Processing information - - -
##  MSnbase version: 2.7.1

Below, we examine the quantitative information along the whole gradient for first 5 proteins. It is also possible to 
access specific rows and columns by naming the proteins and TMT tag channels of interest.

exprs(hl)[1:5, ]

##           X126 X127N X127C X128N X128C X129N X129C X130N X130C  X131
## Q9JHU4   0.028 0.034 0.024 0.014 0.026 0.045 0.107 0.341 0.059 0.321
## Q9QXS1-3 0.039 0.134 0.095 0.053 0.084 0.121 0.107 0.128 0.122 0.117
## Q9ERU9   0.021 0.013 0.014 0.009 0.024 0.054 0.116 0.257 0.209 0.284
## P26039   0.120 0.255 0.148 0.091 0.135 0.095 0.041 0.057 0.014 0.043
## Q8BTM8   0.055 0.139 0.078 0.050 0.077 0.098 0.093 0.171 0.079 0.160
##          X126.1 X127N.1 X127C.1 X128N.1 X128C.1 X129N.1 X129C.1 X130N.1
## Q9JHU4    0.037   0.064   0.058   0.059   0.067   0.078   0.140   0.208
## Q9QXS1-3  0.033   0.073   0.074   0.062   0.081   0.142   0.190   0.069
## Q9ERU9    0.026   0.017   0.023   0.029   0.039   0.071   0.105   0.171
## P26039    0.111   0.181   0.141   0.144   0.152   0.119   0.075   0.028
## Q8BTM8    0.062   0.108   0.091   0.086   0.099   0.111   0.117   0.095
##          X130C.1 X131.1
## Q9JHU4     0.141  0.147
## Q9QXS1-3   0.151  0.125
## Q9ERU9     0.304  0.215
## P26039     0.017  0.033
## Q8BTM8     0.144  0.087

exprs(hl)[c("Q9ERU9", "Q9Z2R6"), c("X126", "X131.1")]

##         X126 X131.1
## Q9ERU9 0.021  0.215
## Q9Z2R6 0.563  0.000

The feature meta-data is stored in the fData slot and can be accessed by fData(hl). When using  
readMSnSet2 everything that is not defined as quantitation data by ecol is deposited to the fData slot.

We see the fData contains 25 columns describing information such as the number of peptides, associated mark-
ers, machine learning results etc. To identify the feature variable names we can use the function fvarLabels. We  
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see that the first 6 feature variable names contain non-discriminatory label names, so we relabel them to help us  
identify what feature data information is stored in the associated columns.

fvarLabels(hl)

##  [1] "X"
##  [2] "X.1"
##  [3] "X.2"
##  [4] "Experiment.1"
##  [5] "Experiment.2"
##  [6] "Experiment.1.1"
##  [7] "Experiment.2.1"
##  [8] "phenoDisco.Input"
##  [9] "phenoDisco.Output"
## [10] "Curated.phenoDisco.Output"
## [11] "SVM.marker.set"
## [12] "SVM.classification"
## [13] "SVM.score"
## [14] "SVM.classification..top.quartile."
## [15] "Final.Localization.Assignment"
## [16] "First.localization.evidence."
## [17] "Curated.Organelles"
## [18] "Cytoskeletal.Components"
## [19] "Trafficking.Proteins"
## [20] "Protein.Complexes"
## [21] "Signaling.Cascades"
## [22] "Oct4.Interactome"
## [23] "Nanog.Interactome"
## [24] "Sox2.Interactome"
## [25] "Cell.Surface.Proteins"

fvarLabels(hl)[1:3] <- c("uniprot.accession", "uniprot.id", "description")
fvarLabels(hl)[4:6] <- paste0("peptides.expt", 1:3)
## feature vars 1, 2, and 4 to 6
fData(hl)[1:4, c(1:2, 4:6)]

##          uniprot.accession  uniprot.id peptides.expt1 peptides.expt2
## Q9JHU4              Q9JHU4 DYHC1_MOUSE            175            166
## Q9QXS1-3          Q9QXS1-3  PLEC_MOUSE            123            150
## Q9ERU9              Q9ERU9  RBP2_MOUSE            101             90
## P26039              P26039  TLN1_MOUSE            101             94
##          peptides.expt3
## Q9JHU4              322
## Q9QXS1-3            174
## Q9ERU9              181
## P26039              167

Note that when using the simple readMSnSet2 procedure, the pData slot which is used to store information about 
the samples/channels is kept empty. As illustrated below, one can use the $ operator to access (or create) individual 
columns in the metadata slot. It is advised to annotate the channels as well. Below, we annotate the replicate from 
which the profiles originate and the TMT tag (extracted from the sample/channel names). To do so, we use the sample 
names that were assigned automatically using the quantiation column names and remove leading X and trailing .1 
using the sub function.

pData(hl)$Replicate <- rep(1:2, each = 10)
pData(hl)$Tag <- sub("\\.1$", "", sub("^X", "", sampleNames(hl)))
pData(hl)
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##         Replicate  Tag
## X126            1  126
## X127N           1 127N
## X127C           1 127C
## X128N           1 128N
## X128C           1 128C
## X129N           1 129N
## X129C           1 129C
## X130N           1 130N
## X130C           1 130C
## X131            1  131
## X126.1          2  126
## X127N.1         2 127N
## X127C.1         2 127C
## X128N.1         2 128N
## X128C.1         2 128C
## X129N.1         2 129N
## X129C.1         2 129C
## X130N.1         2 130N
## X130C.1         2 130C
## X131.1          2  131

Throughout this workflow we refer to the different columns that are found in the exprs (expression data) slot as  
channels (short for TMT channels). In the frame of LOPIT and hyperLOPIT these channels constitute the relative  
abundance of each protein (along the rows) in the channel of interest. Each TMT channel originates from fractions 
collected from the density gradient, or a set of pooled fractions or may be a sample originating from an alterna-
tive preparation e.g. such as from the chromatin enrichment performed in Christoforou et al.2 Information about  
which gradient fractions were used for which tag should also be stored in the sample meta-data pData slot.

The sample meta-data that is distributed with the pRolocdata package for Christoforou’s hyperLOPIT experiment  
and (as above) the quantitation data file, are located in the extdata in the pRolocdata package on the hard drive.

In the code chunk below we again use the dir function to locate the filepath to the meta-data csv file and then  
read it into R using read.csv. We then append the meta-data to the pData slot. Information about the gradient 
fractions used and the associated subcellular fraction densities in each replicate are stored here.

expinfo <- dir(extdatadir, full.names = TRUE,
               pattern = "hyperLOPIT-SIData-fraction-info.csv")

fracinfo <- read.csv(expinfo, row.names=1, skip = 2,
                     header = FALSE, stringsAsFactors = FALSE)

pData(hl)$Gradient.Fraction <- c(fracinfo[, 1], fracinfo[, 2])
pData(hl)$Iodixonal.Density <- c(fracinfo[, 4], fracinfo[, 5])
pData(hl)

##         Replicate  Tag Gradient.Fraction Iodixonal.Density
## X126            1  126           Cytosol               0.0
## X127N           1 127N   1 to 6 (pooled)               6.0
## X127C           1 127C   8 to 9 (pooled)              11.0
## X128N           1 128N 10 to 11 (pooled)              13.3
## X128C           1 128C                12              14.6
## X129N           1 129N                14              17.4
## X129C           1 129C                16              20.1
## X130N           1 130N                18              26.8
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## X130C           1 130C         Chromatin                NA
## X131            1  131                19              34.5
## X126.1          2  126           Cytosol               0.0
## X127N.1         2 127N   1 to 6 (pooled)               5.2
## X127C.1         2 127C   7 to 9 (pooled)              10.0
## X128N.1         2 128N 10 to 11 (pooled)              12.5
## X128C.1         2 128C                12              14.0
## X129N.1         2 129N 14 to 15 (pooled)              17.3
## X129C.1         2 129C                17              20.9
## X130N.1         2 130N 18 to 19 (pooled)              24.7
## X130C.1         2 130C         Chromatin                NA
## X131.1          2  131                20              31.9

Data processing
Normalisation. There are two aspects related to data normalisation that are relevent to spatial proteomics data  
processing. The first one focuses on reducing purely technical variation between channels without affecting  
biological variability (i.e. the shape of the quantitatives profiles). This normalisation will depend on the underlying 
quantitative technology and the experimental design, and will not be addressed in this workflow. The second aspect, 
and more specific to spatial proteomics data, is scaling all the organelle-specific profiles into the same intensity inter-
val (typically 0 and 1) by, for example, dividing each intensity by the sum of the intensities for that quantitative  
feature. This is not necessary in this example as the intensities for each replicate have already been re-scaled to 1  
in Proteome Discoverer v1.4 Thermo Fisher. However, if the data require normalisation, the user can execute the  
normalise function as demonstrated in the below code chunk.

hl <- normalise(hl, method = "sum")

This transformation of the data assures cancellation of the effect of the absolute intensities of the quantitative  
features along the rows, and focus subsequent analyses on the relative profiles along the sub-cellular channels.

The same normalise function (or normalize, both spellings are supported) can also be applied in the first case 
described above. Different normalisation methods, such as mean or median scaling, variance stabilisation or quantile 
normalisation, to cite a few, can be applied to accomodate different needs (see ?normalise for available options).

As previously mentioned, before combination, the two replicates in the hl data that we read into R were sepa-
rately normalised by sum (i.e. to 1) across the 10 channels for each replicate respectively. We can verify this by  
summing each rows for each replicate:

summary(rowSums(exprs(hl[, hl$Replicate == 1])))

##    Min. 1st Qu.  Median   Mean 3rd Qu.   Max.
##   0.997   0.999   1.000  1.000   1.001  1.003

summary(rowSums(exprs(hl[, hl$Replicate == 2])))

##   Min. 1st Qu.  Median   Mean 3rd Qu.  Max.
##  0.997   0.999   1.000  1.000   1.001 1.003

We see that some features do not add up exactly to 1 due to rounding errors after exporting to intermediate files.  
These small deviations do not bear any consequences here.

Combining acquisitions
The spreadsheet that was used to create the hl MSnSet included the two replicates within one .csv file.  
We also provide individual replicates in the pRolocdata package. Below, we show how to combine MSnSet objects 
and, subsequently, how to filter and handle missing values. We start by loading the pRolocdata package and the  
equivalent replicates using the data function.
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library("pRolocdata")
data(hyperLOPIT2015ms3r1)
data(hyperLOPIT2015ms3r2)

At the R prompt, typing

pRolocdata()

will list the 75 datasets that are available in pRolocdata.

