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Accurate prediction of guide RNA (gRNA) on-target efficacy is critical for effective
application of CRISPR/Cas9 system. Although some machine learning-based and
convolutional neural network (CNN)-based methods have been proposed, prediction
accuracy remains to be improved. Here, firstly we improved architectures of current CNNs
for predicting gRNA on-target efficacy. Secondly, we proposed a novel hybrid system
which combines our improved CNN with support vector regression (SVR). This CNN-SVR
system is composed of two major components: a merged CNN as the front-end for
extracting gRNA feature and an SVR as the back-end for regression and predicting gRNA
cleavage efficiency. We demonstrate that CNN-SVR can effectively exploit features
interactions from feed-forward directions to learn deeper features of gRNAs and their
corresponding epigenetic features. Experiments on commonly used datasets show that
our CNN-SVR system outperforms available state-of-the-art methods in terms of
prediction accuracy, generalization, and robustness. Source codes are available at
https://github.com/Peppags/CNN-SVR.
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INTRODUCTION

The CRISPR/Cas9 system, adapted from a bacterial defense mechanism, is a promising genomic
editing tool that has recently revolutionized the field of biology, biotechnology, and medicine
(Barrangou et al., 2007). This system consists of a nuclease activity-carrying Cas9 protein and the
specificity-programming single guide RNA (gRNA), and the latter of which targets the complex to a
genomic region flanked by a protospacer adjacent motif (PAM) (Jinek et al., 2012). Though the
CRISPR/Cas9 system is considered to be very specific to perform the preconcerted cleavage on
genome, numerous studies have indicated that Cas9 complex also binds to other unintended
genomic sites, termed as off-target (Pattanayak et al., 2013; Doench et al., 2016). Thus, design of a
gRNA with high on-target efficacy and low off-target effects is an important issue in CRISPR/Cas9
system. It has been shown that on-target activity is partly determined by gRNA intrinsic sequence
and chromatin structure of target genomic region, but the underlying molecular mechanism is still
not fully understood. Accurate prediction of gRNA on-target activity facilitates maximization of on-
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target efficacy and minimization of off-target effects, further
contributing to the success application of CRISPR/Cas9 system
(Hsu et al., 2013; Doench et al., 2014; Xu et al., 2015; Chuai et al.,
2016; Doench et al., 2016).

Previous efforts have been made to assist gRNA on-target
identification and efficacy prediction based on different design
rules. The alignment-based methods align the gRNAs from the
given genome purely by locating the PAM [e.g. CCTop
(Stemmer et al., 2015)]. Hypothesis driven-based tools
empirically score the gRNA efficacy by incorporating the effect
of genomic context factors [i.e. CFD (Doench et al., 2016)].
Machine learning-based methods predict the cleavage propensity
of a genomic site for a given gRNA by considering different
nucleotide features, such as position specific nucleotides and
dinucleotides (Doench et al., 2014), GC content (Chari et al.,
2015) as well as non-sequence features including thermodynamic
stability of gRNA (Doench et al., 2014), amino acid cut position
(Chen et al., 2017), and chromatin accessibility (Hinz et al., 2015;
Horlbeck et al., 2016; Listgarten et al., 2018). For example,
support vector machine (SVM)-based sgRNA Designer found
that the position of the target site relative to the transcription
start site and position within the protein are the most important
factors for gRNA activity prediction (Doench et al., 2016). L1-
regularized linear regression-based SSC reported that DNA
sequence composition incorporating the preference for
cytosine at the cleavage site improved the performance of
gRNA on-target prediction (Xu et al., 2015). WU-CRISPR
combined sequence and structural features of the gRNA to
identify highly active gRNA (Wong et al., 2015). In general, no
single feature but rather a combination of feature interactions
governs gRNA cleavage efficacy (Wilson et al., 2018).
Sophisticated models considering the interactions between the
individual features achieved better performance (Aach et al.,
2014; Erard et al., 2017). Nevertheless, some correlated features
may result in the redundancy (Abadi et al., 2017), further
rendering poor prediction outcome. Moreover, the outcomes
of machine learning-based tools mainly depend on laborious
manual feature engineering. They require considerable domain
expertise to design the feature extractor (LeCun et al., 2015).

Deep learning allows computational models that consist of
multiple processing layers to learn representations of features
with multiple levels of abstraction (LeCun et al., 2015). The
layers of features are learned from data by a general-purpose
learning procedure instead of human engineers. Recently, several
successful deep learning-based models have been provided for
predicting CRISPR gRNA on-target activity. For example, Kim
et al. proposed Seq-deepCpf1, which used convolutional neural
networks (CNNs) to learn the nucleotide features of CRISPR
gRNA, and it outperformed previous machine learning
algorithms (Kim et al., 2018). Chuai et al. proposed
DeepCRISPR that used deep convolutionary denosing neural
network-based autoencoder to extract the CRISPR/Cas9 gRNA
sequence representation and utilized the fully CNN model to
predict the gRNA efficacy (Chuai et al., 2018). Extensive
numerical experiments demonstrated DeepCRISPR surpassed
the state-of-the-art tools across a variety of human datasets.
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The above two CNN-based models showed good
performance in CRISPR gRNA efficacy prediction compared
with machine learning-based methods. CNNs are multi-layer
architectures where the successive layers are designed to learn
progressively higher-level features, until the last layer which
produces the classifiers (Huang and LeCun, 2006). The last
layer of CNN can be considered as a linear classifier operator
on feature representation extracted by previous layers. CNN
performs well in automatically learning nonlinearity features.
However, CNN is not always an optimal choice for classification
because the MLP layer following the feature extraction layer
contains many trainable parameters. On the contrary, SVM with
fixed kernel function has good utility on minimizing
generalization error bound when applied to well-behaved
feature