Combining data is performed with the combine function. This function will inspect the feature and sample names 
to identify how to combine the data. As we want our replicates to be combined along the columns (same proteins,  
different sets of channels), we need to assure that the respective sample names differ so they can be identified  
from one another. The function updateSampleNames can be used do this.

identical(sampleNames(hyperLOPIT2015ms3r1), sampleNames(hyperLOPIT2015ms3r2))

## [1] TRUE

hyperLOPIT2015ms3r1 <- updateSampleNames(hyperLOPIT2015ms3r1, 1)
hyperLOPIT2015ms3r2 <- updateSampleNames(hyperLOPIT2015ms3r2, 2)
sampleNames(hyperLOPIT2015ms3r1)

## [1] "X126.1"  "X127N.1" "X127C.1" "X128N.1" "X128C.1" "X129N.1" "X129C.1"
## [8] "X130N.1" "X130C.1" "X131.1"

sampleNames(hyperLOPIT2015ms3r2)

## [1] "X126.2"  "X127N.2" "X127C.2" "X128N.2" "X128C.2" "X129N.2" "X129C.2"
## [8] "X130N.2" "X130C.2" "X131.2"

In addition to matching names, the content of the feature metadata for identical feature annotations must match exactly 
across the data to be combined. In particular for these data, we expect the same proteins in each replicate to be 
annotated with the same UniProt entry names and descriptions, but not with the same coverage of number of  
peptides or peptide-spectrum matches (PSMs).

fvarLabels(hyperLOPIT2015ms3r1)

## [1] "EntryName"          "ProteinDescription" "Peptides"
## [4] "PSMs"               "ProteinCoverage"    "markers"

fvarLabels(hyperLOPIT2015ms3r2)

## [1] "EntryName"          "ProteinDescription" "Peptides"
## [4] "PSMs"               "ProteinCoverage"    "markers"

Below, we update the replicate specific feature variable names and remove the shared annotation. In the first line, 
we update only the feature variable names 3 to 5 (by appending a 1) of the first replicate and in the second line,  
we apply the updateFvarLabels function to update all feature variable names (by appending a 2) of the  
second replicate. In lines 3 and 4, we retain the first 5 feature variables for the first replicate and the relevant third  
to fifth variables for the second replicate.

fvarLabels(hyperLOPIT2015ms3r1)[3:5] <- paste0(fvarLabels(hyperLOPIT2015ms3r1)[3:5], 1)
hyperLOPIT2015ms3r2 <- updateFvarLabels(hyperLOPIT2015ms3r2, "2", sep = "")
fData(hyperLOPIT2015ms3r1) <- fData(hyperLOPIT2015ms3r1)[1:5]
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fData(hyperLOPIT2015ms3r2) <- fData(hyperLOPIT2015ms3r2)[3:5]
fvarLabels(hyperLOPIT2015ms3r1)

## [1] "EntryName"          "ProteinDescription" "Peptides1"
## [4] "PSMs1"              "ProteinCoverage1"

fvarLabels(hyperLOPIT2015ms3r2)

## [1] "Peptides2"        "PSMs2"           "ProteinCoverage2"

We can now combine the two experiments into a single MSnSet:

combined <- combine(hyperLOPIT2015ms3r1, hyperLOPIT2015ms3r2)
combined

## MSnSet (storageMode: lockedEnvironment)
## assayData: 6725 features, 20 samples
##   element names: exprs
## protocolData: none
## phenoData
##   sampleNames: X126.1 X127N.1 ... X131.2 (20 total)
##   varLabels: Replicate TMT.Reagent ... Iodixonal.Density (5 total)
##   varMetadata: labelDescription
## featureData
##   featureNames: Q9JHU4 Q9QXS1-3 ... Q9Z2Y3-3 (6725 total)
##   fvarLabels: EntryName ProteinDescription ... ProteinCoverage2 (8
##     total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## pubMedIds: 26754106
## Annotation:
## - - - Processing information - - -
## Combined [5489,10] and [6268,10] MSnSets Tue May 22 16:07:39 2018
##  MSnbase version: 2.5.9

More details about combining data are given in the dedicated Combining MSnSet instances section of the  
MSnbase tutorial vignette.

Missing data
Missing data are a recurrent issue in mass spectrometry applications, and should be addressed independently of this 
workflow13,14. In 15, we have described how a high content in missing values in spatial proteomics data and their 
inappropriate handling leads to a reduction of sub-cellular resolution. We can impute missing data using 
MSnbase’s impute function. The method underlying the imputation method is then determined by a methods 
parameter (see ?impute for available options). To impute missing values using nearest neighbour imputation,  
one would

hl <- impute(hl, method = "knn")

In our particular case, missing values are indicative of protein groups that were not acquired in both replicates 
(Figure 4, produced with the image2 function).

image2(is.na(combined), col = c("black", "white"),
       main = "Missing values (white cells) after combining replicates")
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Figure 4. Heatmap of missing values. Note that the features are re-ordered to highlight clusters of proteins with similar 
numbers of missing values.

Missing values (white cells) after combining replicates
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We prefer to remove proteins that were not assayed in both replicated experiments. This is done with the  
filterNA function that removes features (proteins) that contain more than a certain proportion (default is 0)  
missing values. The Processing information section summarises how combining and filtering missing values  
(subsetting) changed the dimensions of the data.

combined <- filterNA(combined)
combined

## MSnSet (storageMode: lockedEnvironment)
## assayData: 5032 features, 20 samples
##   element names: exprs
## protocolData: none
## phenoData
##   sampleNames: X126.1 X127N.1 ... X131.2 (20 total)
##   varLabels: Replicate TMT.Reagent ... Iodixonal.Density (5 total)
##   varMetadata: labelDescription
## featureData
##   featureNames: Q9JHU4 Q9QXS1-3 ... Q9Z2R6 (5032 total)
##   fvarLabels: EntryName ProteinDescription ... ProteinCoverage2 (8
##     total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'

##   pubMedIds: 26754106
## Annotation:
## - - - Processing information - - -
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## Combined [5489,10] and [6268,10] MSnSets Tue May 22 16:07:39 2018
## Subset [6725,20][5032,20] Tue May 22 16:07:40 2018
## Removed features with more than 0 NAs: Tue May 22 16:07:40 2018
## Dropped featureData’s levels Tue May 22 16:07:40 2018
##  MSnbase version: 2.5.9

When more than 2 datasets are to be combined and too many proteins have not been consistently assayed,  
leading to too many proteins being filtered out, we suggest to implement an ensemble of classifiers voting on  
protein-sub-cellular niche membership over the output of several experiments (see section Supervised machine  
learning for the description of sub-cellular assignments).

Quality control
Data quality is routinely examined through visualisation to verify that sub-cellular niches have been separated  
along the gradient. Based on De Duve’s principle16 proteins that co-localise in a cell, exhibit similar quantitation 
profiles across the gradient fractions employed. One approach that has been widely used to visualise and inspect 
high throughput mass spectrometry-based proteomics data is principal components analysis (PCA). PCA is one  
of many dimensionality reduction methods, that allows one to effectively summarise multi-dimensional data in  
to 2 or 3 dimensions to enable visualisation. Very generally, the original continuous multi-dimensional data is 
transformed into a set of orthogonal components ordered according to the amount of variability that they describe.  
The plot2D and plot3D functions in pRoloc allows one to plot the principal components (PCs) of a dataset against 
one another. By default, the first two components are plotted on the x- and y-axis for the plot2D function, and  
first three components are loaded for the plot3D function, respectively (the dims argument can be used to plot 
other PCs). If distinct clusters are observed, we assume that there is organellar separation present in the data.  
Although, representing the multi-dimensional data along a limited set of PCs does not give us a hard quantita-
tive measure of separation, it is extremely useful summarising complex experimental information in one figure, to  
get a simplified overview of the data.

In the code chunk below we produce a 2-dimensional PCA plot of the mouse stem cell dataset (Figure 5). Each point 
on the plot represents one protein. We can indeed see several distinct protein clusters. We specify fcol = NULL 
to ignore feature metadata columns and not annotate any feature (protein) with a colour. We will see later how to  
use this argument to annotate the PCA plot with prior information about sub-cellular localisation.

library("pRoloc")
plot2D(hl, fcol = NULL, col = "black")
plot2D(hl, method = "hexbin")

Figure 5. PCA plot of the mouse stem cell data hl. Each dot represents a single protein, and cluster of proteins 
represent proteins residing in the same sub-cellular niche. The figure on the right bins proteins and represent the bins 
density to highlight the presence of protein clusters.
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In the first instance we advise one to visualise their data without any annotation (i.e. with fcol = NULL), before 
proceeding with data annotation. The identification of well resolved clusters in the data, constitutes an unbiased  
assessment of the data structure, demonstrating the successful separation of sub-cellular clusters.

It is also useful to visualise the relative intensities along the gradient to identify channels displaying particularly 
low yield. This can be done using the plotDist and boxplot functions, that plot the protein profiles occupancy  
along the gradient (we also display the mean channel intensities below) and a boxplot of the column intensities.  
In the two plots displayed on Figure 6, we re-order the TMT channels to pair corresponding channels in the  
two replicates (rather than ordering the channels by replicate).

par(mfrow = c(1, 2), ## creates a two-panel figure
    las = 2,         ## axis labels orientation
    cex.axis = .7)   ## axis label size
o <- order(hl$Iodixonal.Density)
plotDist(hl[, o], pcol = "#00000010", xlab = "")
lines(colMeans(exprs(hl[, o])), col = "red", type = "b")
boxplot(exprs(hl[, o]))

Figure 6. Protein profiles and distribution of channel intensities. The red dots represent the mean relative intensity 
for each channel.

Markers
In the context of spatial proteomics, a marker protein is defined as a well-known resident of a specific sub-cellular 
niche in a species and condition of interest. Applying this to machine learning (ML), and specifically supervised learn-
ing for the task of protein localisation prediction, these markers constitute the labelled training data to use as input 
to a classification analyses. Defining well-known residents, and obtaining labelled training data for ML analyses can 
be time consuming, but it is important to define markers that are representative of the multivariate data space and on 
which a classifier will be trained and generated. pRoloc provides a convenience function, addMarkers, to directly 
add markers to an MSnSet object, as demonstrated in the code chunk below. These marker sets can be accessed using 
the pRolocmarkers() function. Marker sets are stored as a simple named vector in R, and originate from in-house 
user-defined sets of markers or from previous published studies15, which are continuosly updated and integrated.

## List available marker sets
pRolocmarkers()

## 7 marker lists available:
## Arabidopsis thaliana [atha]:
##  Ids: TAIR, 543 markers
## Drosophila melanogaster [dmel]:
##  Ids: Uniprot, 179 markers
## Gallus gallus [ggal]:
##  Ids: IPI, 102 markers
## Homo sapiens [hsap]:
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##  Ids: Uniprot, 872 markers
## Mus musculus [mmus]:
##  Ids: Uniprot, 937 markers
## Saccharomyces cerevisiae [scer_sgd]:
##  Ids: SGD, 259 markers
## Saccharomyces cerevisiae [scer_uniprot]:
##  Ids: Uniprot Accession, 259 markers

These markers can then be mapped to an MSnSet’s featureNames. The mouse dataset used here has  
Uniprot IDs stored as the featureNames (see head(featureNames(hl))) and the names of the vector  
of the mouse markers stored in pRoloc (mmus markers) are also Uniprot IDs (see head(mrk) in the code  
chunk below, that displays the 6 first markers), so it is straightforward to match names between the markers and the 
MSnSet instance using the addMarkers function.

## Use mouse markers
mrk <- pRolocmarkers(species = "mmus")
head(mrk)

##                 P26039                   Q6PB66                  P11276
##   "Actin cytoskeleton"          "Mitochondrion"  "Extracellular matrix"
##                 Q6PR54                   Q05793                  P19096
##  "Nucleus - Chromatin"   "Extracellular matrix"               "Cytosol"

## Add mouse markers
hl <- addMarkers(hl, mrk)

## Markers in data:  937 out of 5032

## organelleMarkers
##            40S Ribosome           60S Ribosome      Actin cytoskeleton
##                      27                     43                      13
##                 Cytosol  Endoplasmic reticulum                Endosome
##                      43                     95                      12
##    Extracellular matrix        Golgi apparatus                Lysosome
##                      10                     27                      33
##           Mitochondrion    Nucleus - Chromatin Nucleus - Non-chromatin
##                     383                     64                      85
##              Peroxisome        Plasma membrane              Proteasome
##                      17                     51                      34
##                 unknown
##                    4095

We recommend at least 13 markers per sub-cellular class (see the Optimisation section for details about the algo-
rithmic motivation of this number). Markers should be chosen to confidently represent the distribution of genuine 
residents of a sub-cellular niche. We generally recommend a conservative approach in defining markers to avoid false  
assignments when assigning sub-cellular localisation of proteins of unknown localisation. A more relaxed definition 
of markers, i.e. one that broadly or over-confidently defines markers, risks the erroneous assignment of proteins to 
a single location, when, in reality, they reside in multiple locations (including the assumed unique location). One  
can not expect to identify exact boundaries between sub-cellular classes through marker annotation alone; the  
definition of these boundaries is better handled algorithmically, i.e. after application of the supervised learning  
algorithm, using the prediction scores (as described in the Classification section, in particular Figure 16).

If the protein naming between the marker sets and the MSnSet dataset are different e.g. the markers are labelled by 
Uniprot accession numbers and the dataset entries are labelled by Uniprot entry names, one will have to convert and 
match the proteins according to the appropriate identifier. Sometimes, we find the equivalent entry name, Uniprot ID 
or accession number is stored in the feature metadata, which makes conversion between identifers relatively straight-
forward. If this is not the case however, conversion can be performed using biomaRt, the Bioconductor annotation 
resources or any conversion softwares available online.

Adding user-defined marker lists
It is also possible for users to use their own marker list with the addMarkers function. The user needs to create a 
named vector of marker localisation, or a create a csv file with two columns (one for the protein names, one for the cor-
responding sub-cellular marker annotation) and pass the vector or file name respectively to the function. As previously 
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mentioned, the protein names of these markers must match some (but not necessarily all) of the MSnSet’s feature 
names. See ?addMarkers for more details.

In general, the Gene Ontology (GO)17, and in particular the cellular compartment (CC) namespace are a good starting 
point for protein annotation and marker definition. It is important to note however that automatic retrieval of sub- 
cellular localisation information, from pRoloc or elsewhere, is only the beginning in defining a marker set for 
downstream analyses. Expert curation is vital to check that any annotation added is in the correct context for the 
biological question under investigation.

Visualising markers
Having added the mouse markers to our fData from the pRolocmarkers, we can now visualise these  
annotations on the PCA plot using the plot2D function and then use the addLegend function to map the marker 
classes to the pre-defined colours. As previously mentioned, PCA transforms the original high dimensional data  
into a set of linearly uncorrelated principal components (PCs) such that the first accounts for as much variability  
in the data as possible and each succeeding component in turn has the highest variance possible under the con-
straint that it be orthogonal to the preceding components. We saw in the previous section how visualisation of 
the PCs is useful for quality control and checking organelle seperation. Adding marker definiton allows one to 
quickly see if known residents appear in defined clusters. One must be careful though as different organelles may 
be resolved in different dimensions. For example, we can display the data along the first and seventh PCs using  
the dims argument. Note that in these calls to the plot2D function, we have omitted the fcol argument and  
so by default the feature variable named "markers" is used to annotate the plot. We choose to display PCs 1 and  
7 to illustrate that while upper principal components explain much less variability in the data (2.23% for PC7,  
as opposed to 48.41% for PC1), we see that the mitochondrial (purple) and peroxisome (dark blue) clusters can  
be differentiated, despite the apparent overlap in the visualisation of the two first PCs (Figure 7).

par(mfrow = c(1, 2))
plot2D(hl, main = "pRolocmarkers for mouse")
addLegend(hl, cex = .6)
plot2D(hl, dims = c(1, 7), main = "Marker resolution along PC 1 and 7")

Figure 7. Annotated PCA plots of the hl dataset, as produced with plot2D.
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This is further highlighted if we plot the profiles of these two clusters using the plotDist function (Figure 8).  
The plotDist function is another useful visualisation that relies on marker annotation. It allows one to  
represent the protein profiles occupancy along the gradient. While the PCA plot enables efficient visualisation  
of the complete dataset and assessment the relative separation of different sub-cellular niches, compar-
ing profiles of a few marker clusters is useful to assess how exactly they differ (in terms of peak channels, 
for example). On Figure 8, we plot the profiles of the mitochondrial and peroxisome markers to highlight the  
differences in the channels labelled with tag 129C, also represented above along the 7th PC on the PCA plot  
on Figure 7.
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hlo <- hl[, order(hl$Iodixonal.Density)]
plotDist(hlo[fData(hlo)$markers == "Mitochondrion", ],
         pcol = "purple", fractions = "Tag")
title(main = "Marker occupancy profiles along the gradient")
matlines(t(exprs(hlo[fData(hlo)$markers == "Peroxisome", ])),
         lty = 1, col  = "darkblue", type = "l")
legend("topleft", c("Mitochondrion", "Peroxisome"),
       lty = 1, col = c("purple", "blue"), bty = "n")

Figure 9. Using the plot3D function to visualise the hl dataset along PCs 1, 2 and 7.

Figure 8. Mitochondrion and peroxisome protein profiles.

The data can also be visualised along three PCs using the plot3D function (Figure 9). When produced interactively, 
the plot can be rotated and zoomed using the mouse.

plot3D(hl, dims = c(1, 2, 7))
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The default colours for plotting have been defined so as to enable the differentiation of up to 30 classes. If more are 
provided, different character symbols (circles, squares, ... and empty and solid symbols) are used. The colours and the 
default plotting characters (solid dots for the markers and empty circles for the features of unknown localisation) can 
of course be changed, as described in the setStockcol manual page.

As demonstrated in 2 and illustrated in the PCA plot (Figure 7), the Golgi apparatus proteins (dark brown) display 
a dynamic pattern, noting sets of Golgi marker proteins that are distributed amongst other subcellular structures, an 
observation supported by microscopy. As such, we are going to reset the annotation of Golgi markers to unknown 
using the fDataToUnknown function. It is often used to replace empty strings (" ") or missing values in the markers 
definition to a common definition of unknown localisation.

hl <- fDataToUnknown(hl, from = "Golgi apparatus", to = "unknown")
getMarkers(hl)

## organelleMarkers
##            40S Ribosome            60S Ribosome      Actin cytoskeleton
##                      27                      43                      13
##                 Cytosol   Endoplasmic reticulum                Endosome
##                      43                      95                      12
##    Extracellular matrix                Lysosome           Mitochondrion
##                      10                      33                     383
##     Nucleus - Chromatin Nucleus - Non-chromatin              Peroxisome
##                      64                      85                      17
##         Plasma membrane              Proteasome                 unknown
##                      51                      34                    4122

Features of interest
In addition to adding annotation using the addMarkers function, one can store specific sets of proteins by using 
the Features of interest infrastructure from the MSnbase package. If users have specific subsets of proteins they wish 
to highlight in their data (possibly across multiple experiments) they would first create a FeaturesOfInterest 
object and then use the highlightOnPlot function to visualise these. For example, if we wanted to highlight pro-
teins with the accession numbers Q8CG48, Q8CG47, Q8K2Z4, and Q8C156, which are some of the proteins known  
to form part of the 13S condensin complex, we would call the code displayed on Figure 10. Users can also  
create several sets of FeaturesOfInterest object and store them in a FoICollection. 

prots <- c("Q8CG48", "Q8CG47", "Q8K2Z4", "Q8C156")

foi13s <- FeaturesOfInterest(description = "13S consensin proteins",

                             fnames = prots,

                             object = hl)

foi13s

## Traceable object of class "FeaturesOfInterest"
##  Created on Tue May 22 16:07:42 2018
##  Description:
##   13S consensin proteins
##  4 features of interest:
##    Q8CG48, Q8CG47, Q8K2Z4, Q8C156

plot2D(hl)

addLegend(hl, cex = .6)

highlightOnPlot(hl, foi13s)
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Figure 10. Highlighting protein features of interest.
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It is also worthy of note that it is possible to search for a specific protein of interest by featureNames or 
using any identifying information found in the fData columns by using the search box on the pRolocVis  
application part of the pRolocGUI package (see section on interactive visualisation). This can be handy for  
quickly searching and highlighting proteins on the fly, the disavanatge here is that proteins can only be searched  
for a one-by-one basis.

Replication
With the aim of maximising the sub-cellular resolution and, consequently, the reliability in protein sub-cellular assign-
ments, we follow the advice in 12 and combine replicated spatial proteomics experiments as described above. Indeed, 
Trotter et al. have shown a significant improvement in protein–organelle association upon direct combination of single 
experiments, in particular when these resolve different subcellular niches.

Direct comparisons of individual channels in replicated experiments do not provide an adequate, goal-driven assess-
ment of different experiments. Indeed, due to the nature of the experiment and gradient fraction collection, the quantita-
tive channels do not correspond to identical selected fractions along the gradient. For example, in Table 1 below (taken 
from hl’s pData) TMT channels 127C (among others) in both replicates originate from different sets of gradient 
fractions (gradient fractions 7 – 9 and 8 – 9 for each replicate, respectively). Different sets of gradient fractions are often 
pooled to obtain enough material and optimise acurate quantitation.

Table 1. Differences in gradient fraction pooling.

Replicate Tag Gradient.Fraction Iodixonal.Density

X127C 1 127C 8 to 9 (pooled) 11.00

X127C.1 2 127C 7 to 9 (pooled) 10.00

The more relevent comparison unit is not a single channel, but rather the complete protein occupancy profiles, which 
are best visualised experiment-wide on a PCA plot. As such, we prefer to focus on the direct, qualitative comparison 
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of individual replicate PCA plots (Figure 11), assuring that each displays acceptable sub-cellular resolution. Note that 
in the code chunk below, we mirror the x-axis to represent the two figures with the same orientation. The interactive 
“compare” application part of the pRolocGUI package is also useful for examining replicate experiments (see the next 
section Interactive visualisation for details).

par(mfrow = c(1, 2))

plot2D(hl[, hl$Replicate == 1], main = "Replicate 1")

plot2D(hl[, hl$Replicate == 2], main = "Replicate 2", mirrorX = TRUE)

Figure 11. PCA plots of replicates 1 and 2.
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In addition, the reproducibility can be assessed by performing independent classification analyses on each replicate  
(see the section on Supervised machine learning below) and comparing the the results. Even when the gradient  
conditions different (for unexpected technical or voluntary reasons, to maximise resolution when combining  
experiments12), one expects agreement in the most confident organelle assignments.

Interactive visualisation
Visualisation and data exploration is an important aspect of data analyses allowing one to shed light on data  
structure and patterns of interest. Using the pRolocGUI package, we can interactively visualise, explore and inter-
rogate quantitative spatial proteomics data. The pRolocGUI package relies on the shiny framework for reactivity  
and interactivity. It distributes 3 different GUI’s (main (default), compare or classify) which are wrapped and  
launched by the pRolocVis function.

The main application
In the below code chunk we lauch the main app (Figure 12) (note, we do not need to specify the argument, app = 
"main" as it is the default).

library("pRolocGUI")
pRolocVis(hl)
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Figure 12. A screen shot of clickable interface and zoomable PCA plot of the main app in the pRolocGUI 
package.

As diplayed in the screenshot in Figure 12, the main application is designed for exploratory data analysis and is  
divided into 3 tabs: (1) PCA, (2) Profiles and (3) Table selection. The default view upon loading is the PCA tab, 
which features a clickable interface and zoomable PCA plot with an interactive data table for displaying the quan-
titation information. Particular proteins of interest can be highlighted using the text search box. There is also a Pro-
files tab for visualisation of the protein profiles, which can be used to examine the patterns of proteins of interest.  
The Table selection tab provides an interface to control data table column selection. A short animation https://github.
com/lmsimp/bioc-pRoloc-hyperLOPIT-workflow/blob/master/Figures/pRolocVis_pca.gif illustrating the interface is 
available in the manuscript repository18.

The compare application
The compare application (Figure 13) is useful for examining two replicate experiments, or two experiments from 
different conditions, treatments etc. The compare application is called by default if the input object to pRolocVis 
is an MSnSetList of 2 MSnSets, but it can also be specified by calling the argument app = "compare". For  
example, in the code chunk below we first create an MSnSetList of replicates 1 and 2 of the hyperLOPIT data,  
this is then passed to pRolocVis.

data(hyperLOPIT2015ms3r1)
data(hyperLOPIT2015ms3r2)
hllst <- MSnSetList(list(hyperLOPIT2015ms3r1, hyperLOPIT2015ms3r2))
pRolocVis(hllst, app = "compare")
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Figure 13. The compare application, main panel.

The comparison app loads the two PCA plots side-by-side. Only common proteins between the two data sets are 
displayed. As per the main application, proteins can be searched, identified and highlighted on both PCA plots  
and in the dedicated profiles tab. One key feature of the compare application is the ability to re-map the second dataset 
onto the PCA data space of the first (reference) data set (see ?pRolocVis and the argument remap = TRUE). 
Using the first dataset as the reference set, PCA is carried out on the first dataset and the standard deviations of the 
principal components (i.e. the square roots of the eigenvalues of the covariance/correlation matrix) and the matrix of  
variable loadings (i.e. a matrix whose columns contain the eigenvectors) are stored and then used to calculate the 
principal components of the second dataset. Both datasets are scaled and centered in the usual way. The first dataset  
appears on the left, and the second re-mapped data appears on the right. The order of the first (the reference data  
for remapping) and second dataset can be changed through regeneration/re-ordering of the MSnSetList object.

The classify application
The final application classify, has been designed to view machine learning classification results according to  
user-specified thresholds for the assignment of proteins to its sub-cellular location, as discussed later in the  
subsection Thresholding in the Supervised machine learning section.

Novelty detection
The extraction of sub-cellular protein clusters can be difficult owing to the limited number of marker proteins 
that exist in databases and elsewhere. Furthermore, given the vast complexity of the cell, automatic annotation  
retrieval does not always give a full representation of the true sub-cellular diversity in the data. For downstream 
analyses, such as supervised machine learning, it is desirable to obtain reliable markers that cover as many sub-cel-
lular niches as possible, as these markers are directly used in the training phase of the ML classification. We find 
that a lack of sub-cellular diversity in the labelled training data leads to prediction errors, as unlabelled instances 
can only be assigned to a class that exists in the training data19. In such scenarios, novelty detection can be useful to  
identify data-specific sub-cellular groupings such as organelles and protein complexes. The phenotype discovery  
(phenoDisco) algorithm19 is one such method and is available in pRoloc. It is an iterative semi-supervised learning 
method that combines the classification of proteins on existing labelled data with the detection of new clusters.

In addition to extracting new phenotypes, novelty detection methods are also useful for confirming the presence of 
known or postulated clusters in an unbiased fashion. For example in 2 the phenoDisco algorithm was used to 
confirm the data-specific presence of the nucleus and nucleus sub-compartments. In the code chunk below, we 
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demonstrate how to do this analysis, highlighting some of the optional arguments and parameters available for 
phenotype extraction and give some advice on how to interpret the output.

As the phenoDisco algorithm is semi-supervised it uses both labelled (markers) and unlabelled data to  
explore the data structure and find new sub-cellular data clusters. Thus the first step is to define some input labelled 
data i.e. markers, that the algorithm will use as input for the supervised learning aspect of the algorithm. As described  
in 2 we define a set of markers to use as input for the analyses that cover well-known residents from three dis-
tinct organelle structures; the mitochondria, plasma membrane and ER, and from three well-known and abundant  
protein complexes; the proteasome and two ribosomal subunits, 40S and 60S. These input markers are stored in the 
phenoDisco.Input featureData column of hl and below set by fcol = "phenoDisco.Input". We can 
use the convenience accessor function getMarkers to print out a table of the markers contained in this marker set.  
These initial markers were manually curated using information from the UniProt database, the Gene Ontology  
and the literature.

getMarkers(hl, fcol = "phenoDisco.Input")

## organelleMarkers
##                          40S Ribosome
##                                    26
##                          60S Ribosome
##                                    43
## Endoplasmic reticulum/Golgi apparatus
##                                    76
##                         Mitochondrion
##                                   261
##                       Plasma membrane
##                                    50
##                            Proteasome
##                                    34
##                               unknown
##                                  4542

In the code chunk below we show how to run the phenoDisco function and return a novelty detection result, accord-
ing to the specified parameters. The algorithm parameters times (number of iterations) and GS (minimum number of 
proteins required to form a new phenotype) are passed to the function, along with the fcol to tell the algorithm where 
the input training data is contained.

## As per Christoforou et al (2016),
hl <- phenoDisco(hl,  fcol = "phenoDisco.Input", times = 200, GS = 60)

The above analysis is computationally intensive and best parallelised over multiple workers. This phenoDisco  
analysis took 24 hours to complete when parallelised over 40 workers. As such, in the interest of time users can  
access the above results which are pre-computed and stored along with the pRolocdata package. Please see the  
Appendix to load these results.

The argument times indicates the number of times we run unsupervied Gaussian Mixture Modelling before  
defining a new phenotype cluster. The recommended minimum and default value is 100. In the above code chunk 
we increase the value to times = 200 as we have found for larger datasets (e.g. 5000+ proteins) a higher times 
is requried for convergence. GS defines the minimum number of proteins allowed per new data cluster and thus 
heavily influences what type of new clusters are extracted. For example, if a user is interested in the detection of  
small complexes they may wish to use a small GS = 10, or GS = 20 etc. If they wish to detect larger, more abun-
dant sub-cellular niches a much higher GS would be preferable. Specifying a small GS can be more time consuming 
than using a larger GS, and there is a trade off between finding interesting small complexes and those that may not be  
of interest as we find there is a tendancy to find more noise when using a small GS compared to using a higher one.

One may also consider increasing the search space for new data clusters by increasing the value of the parameter G. 
This defines the number of GMM components to test and fit; the default is G = 1:9 (the default value in the mclust 
package20). One should note that the decreasing the GS, and increasing the values of the arguments times, G (among 
other function arguments, see ?phenoDisco) will heavily influence (increase) the total time taken to run the algo-
rithm. phenoDisco supports parallelisation and we strongly suggest you make use of a parallel processing to run 
these analyses.
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The ouput of running the phenoDisco algorithm is an MSnSet containing the new data clusters, appended  
to the featureData under the name pd. The results can be displayed by using the getMarkers function.  
We see that 5 new phenotype data clusters were found.

hl

## MSnSet (storageMode: lockedEnvironment)
## assayData: 5032 features, 20 samples
##   element names: exprs
## protocolData: none
## phenoData
##   sampleNames: X126 X127N ... X131.1 (20 total)
##   varLabels: Replicate Tag Gradient.Fraction Iodixonal.Density
##   varMetadata: labelDescription
## featureData
##   featureNames: Q9JHU4 Q9QXS1-3 ... Q9Z2R6 (5032 total)
##   fvarLabels: uniprot.accession uniprot.id ... pd (27 total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:
## - - - Processing information - - -
## Added markers from  'mrk' marker vector. Tue May 22 16:07:41 2018
## Added markers from  'pdres' marker vector. Tue May 22 16:07:42 2018
##  MSnbase version: 2.7.1

getMarkers(hl, fcol = "pd")

## organelleMarkers
##                          40S Ribosome
##                                   106
##                          60S Ribosome
##                                    95
## Endoplasmic reticulum/Golgi apparatus
##                                   393
##                         Mitochondrion
##                                   525
##                           Phenotype 1
##                                   300
##                           Phenotype 2
##                                   253
##                           Phenotype 3
##                                   203
##                           Phenotype 4
##                                    74
##                           Phenotype 5
##                                    91
##                       Plasma membrane
##                                   421
##                            Proteasome
##                                    92
##                               unknown
##                                  2479

We can plot the results using the plot2D function (Figure 14). 

## Re-order the colours for the phenoDisco output
cl <- getMarkerClasses(hl, "pd")
cols <- getStockcol()[seq(cl)]
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ind <- grep("Pheno", cl, invert = TRUE)
cols[ind] <- getStockcol()[seq(cl)][1:length(ind)]
cols[-ind] <- getStockcol()[seq(cl)][(length(ind) + 1):length(cl)]

## Plot the input and output
par(mfrow = c(1, 2))
plot2D(hl, fcol = "phenoDisco.Input",
       main = "phenoDisco input markers", col = getStockcol()[1:6])
addLegend(hl, fcol = "phenoDisco.Input", cex = .7)
plot2D(hl, fcol = "pd", main = "phenoDisco output", col = cols)
addLegend(hl, fcol = "pd", cex = .7, col = cols)

Figure 14. Results of the novelty detection algorithm.

The five new phenotype data clusters can be extracted and examined. In the code chunk below we write the results 
to a .csv file using the write.exprs function. We use the argument fDataCols to specify which columns  
of the featureData to write.

fData(hl)$pd <- as.character(fData(hl)$pd)
write.exprs(hl, fcol = "pd", file = "pd-results.csv", sep = ",")

We can also examine each phenotype interactively and visualise their protein profiles by using the pRolocVis 
function in the pRolocGUI package. We found that phenotype 1 was enriched in nucleus associated proteins,  
phenotype 2 in chromatin associated proteins, phenotype 3 in cytosolic and phenotypes 4 and 5 in both lysosomal  
and endosomal proteins.

pRolocVis(hl, fcol = "pd")

Supervised machine learning
Supervised machine learning, also known as classification, is an essential tool for the assignment of proteins to distinct 
sub-cellular niches. Using a set of labelled training examples i.e. markers, we can train a machine learning classifier to 
learn a mapping between the data i.e. the quantitative protein profiles, and a known localisation. The trained classifier 
can then be used to predict the localisation of a protein of unknown localisation, based on its observed protein profiles. 
To date, this method has been extensively used in spatial quantitative proteomics to assign thousands of proteins to 
distinct sub-cellular niches2,12,21–24.

There are several classification algorithms readily available in pRoloc, which are documented in the dedicated pRoloc 
machine learning techniques vignette. We find the general tendency to be that it is not the choice of classifier, but the 
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improper optimisation of the algorithmic parameters, that limits classification accuracy. Before employing any clas-
sification algorithm and generating a model on the training data, one must first find the optimal parameters for the 
algorithm of choice.

Optimisation
In the code chunk below we use a Support Vector Machine (SVM) to learn a classifier on the labelled training data. 
As previously mentioned, one first needs to train the classifier’s parameters before an algorithm can be used to predict 
the class labels of the proteins with unknown location. One of the most common ways to optimise the parameters of 
a classifier is to partition the labelled data into training and testing subsets. In this framework parameters are tested 
via a grid search using cross-validation on the training partition. The best parameters chosen from the cross-validation 
stage are then used to build a classifier to predict the class labels of the protein profiles on the test partition. Observed 
and expected classication results can be compared, and then used to assess how well a given model works by getting 
an estimate of the classifiers ability to achieve a good generalisation i.e. that is given an unknown example predict 
its class label with high accuracy. In pRoloc, algorithmic performance is estimated using stratified 80/20 partitioning 
for the training/testing subsets respectively, in conjuction with five-fold cross-validation in order to optimise the free  
parameters via a grid search. This procedure is usually repeated 100 times and then the best parameter(s) are selected 
upon investigation of classifier accuracy. We recommend a minimum of 13 markers per sub-cellular class for  
stratified 80/20 partitioning and 5-fold cross-validation; this allows a minimum of 10 examples for parameter opti-
misation on the training partition i.e. 2 per fold for 5-fold cross-validation, and then 3 for testing the best parameters  
on the validation set.

Classifier accuracy is estimated using the macro F1 score, i.e. the harmonic mean of precision and recall. In the 
code chunk below we demonstrate how to optimise the free parameters, sigma (the inverse kernel width for the  
radial basis kernel) and cost (the cost of constraints violation), of a classical SVM classifier with a Gaussian  
kernel using the function svmOptimisation. As the number of labelled instances per class varies from  
organelle to organelle, we can account for class imbalance by setting specific class weights when generating the  
SVM model. Below the weights, w are set to be inversely proportional to the class frequencies.

w <- table(getMarkers(hl, verbose = TRUE))

## organelleMarkers
##            40S Ribosome            60S Ribosome   Actin cytoskeleton
##                      27                      43                   13
##                 Cytosol   Endoplasmic reticulum             Endosome
##                      43                      95                   12
##    Extracellular matrix                Lysosome        Mitochondrion
##                      10                      33                  383
##     Nucleus - Chromatin Nucleus - Non-chromatin           Peroxisome
##                      64                      85                   17
##         Plasma membrane              Proteasome              unknown
##                      51                    34                   4122

w <- 1/w[names(w) != "unknown"]

In the code chunk below we then pass these weights to the svmOptimisation function. Once again, we provide  
the optimisation results for users to load directly if they wish to save computational time (see the Appendix for 
details).

## 100 rounds of optimisation with five-fold cross-validation
params <- svmOptimisation(hl,  fcol = "markers",
                          times = 100, xval = 5,
                          class.weights = w)

As mentioned previously, we rely on the default feature variable "markers" to define the class labels and hence 
do not need to specify it in the above code chunk. To use another feature variables, one needs to explicitly specify its  
name using the fcol argument (for example fcol = "markers2").

The output params is an object of class GenRegRes; a dedicated container for the storage of the design and 
results from a machine learning optimisation. To assess classifier performance we can examine the macro F1 scores 
and the most frequently chosen parameters. A high macro F1 score indicates that the marker proteins in the test  
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dataset are consistently and correctly assigned by the the algorithm. Often more than one parameter or set of parameters 
gives rise to the best generalisation accuracy. As such it is always important to investigate the model parameters and 
critically assess the best choice. The f1Count function counts the number of parameter occurences above a certain 
F1 value. The best choice may not be as simple as the parameter set that gives rise to the highest macro F1 score.  
One must be careful to avoid overfitting, and choose parameters that frequently provide high classification accu-
racy. Below, we see that only a sigma of 0.1 produces macro F1 scores above 0.6, but that a cost of 16 is much  
more frequently chosen than lower values.

f1Count(params, 0.6)

##     4  8 16
## 0.1 1 10 89

The parameter optimistion results can also be visualised as a boxplot or heatmap, as shown in Figure 15. The plot 
method for GenRegRes object shows the respective distributions of the 100 macro F1 scores for the best cost/sigma 
parameter pairs, and levelPlot shows the averaged macro F1 scores, for the full range of parameter values. These 
figures also indicate that values of 0.1 and 16 for sigma and cost consistently deliver better classification scores.

plot(params)
levelPlot(params)

Figure 15. Assessment of the classification model parameter optimisation.

By using the function getParams we can extract the best set of parameters. Currently, getParams retrieves the 
first best set automatically, but users are encouraged to critically assess whether this is the most wise choice (which it 
is, as demonstrated above).

(best <- getParams(params))

## sigma cost
##   0.1 16.0

Once we have selected the best parameters we can then use them to build a classifier from the labelled marker 
proteins.
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Classification
We can use the function svmClassification to return a classification result for all unlabelled instances in the 
dataset corresponding to their most likely sub-cellular location. The algorithm parameters are passed to the function, 
along with the class weights. As above, the fcol argument does not need to be specified as we use the labels defined 
in the default "markers" feature variable.

hl <- svmClassification(hl, params, class.weights = w, fcol = "markers")

In the code chunk above, we pass the whole params parameter results and, internally, the first pair that return the high-
est F1 score are returned (using the getParams function above). It is advised to always check that these are actually 
good parameters and, if necessary, set them explicitly, as shown below.

hl <- svmClassification(hl, cost = 16, sigma = 0.1, class.weights = w, fcol = "markers")

Automatically, the output of the above classification, the organelle predictions and assignment scores, are stored in the 
featureData slot of the MSnSet. In this case, they are given the labels svm and svm.scores for the predictions 
and scores respectively. The resultant predictions can be visualised using plot2D. In the code chunk below plot2D 
is called to generate a PCA plot of the data and fcol is used to specify where the new assignments are located 
e.g. fcol = "svm".

Additionally, when calling plot2D we can use the cex argument to change the size of each point on the plot  
to be proportional to the SVM score (Figure 16). This gives an initial overview of the high scoring localisations  
from the SVM predictions.

## set point size of each protein to be proportional to the svm score
ptsze <- exp(fData(hl)$svm.scores) - 1
## plot new predictions
plot2D(hl, fcol = "svm", cex = ptsze)
addLegend(hl, fcol = "svm", where = "bottomleft", bty = "n", cex = .5)

Figure 16. Classification results. Colours indicate class membership and point size are representative of the 
classification confidence.
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The adjustment of the point size intuitively confers important information that is more difficult to define formally  
(that we will address in the next section). The classifier (SVM in our case, but this is also valid of other  
classifiers) defines boundaries based on the labelled marker proteins. These class/organelle boundaries define how  
non-assigned proteins are classified and with what confidence.

Thresholding
It is common when applying a supervised classification algorithm to set a specific score cutoff on which to  
define new assignments, below which classifications are kept unknown/unassigned. This is important as in a super-
vised learning setup, proteins can only be predicted to be localised to one of the sub-cellular niches that appear in 
the labelled training data. We can not guarantee (and do not expect) that the whole sub-cellular diversity is repre-
sented in the labelled training data as (1) finding markers that represent the whole diversity of the cell is challenging  
(especially obtaining dual- and multiply-localised protein markers) and (2) many sub-cellular niches contain  
too few proteins to train on (see above for a motivation of a minimum of 13 markers).

Deciding on a threshold is not trivial as classifier scores are heavily dependent upon the classifier used and differ-
ent sub-cellular niches can exhibit different score distributions, as highlighted in the boxplot below. We recommend  
users to set class-specific thresholds. In the code chunk below we display a boxplot of the score distributions per 
organelle (Figure 17).

## First remove the markers
preds <- unknownMSnSet(hl)
## Plot a boxplot of the scores of each organelle
par(oma = c(10.5, 0, 0, 0)) ## sets outer margins
boxplot(svm.scores ~ svm, data = fData(preds),
        ylab = "SVM scores", las = 2)

Figure 17. Visualistion of class-specific classification score distribution.

There are many ways to set thresholds and the choice of method will depend on the biological question and  
experimental design at hand. One viable approach in the frame of the above experimetal design would be to manually 
set a FDR, say 5%, per organelle. To do this the user would examine the top scoring predictions for each organelle, 
and then set a threshold at the score at which they achieve 5% of false assignments per organelle. The definin-
tion of a false assignment would depend on the information available, for example, validity or lack of validity for  
the localisation from another experiment as reported in the literature or a reliable database. If such information is 
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not available, one crude method is to set a threshold per organelle by extracting the median or 3rd quantile score 
per organelle. For example, in the code chunk below, we use the orgQuants function to extract the median  
organelle scores and then pass these scores to the getPredictions function to extract the new localisations 
that meet this scoring criteria. Any sub-cellular predictions that fall below the specified thresholds are labelled as 
unknown.

(ts <- orgQuants(hl, fcol = "svm", scol = "svm.scores", mcol = "markers", t = .5))

##            40S Ribosome            60S Ribosome     Actin cytoskeleton
##               0.4343633               0.3047074              0.3832276
##                 Cytosol   Endoplasmic reticulum               Endosome
##               0.6910080               0.6085463              0.4233563
##    Extracellular matrix                Lysosome          Mitochondrion
##               0.4220800               0.5889173              0.9497770
##     Nucleus - Chromatin Nucleus - Non-chromatin             Peroxisome
##               0.7936060               0.7103170              0.3143802
##         Plasma membrane              Proteasome
##               0.7159213               0.4144325
##            40S Ribosome            60S Ribosome     Actin cytoskeleton
##               0.4343633               0.3047074              0.3832276
##                 Cytosol   Endoplasmic reticulum               Endosome
##               0.6910080               0.6085463              0.4233563
##    Extracellular matrix                Lysosome          Mitochondrion
##               0.4220800               0.5889173              0.9497770
##     Nucleus - Chromatin Nucleus - Non-chromatin             Peroxisome
##               0.7936060               0.7103170              0.3143802
##         Plasma membrane              Proteasome
##               0.7159213               0.4144325

hl <- getPredictions(hl, fcol = "svm", scol = "svm.scores", mcol = "markers", t = ts)

## ans
##            40S Ribosome            60S Ribosome     Actin cytoskeleton
##                      84                     172                     85
##                 Cytosol   Endoplasmic reticulum               Endosome
##                     296                     476                    103
##    Extracellular matrix                Lysosome          Mitochondrion
##                      25                     124                    522
##     Nucleus - Chromatin Nucleus - Non-chromatin             Peroxisome
##                     230                     342                     38
##         Plasma membrane              Proteasome                unknown
##                     320                     157                   2058

The organelle threshold (ts above) can also be set manually using an interactive app (see below) or by using a named 
vector of thresholds, as shown in the putative example below for 4 organelles.

(ts <- setNames(c(0.612, 0.701, 0.81, 0.92), c("PM", "Mito", "Golgi", "ER")))

##    PM  Mito Golgi    ER
## 0.612 0.701 0.810 0.920

The output of getPredictons is the original MSnSet dataset with a new feature variable appended to the  
feature data called fcol.pred (i.e. in our case svm.pred) containing the prediction results. The results can  
also be visualised using plot2D function (Figure 18) and extracted by retrieving that specific column from the  
feature metadata using, for example, fData(hl)$svm.pred.

plot2D(hl, fcol = "svm.pred")
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Figure 19. The classify application enable the interactive exploration of classification score thresholding.

Figure 18. Results of the localisation preductions after thresholding.
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library("pRolocGUI")
pRolocVis(hl, app = "classify", fcol = "svm", scol = "svm.scores", mcol = "markers")
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There is also a dedicated interactive application to help users examine these distributions in the pRolocGUI  
package (Figure 19). This app can be launched via the pRolocVis function and specifying the argument  
app = "classify" along with the relevent fcol, scol and mcol which refer to the columns in the feature data 
that contain the new assignments, assignment scores and markers respectively (see also fvarLabels(svmres)).

The data is loaded and displayed on a PCA plot and a boxplot is used to display the classifier scores by data class. 
On the left, there is a sidebar panel with sliders to control the thresholds upon which classifications are made. There 
are two types of cut-off that the user can choose from: (1) Quantile and (2) User-defined. By default, when the appli-
cation is launched quantile scoring is selected and set to 0.5, the median. The class-specific score thresholds that  
correspond to selecting the desired quantile are shown as red dots on the boxplot. The assignments on the PCA plot 
are also updated according to the selected threshold. The quantile threshold can be set by moving the correspond-
ing quantile slider. If the users wishes to set their own cut-offs, the User-defined radio button must be selected and  
then the sliders for defining user-specified scores become active and the scores are highlighted on the boxplot  
by blue dots. For more information we refer users to the pRolocGUI tutorial vignette.

Transfer learning
In addition to high quality MS-based quantitative proteomics data, there exist a number of other sources of infor-
mation that are freely available in the public domain that may be useful to assign a protein to its sub-cellular  
niche. For example, imaging from immunofluorescence microscopy, protein annotations and sequences, and  
protein-protein interactions among others, represent a rich and vast source of complementary information. We can 
integrate this auxiliary information with our primary MS-based quantitative data using a paradigm known as transfer 
learning (TL). The integration of data between different technologies is one of the biggest challenges in computa-
tional biology to date and the pRoloc package provides functionality to do such analyses. We recently developed two  
transfer learning algorithms using a k-NN and SVM framework and applied them to the task of protein localisation  
prediction25. In this section we will begin with explaining the concept of transfer learning and then show how  
to apply this in the frame of spatial proteomics and protein localisation prediction.

In TL one typically has a primary task that one wishes to solve, and some complementary (often heterogeneous)  
auxiliary information that is related to the primary learning objective, that can be used to help solve the primary 
goal. For example, here our primary task is to assign proteins to their sub-cellular niche with high generalisation  
accuracy from data collected from quantitative MS-based experiments. We have already seen that straightfor-
ward supervised ML works well for these types of experiments, however, Transfer learning is particularly useful  
for classes that are not as well separated. 

In the example below we extract Gene Ontology (GO) information to use as an auxiliary data source to help solve  
our task of protein localisation prediction.

Using the functions setAnnotationParams and makeGoSet we can contruct an auxiliary MSnSet of GO 
terms, from the primary data’s features i.e. the protein accession numbers. All the GO terms associated to each acces-
sion number are retrieved and used to create a binary matrix where a 1 (0) at position (i, j) indicates that term j has 
(not) been used to annotate protein i. The GO terms are retrieved from an appropriate repository using the biomaRt 
package. The specific Biomart repository and query will depend on the species under study and the type of identifi-
ers. The first step is to construct the annotation parameters that will enable to perform the query, which is done using 
setAnnotationParams. Typing into the R console par <- setAnnotationParams() will present two 
menus, firstly asking you to identify the species of study, and then what type of identifier you have used to annotate 
the proteins in your MSnSet. It is also possible to pass arbitrary text to match the species e.g. in the code chunk 
below we pass "Mus musculus", and the identifier type for our data (see featureNames(hl)) which is 
"Uniprot/Swissprot", for the Biomart query.

par <- setAnnotationParams(inputs = c("Mus musculus", "UniProt/Swissprot"))

Now we have contructed the query parameters we can use the makeGoSet function to retrieve and build an  
auxiliary GO MSnSet as described above. By default, the cellular component terms are downloaded, without any  
filtering on evidence codes. It is also possible to download terms from the molecular function and biological  
process GO namespaces, and also apply filtering based on evidence codes as desired, see ?makeGoSet for more 
details. (We also provide the pre-computed gocc object for users if they wish to load directly, please see the  
Appendix).

gocc <- makeGoSet(hl, params = par, namespace = "cellular_component")

The function makeGoSet uses the biomaRt package to query the relevent database (e.g. Ensembl, Uniprot) for GO 
terms. All GO terms that have been observed for the 5032 proteins in the hyperLOPIT dataset are retrieved. Users 
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should note that the number of GO terms used is also dependent on the database version queried and thus is always 
subject to change. We find it is common to see GO terms with only one protein assigned to that term. Such terms  
do not bring any information for building the classifier and are thus removed using the filterBinMSnSet  
function.

gocc <- filterBinMSnSet(hl)

Now that we have generated our auxiliary data, we can use the k-NN implementation of transfer learning available  
in pRoloc to integrate this with our primary MS-based quantitative proteomics data using the functions  
knntlOptimisation to estimate the free-parameters for the integration, and knntlClassification to do  
the predictions. We have shown that using transfer learning results in the assignment of proteins to sub-cellular 
niches with a higher generalisation accuracy than using standard supervised machine learning with a single source of  
information25.

TL optimisation
The first step, as with any machine learning algorithm, is to optimise any free paramaters of the classifier. For the k-NN 
TL classifier there are two sets of parameters that need optimising: the first set are the k’s for the primary and auxiliary 
data sources required for the nearest neighbour calculations for each data source. The second set of parameters (noted 
by a vector of θ weights) that require optimising are the class weights, one per subcellular niche, that control the 
proportion of primary and auxiliary data to use for learning. A weight can take any real value number between 0 and 1.  
A weight of θ = 1 indicates that all weight is given to the primary data (and this implicitly implies that a weight of 
1 − θ = 0 is given to the auxiliary data), and similarly a weight of θ = 0 implies that all weight is given to the auxiliary 
data (so 0 is given to the primary source). If we conduct a parameter search and test weights θ = 0, 1/3, 2/3, 1 for each 
class, and if we have, for example 10 subcellular niches, this will result in 410 different combinations of parameters to 
test. The parameter optimisation is therefore time consuming and as such we recommend making use of a computing 
cluster (code and submissing scripts are also available in the supporting information). The markers in the hl dataset 
contain 14 subcellular classes. If we examine these markers and classes on the PCA plot above we can see that in 
particular the two ribosomes and two nuclear compartments are highly separated along the first two components, this 
is also evident from the profiles plot which gives us a good indication that these subcellular niches are well-resolved 
in the hyperLOPIT dataset. Transfer learning is particularly useful for classes that are not as well separated. We find 
that subcellular niches that are well-separated under hyperLOPIT and LOPIT obtain a class score of 1 (i.e. use only  
primary data from transfer learning25). Therefore, for the optimisation stage of the analyses we can already  
infer a subcellular class weight of 1 for these niches and only optimise over the remaining organelles. This can  
significantly cut down optimisation time as by removing these 4 classes from the optimisation (and not the  
classification) we only have 410 class weight combinations to consider instead of 414 combinations.

In the example below we first remove these 4 classes from the marker set and create a new marker set called  
tlmarkers. Then we re-run the knnOptimisation for each data source and then run the knntlOptimisa-
tion with the 10 remaining classes. (Note: this is not run live as the hl dataset with 10 classes, 707 markers and  
410 combinations of parameters takes around 76 hours to run on the University of Cambridge HPC using  
256 workers. To save time for users, the results of the following optimisation are pre-computed and provided with  
the pRolocdata package. Please see the Appendix for details on how to load these directly.

## create new markers column for tl markers
fData(hl)$tlmarkers <- fData(hl)$markers
fData(gocc)$tlmarkers <- fData(gocc)$markers

## Remove 4 classes
torm  <- c("40S Ribosome", "60S Ribosome",
           "Nucleus - Chromatin",
           "Nucleus - Non-chromatin")
for (i in seq(torm)) {
  hl <- fDataToUnknown(hl, from = torm[i], fcol = "tlmarkers")
  gocc <- fDataToUnknown(gocc, from = torm[i], fcol = "tlmarkers")
}
getMarkerClasses(hl, fcol = "tlmarkers")

##  [1] "Actin cytoskeleton"    "Cytosol"
##  [3] "Endoplasmic reticulum" "Endosome"
##  [5] "Extracellular matrix"  "Lysosome"
##  [7] "Mitochondrion"         "Peroxisome"
##  [9] "Plasma membrane"       "Proteasome"
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getMarkerClasses(gocc, fcol = "tlmarkers")

##  [1] "Actin cytoskeleton"    "Cytosol"
##  [3] "Endoplasmic reticulum" "Endosome"
##  [5] "Extracellular matrix"  "Lysosome"
##  [7] "Mitochondrion"         "Peroxisome"
##  [9] "Plasma membrane"       "Proteasome"

TL optimisation stage 1   Run knnOptimisation to get the best k’s for each data source.

## get best k’s
kpopt <- knnOptimisation(hl, fcol = "tlmarkers")
kaopt <- knnOptimisation(gocc, fcol = "tlmarkers")

From examining the parameter search plots as described in section Optimisation, we find the best k’s for both the  
primary and auxiliary are 3.

TL optimisation stage 2   Run knntlOptimisation to get the best transfer learning weights for each sub-cellular 
class.

## Set appropriate parallelisation backend and
## number of workers for the tl
par <- SnowParam(255L, type = "MPI")

## Now peform tl optimisation
tlopt <- knntlOptimisation(hl, gocc, fcol = "tlmarkers",
                           length.out = 4, times = 50,
                           xval = 5, k = c(3, 3),
                           BPPARAM = par)

The results of the optimisation can be visualised using the plot method for tlopt optimisation result (shown in 
Figure 20):

plot(tlopt)

Figure 20. Visualisation of the transfer learning parameter optimisation procedure. Each row displays the frequency 
of observed weights (along the columns) for a specific sub-cellular class, with large dots representing higher observation 
frequencies.
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TL classification
Looking at the bubble plot displaying the distribution of best weights over the 50 runs we find that for many of the 
subcellular niches a weight of 1 is most popular (i.e. use only primary hyperLOPIT data in classification), this is 
unsuprising as we already know the dataset is well resolved for these classes. We see that the most popular weights 
for the proteasome and lysosome tend to be towards 0, indicating that these niches are well-resolved in the Gene  
Ontology. This tells us that we would benefit from including auxiliary GO information in our classifier for these  
subcellular compartments. The plasma membrane weights are relatively equally spread between using hyperLOPIT 
and GO data. Using the getParams function we can return the best weights and then use this as input for the  
classification.

One of the benefits of the algorithm is the ability to manually select weights for each class. In the optimisation above, 
for time constraints, we removed the two ribosomal subunits and the two nuclear compartments, and therefore in the 
code chunk below when we extract the best parameters, these subcellular niches are not included. To include these 4 
subcellular niches in the next classification step we must include them in the parameters. We define a weight of 1 for 
each of these niches, as we know they are well resolved in hyperLOPIT. We then re-order the weights according to 
getMarkerClasses and perform the classification using the function knntlClassification.

## best parameters for the 10 classes
(bestpar <- getParams(tlopt))

##    Actin cytoskeleton               Cytosol  Endoplasmic reticulum
##             1.0000000             1.0000000              0.6666667
##              Endosome  Extracellular matrix               Lysosome
##             1.0000000             1.0000000              0.3333333
##         Mitochondrion            Peroxisome        Plasma membrane
##             1.0000000             1.0000000              0.6666667
##            Proteasome
##             0.3333333

## add weights for classes not included in the optimisation
otherweights <- rep(1, 4)
names(otherweights) <- c("40S Ribosome", "60S Ribosome",
                         "Nucleus - Chromatin",
                         "Nucleus - Non-chromatin")
(bestpar <- c(bestpar, otherweights))

##      Actin cytoskeleton                 Cytosol   Endoplasmic reticulum
##               1.0000000               1.0000000               0.6666667
##                Endosome    Extracellular matrix                Lysosome
##               1.0000000               1.0000000               0.3333333
##           Mitochondrion              Peroxisome         Plasma membrane
##               1.0000000               1.0000000               0.6666667
##              Proteasome            40S Ribosome            60S Ribosome
##               0.3333333               1.0000000               1.0000000
##     Nucleus - Chromatin Nucleus - Non-chromatin
##               1.0000000               1.0000000

## re-order classes
bestpar <- bestpar[getMarkerClasses(hl)]

## Do the classification
hl <- knntlClassification(hl, gocc, bestTheta = bestpar, k = c(3, 3))

The results from the classification results and associated scores are appended to the fData slot and named knntl and 
knntl.scores respectively. Results can be visualised using plot2D, scores assessed and cutoffs calculated using 
the classify app in pRolocVis, predictions obtained using getPredictions in the same way as demonstrated 
above for the SVM classifier.

In pRoloc’s transfer learning vignette, we demonstrate how to use imaging data from the Human Protein Atlas26 via the 
hpar package27 as an auxiliary data source.
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Unsupervised machine learning
In pRoloc there is functionality for unsupervsied machine learning methods. In unsupervised learning, the  
training data consists of a set of input vectors e.g. protein profiles, ignoring the information about the class label  
e.g. localisation, other than for annotation purposes. The main goal in unsupervised learning is to uncover groups of 
similar features within the data, termed clustering. Ordination methods such as principal components analysis (PCA) 
also fall into the category of unsupervised learning methods, where the data can be projected from a high-dimensional 
space down to two or three dimensions.

As described and demonstrated already above, PCA is a valuable and powerful method for data visualisation  
and quality control. Another application uses hierarchical clustering to summarise the relation between marker 
proteins using the mrkHClust function, where the euclidean distance between average class-specific profiles is  
used to produce a dendrogramme describing a simple relationship between the sub-cellular classes (Figure 21).  
The mrkHClust uses the same defaults as all other function, using the markers feature variable to define  
marker proteins. In the code chunk, we adapt the figure margins to fully display the class names.

par(mar = c(15, 4, 1, 0)) ## set figure margin
mrkHClust(hl)

Figure 21. Hierarchical clustering of the average marker profiles summarising the relation between organelles 
profiles.

We generally find supervised learning more suited to the task of protein localisation prediction in which we use 
high-quality curated marker proteins to build a classifier, instead of using an entirely unsupervised approach to look 
for clusters and then look for enrichment of organelles and complexes. In the latter we do not make good use of  
valuable prior knowledge, and in our experience unsupervised clustering can be extremely difficult due to  
(i) the loose definition of what constitutes a cluster (for example whether it is defined by the quantitative data  
or the localisation information), (ii) the influence of the algorithm assumption on the cluster identification (for  
example parametric or non-parametric) and (iii) poor estimates of the number of clusters that may appear in the data.

Writing and exporting data
An MSnSet can be exported from R using the write.exprs function. This function writes the expression values 
to a text-based spreadsheet. The fcol argument can be used to specify which featureData columns (as column 
names, column number or logical) to append to the right of the expression matrix.
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In the below code chunk we write the hl object to a csv file. The file argument is used to specify the  
file path, the sep argument specifies the field separator string, here we use a comma, finally as we want to write  
all the information in the featureData to the file, as well as the expression data, we specify fvarLabels(hl), 
that returns all feature variable names, and write the resulting data to the file "hl.csv".

write.exprs(hl, file = "hl.csv", sep = ",", fcol = fvarLabels(hl))

Exporting to a spreadsheet however loses a lot of important information, such as the processing data, and the sample 
metadata in the phenoData slot. Other objects, such as parameters from the machine learning optimisation, cannot be 
represented as tabular data. To directly serialise R objects to disk, on can use the standard save function, and later 
reload the object using load. For example, to save and then re-load the parameters from the SVM optimisation,

## To save the parameters as an R object
save(params, file = "svmparams.rda")

## To re-load after saving
load(file = "svmparams.rda")

Session information and getting help
The function sessionInfo provides a summary of all packages and versions used to generate this document. This 
enables us to record the exact state of our session that lead to these results. Conversely, if the script stops working or if 
it returns different results, we are in a position to re-generate the original results using the adequate software versions 
and retrace changes in the software that lead to failure and/or different results.

sessionInfo()

## R Under development (unstable) (2018-04-02 r74505)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.0
##
## locale:
##  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C
##  [3] LC_TIME=en_GB.UTF-8        LC_COLLATE=en_GB.UTF-8
##  [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8
##  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets
## [8] methods   base
##
## other attached packages:
##  [1] pRolocdata_1.19.0    pRoloc_1.21.0        MLInterfaces_1.61.1
##  [4] cluster_2.0.7-1      annotate_1.59.0      XML_3.98-1.11
##  [7] AnnotationDbi_1.43.1 IRanges_2.15.13      S4Vectors_0.19.5
## [10] MSnbase_2.7.1        ProtGenerics_1.13.0  BiocParallel_1.15.3
## [13] mzR_2.15.1           Rcpp_0.12.17         Biobase_2.41.0
## [16] BiocGenerics_0.27.0  xtable_1.8-2         BiocStyle_2.9.2
## [19] knitr_1.20
##
## loaded via a namespace (and not attached):
##   [1] backports_1.1.2       plyr_1.8.4            igraph_1.2.1
##   [4] lazyeval_0.2.1        splines_3.6.0         ggvis_0.4.3
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##   [7] crosstalk_1.0.0       ggplot2_2.2.1         digest_0.6.15
##  [10] foreach_1.4.4         BiocInstaller_1.31.1  htmltools_0.3.6
##  [13] viridis_0.5.1         gdata_2.18.0          magrittr_1.5
##  [16] memoise_1.1.0         doParallel_1.0.11     sfsmisc_1.1-2
##  [19] limma_3.37.1          recipes_0.1.2         gower_0.1.2
##  [22] rda_1.0.2-2           dimRed_0.1.0          lpSolve_5.6.13
##  [25] prettyunits_1.0.2     colorspace_1.3-2      blob_1.1.1
##  [28] dplyr_0.7.5           RCurl_1.95-4.10       hexbin_1.27.2
##  [31] genefilter_1.63.0      bindr_0.1.1           impute_1.55.0
##  [34] DRR_0.0.3             survival_2.42-3.1     iterators_1.0.9
##  [37] glue_1.2.0            gtable_0.2.0          ipred_0.9-6
##  [40] zlibbioc_1.27.0       ddalpha_1.3.3         kernlab_0.9-26
##  [43] prabclus_2.2-6        DEoptimR_1.0-8        abind_1.4-5
##  [46] scales_0.5.0          vsn_3.49.0            mvtnorm_1.0-7
##  [49] DBI_1.0.0             viridisLite_0.3.0     progress_1.1.2
##  [52] magic_1.5-8           foreign_0.8-70        bit_1.1-13
##  [55] proxy_0.4-22          mclust_5.4            preprocessCore_1.43.0
##  [58] lava_1.6.1            prodlim_2018.04.18    sampling_2.8
##  [61] htmlwidgets_1.2       httr_1.3.1            threejs_0.3.1
##  [64] FNN_1.1               RColorBrewer_1.1-2    fpc_2.1-11
##  [67] modeltools_0.2-21     pkgconfig_2.0.1        flexmix_2.3-14
##  [70] nnet_7.3-12           caret_6.0-79          tidyselect_0.2.4
##  [73] rlang_0.2.0           reshape2_1.4.3        later_0.7.2
##  [76] munsell_0.4.3         mlbench_2.1-1         tools_3.6.0
##  [79] msdata_0.21.0         RSQLite_2.1.1         pls_2.6-0
##  [82] broom_0.4.4           geometry_0.3-6        evaluate_0.10.1
##  [85] stringr_1.3.1         mzID_1.19.0           yaml_2.1.19
##  [88] ModelMetrics_1.1.0    bit64_0.9-7           robustbase_0.93-0
##  [91] randomForest_4.6-14   purrr_0.2.4           dendextend_1.8.0
##  [94] bindrcpp_0.2.2        nlme_3.1-137          whisker_0.3-2
##  [97] mime_0.5              RcppRoll_0.2.2        biomaRt_2.37.1
## [100] compiler_3.6.0
##  [ reached getOption("max.print") -- omitted 38 entries ]

We also recommend that users regularly update the packages as well as the R itself. This can be done with the 
biocLite function.

library("BiocInstaller")
biocLite()

It is always important to include session information details along with a short reproducible example highlighting the 
problem or question at hand.

The source of this document, including the code necessary to reproduce the analyses and figures is available in a public 
manuscript repository on GitHub18.

Data availability
The software and data presented in this workflow are part of the Bioconductor project. Version numbers for all  
packages used are shown in the Session information section.

The source of this document, including the code necessary to reproduce the analyses and figures is available at: 
https://github.com/lmsimp/bioc-pRoloc-hyperLOPIT-workflow/18. An archived version as at the time of publication is 
available at: DOI https://zenodo.org/record/125601828.
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Appendix
Novelty detection results
To load the pre-computed novelty detection results please execute the following lines of code

## Specifying the path to the PD results
f0 <- dir(extdatadir, full.names = TRUE,
          pattern = "bpw-pdres.rds")
## Reading the PD results
pdres <- readRDS(f0)
## Adding the PD results to the hl MSnSet
hl <- addMarkers(hl, pdres, mcol = "pd", verbose = FALSE)

SVM optimisation
To load the results of the SVM optimisation

## Specifying the path to the SVM optimisation results
svmf <- dir(extdatadir, full.names = TRUE,
              pattern = "bpw-svmopt.rds")
## Reading the results
params <- readRDS(svmf)

Transfer learning results
To load the GO CC dataset

gofile <- dir(extdatadir, full.names = TRUE,
             pattern = "bpw-gocc.rds")
gocc <- readRDS(gofile)

To load the results of the transfer learning

tlfile <- dir(extdatadir, full.names = TRUE,
             pattern = "bpw-tlopt.rds")
tlopt <- readRDS(tlfile)
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Breckels et al. have written a very nice piece on analysing appropriate proteomics data for subcellular
localisation. I particularly like the " " of the text. Which allows a novice, butworkshop characteristics
interested reader to work through the analysis stepwise and reproduce the results described therein. The
authors took great care in keeping this ideal up during their text and this is also where I have put my
greatest reservation to the manuscript in its present form - since a reader cannot work through the code
presented in the manuscript, since there at at least two situations where a readily available HPC and quite
some time is required. This kind of leaves a dent in my impression - however, given this can be resolved
as well as some typos - the workflow report is superb.

Major comments:
Next to reducing the dimensions of data for visualisation, PCA also offers a way to understand how
the variability is distributed across the multidimensional data by providing linear combinations of
the variables which then constitute the actual PCs. On that note it would be nice to mention this in
Visualising markers section on page 16, where PC7 explains not much variability but due to the
correct weighing of the variables we do get a separation between mitochondrial and peroxisome.
This then can be further motivated with Figure 9 - where we probably can see that the weights for
the fractions where the two localisations differ are larger than otherwise.
 
I was unable to reproduce Figure 13 comparing the two MSnSets. While I was able to look at each
set separately using pRolocVis(hllst@x[[I]]), where i is 1 or 2, I only got an error using the code from
the manuscript:

> pRolocVis(hllst, app=“compare”)
Subsetting MSnSetList to their common feature names
5032 features in common
Remapping data to the same PC space
Error in (function (od, vd)  : 
  object and replacement value dimnames differ
Error in pRolocVis_compare(object, ...) : object 'idDT' not found

When using ‘remap=FALSE’ it actually works, but since this makes barely sense it is of no use - but
just as a hint at debugging it.
 
You really need to make the results from the phenoDisco classification available too. It is super
disappointing that one cannot continue reproducing the code from page 23 on, because it takes 24
hours to compute it using 40 cores…
 
The above comment is of course also true for the KNN TL Optimisation on page 33 - this needs to
be downloadable, since not everyone has access to Cambridge’s HPC and probably even less
have 76 hours to spare.
 
Your comment on the increase suitability of classification instead of clustering (when additional
information on classes is available) at the bottom of page 35 could be more pronounced - for
educational reasons.

Minor comments:

I was not able to naïvely reproduce the workflow from the R commands in the article due to an error
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I was not able to naïvely reproduce the workflow from the R commands in the article due to an error
installing   on a Windows machine. On OS X it was smooth.pRolocdata
 
On page 10 line 2 there is a ‘to’ missing.
 
I never came across the verb   in the context of missing values, I guess the proper term isimputate
impute.
 
On page 11 the   function is called after the   function a couple of lines above. Thisimage2 filterNA
however would result in an only black heat map (since there are no more missing). The image2
function should be called before the   function. Since the reader does not see the chunkfilterNA
options, it could be puzzling.
 
For completeness sake there should also be an   somewhere toinstall.packages(c(“hexbin”, “rgl”))
generate the second PCA-plot and the 3D plot. Moreover, Mac users will need to install   toxquartz
use   properly.rgl
 
On page 14 the plotting code chunk is off track - in the middle of the marker sets output.
 
On page 18: …wanted to highlight a proteins with the… -> lose the   and later in the sentencea
there is a ‘ ’ too many.create a
 
Direct comparisons of individual channels in replicated experiments   not provide…do
 
You may want to consider adding a   or similar, after changing the   argument of thelayout(1) mfrow
parameters to accommodate 2 panels, such that the uncanny reader does not get confused.
 
I would prefer links to referred sections of the text, but that may be personal taste…
 
Page 23: One should note that the decreasing the GS, and increasing the … at least one the too
many, probably two.
 
On page 25: We find the general tendancy to be that it is not the choice … tendency?
 
On page 28 you refer to ‘…the code chunk below…’ for Figure 17, however, the following code
chunk is generating Figure 16 (which is above and btw not referenced in the text). Maybe force
your figures a little to float where you want them/refer to them.
 
On page 28: …by extracting the median or 3rd quantile score per organelle… do you mean
quartile? Otherwise I do not follow.
 
On page 32: …package to query the relevent database … relevant?
 
On page 32 - there is something wrong with this sentence: To remove the 4 classes and create a

:new column of markers in the feature data called tlmarkers to use for the analysis
 
On page 34: From examining the parameter seach plots as described in section Optimisation…
search!
 

On page 36: …and later reload the object using save. -> that would be ‘load’ then!
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On page 36: …and later reload the object using save. -> that would be ‘load’ then!
 
On page 38 -  I fully agree with the following sentence, but right after the updating comment it kind
of seems ‘ ’? Maybe add a title like ‘ ’?misplaced Getting help

It is always important to include session information details along with a short reproducible
example highlighting the problem or question at hand.

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

Author Response 23 May 2018
, University of Cambridge, UKLaurent Gatto

Thank you for your comments. Please find our responses to these inset below.

Next to reducing the dimensions of data for visualisation, PCA also offers a way to understand how
the variability is distributed across the multidimensional data by providing linear combinations of
the variables which then constitute the actual PCs. On that note it would be nice to mention this in
Visualising markers section on page 16, where PC7 explains not much variability but due to the
correct weighing of the variables we do get a separation between mitochondrial and peroxisome.
This then can be further motivated with Figure 9 - where we probably can see that the weights for
the fractions where the two localisations differ are larger than otherwise.

We have added a paragraph to the 'Visualising markers' section of the manuscript reiterating the
purpose of PCA and motivating the choice of looking at PC's 1 and 7. Figure 9 now follows on from
this (now Figure 8), along with the corresponding code and an explanation of the `plotDist`
function.

I was unable to reproduce Figure 13 comparing the two MSnSets. While I was able to look at each
set separately using `pRolocVis(hllst@x[[I]])`, where i is 1 or 2, I only got an error using the code
from the manuscript. When using `remap=FALSE` it actually works, but since this makes barely
sense it is of no use - but just as a hint at debugging it.

We can not reproduce this error. Have you updated to the latest version of R and the latest version
of `pRolocGUI`? If you still get this error message could you please post this as an issue
(https://github.com/ComputationalProteomicsUnit/pRolocGUI/issues) on the `pRolocGUI` Github
page along with your `sessionInfo()` and we will certainly attempt to solve this.

You really need to make the results from the phenoDisco classification available too. It is super
disappointing that one cannot continue reproducing the code from page 23 on, because it takes 24
hours to compute it using 40 cores?

The results are already available as a `RDS` file and stored in `pRolocdata` for users. This is what
is called in the manuscript under the hood:
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```
f0 <- dir(extdatadir, full.names = TRUE, pattern = "bpw-pdres.rds")
pdres <- readRDS(f0)
hl <- addMarkers(hl, pdres, mcol = "pd", verbose = FALSE)
```

We have made this code available in the manuscript in an appendix so users can continue to
produce the exact plots as they see in this workflow.

The above comment is of course also true for the KNN TL Optimisation on page 33 - this needs to
be downloadable, since not everyone has access to Cambridge's HPC and probably even less
have 76 hours to spare.

The same as for the `phenoDisco` analysis and `svm`, the TL results are stored as a `RDS` in
`pRolocdata` and are loaded in the background. We have added the code required to the appendix
so that users can load the results directly.

Your comment on the increase suitability of classification instead of clustering (when additional
information on classes is available) at the bottom of page 35 could be more pronounced - for
educational reasons.

To address the above comment on suitability we have added a few additional points on the
challenges of using clustering for this type of data.

We generally find supervised learning more suited to the task of protein localisation prediction in
which we use high-quality curated marker proteins to build a classifier, instead of using an entirely
unsupervised approach to look for clusters and then look for enrichment of organelles and
complexes. In the latter we do not make good use of valuable prior knowledge, and in our
experience unsupervised clustering can be extremely difficult due to (i) the loose definition of what
constitutes a cluster (for example whether it is defined by the quantitative data or the localisation
information), (ii) the influence of the algorithm assumption on the cluster identification (for example
parametric or non-parametric) and (iii) poor estimates of the number of clusters that may appear in
the data.

I was not able to naively reproduce the workflow from the R commands in the article due to an error
installing pRolocdata on a Windows machine. On OS X it was smooth.

We didn't experience any Windows-specific problems. If you re-try the installation and please let us
know if you still have any issues by opening an issue (https://github.com/lgatto/pRolocdata/issues)
or by posting this issue on the Bioconductor Support site (https://support.bioconductor.org).

On page 10 line 2 there is a *to* missing.

In the version have, we currently can't find the missing 'to'.

I never came across the verb imputate in the context of missing values, I guess the proper term is
impute.

This has been changed to read "We can impute missing data..."
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This has been changed to read "We can impute missing data..."

On page 11 the image2 function is called after the filterNA function a couple of lines above. This
however would result in an only black heat map (since there are no more missing). The image2
function should be called before the filterNA function. Since the reader does not see the chunk
options, it could be puzzling.

This was an editing mistake and has now been rectified.

For completeness sake there should also be an install.packages(c("hexbin", "rgl")) somewhere to
generate the second PCA-plot and the 3D plot. Moreover, Mac users will need to install xquartz to
use rgl properly.

A footnote has been added here to tell users that the package `rgl` may need to be installed with
`install.packages("rgl")` and mac users may need to install xquartz if it's not already installed. LG:
this one is still missing.

On page 14 the plotting code chunk is off track - in the middle of the marker sets output.

This has now been rectified.

On page 18: ...wanted to highlight a proteins with the ... -> lose the a and later in the sentence
there is a 'create a' too many.

These typos have been rectified.

Direct comparisons of individual channels in replicated experiments do not provide?

You may want to consider adding a layout(1) or similar, after changing the mfrow argument of the
parameters to accommodate 2 panels, such that the uncanny reader does not get confused.

We would prefer to keep the code as it is and not introduce more noise with calls to other functions
such as `layout`. The workflow is not aimed at teaching R. Users should have some basic
knowledge of R before tackling this tutorial.

I would prefer links to referred sections of the text, but that may be personal taste?

This is a comment for F1000. We cannot control the linking of sections in the final version.

Page 23: One should note that the decreasing the GS, and increasing the ...at least one the too
many, probably two.

We have reworded this sentence as requested.

On page 25: We find the general tendancy to be that it is not the choice ...tendency?

This typo has been rectified.

On page 28 you refer to '...the code chunk below...' for Figure 17, however, the following code

chunk is generating Figure 16 (which is above and btw not referenced in the text). Maybe force

Page 47 of 50

F1000Research 2018, 5:2926 Last updated: 19 JUL 2018



 

chunk is generating Figure 16 (which is above and btw not referenced in the text). Maybe force
your figures a little to float where you want them/refer to them.

We have now referenced Figure 16 in the text and made sure that the code chunks and figures
follow inline where they are referenced in the text.

On page 28: ...by extracting the median or 3rd quantile score per organelle? do you mean quartile?
Otherwise I do not follow.

Thank you, yes this is a typo and has now been changed to 'quartile'.

On page 32: package to query the relevent database *relevant*

This typo has been rectified.

On page 32 - there is something wrong with this sentence: To remove the 4 classes and create a
new column of markers in the feature data called tlmarkers to use for the analysis:

This sentence is not needed here and so it has now been removed as it essentially reiterates what
is said in the above paragraph.

On page 34: From examining the parameter seach plots as described in section Optimisation...
search!

This typo has been rectified.

On page 36: and later reload the object using save. -> that would be `load` then!

This typo has been rectified.

On page 38 - I fully agree with the following sentence, but right after the updating comment it kind
of seems misplaced? Maybe add a title like Getting help?

We have changed the title of this section to 'Session information and getting help' to clarify this
section of the tutorial.

A pdf version of our replies is also available  .here

 No competing interests were disclosed.Competing Interests:
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doi:10.5256/f1000research.11217.r18813

   Leonard J. Foster
Michael Smith Laboratories -Centre for High-Throughput Biology (CHiBi), Department of Biochemistry
and Molecular Biology, University of British Columbia (UBC), Vancouver, BC, Canada

This manuscript describes a Bioconductor workflow for analyzing subcellular proteomics data. It is very
detailed and comprehensive and will be useful for others in the field. A few comments:

Some clearer statement early on would help to clarify for readers what types of data this works
with. I know that the authors indicate that the example they use is 10-plex TMT and that it can be
used with label-free or other labels, but that is not what I am referring to. Rather, structure of the
experiment. That is, that one needs systematic quantitative data on all the different relevant
fractions from a cell, as opposed to someone who perhaps did a differential centrifugation
experiment to isolate a couple fractions and then wants to apply this (my understanding is that this
latter example would not be usable).
 
How do the authors recommend collapsing replicates? This could be covered in the section
dedicated to the Compare function. Two replicates will (almost) never agree 100% so how are
discrepancies handled?

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 23 May 2018
, University of Cambridge, UKLaurent Gatto

This manuscript describes a Bioconductor workflow for analyzing subcellular proteomics data. It is
very detailed and comprehensive and will be useful for others in the field.

Many thanks for your comments, we have responded to them inset below.

Some clearer statement early on would help to clarify for readers what types of data this works
with. I know that the authors indicate that the example they use is 10-plex TMT and that it can be
used with label-free or other labels, but that is not what I am referring to. Rather, structure of the
experiment. That is, that one needs systematic quantitative data on all the different relevant
fractions from a cell, as opposed to someone who perhaps did a differential centrifugation
experiment to isolate a couple fractions and then wants to apply this (my understanding is that this
latter example would not be usable).

From a purely technical point of view, we need a data matrix with features (typically proteins or
protein groups) along the rows and sub-cellular fractions along the columns. Given the requirement
for complete (or near-complete) quantitative vectors along all fractions to assure best results, a
data set that would only contain one quantitation value per fraction would not work. However,
separation using differential centrifugation, or any separation that generates organelle-specific
separation profiles is a good fit for pRoloc. For instance, the type of data generated by methods

such as described in Itzhak et al. (2016) are well fitted for our software:
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such as described in Itzhak et al. (2016) are well fitted for our software:

> library(pRoloc)
> library(pRolocdata)
> data(itzhak2016stcSILAC)
> ## 6 combined replicates of 5 fractions each
> dim(itzhak2016stcSILAC)
[1] 5265   30
> plot2D(itzhak2016stcSILAC)

(see outout  )here

How do the authors recommend collapsing replicates? This could be covered in the section
dedicated to the Compare function. Two replicates will (almost) never agree 100% so how are
discrepancies handled?

Currently, we recommend to visualise different replicates on their own, to confirm that they are of
sufficient quality, and then combine them, retaining the proteins that have been quantified over all
replicatedd experiments. This allows to obtain localisation information over all replicated data. We
however do not explicitly assess the variability using this approach. This could be done by
analysing replicated independently and then compare the coherence of the classification results.
Proteins that are only observed in some replicates could be rescued by repeating the analysis
using only the relevant (possibly unique) replicate(s). 
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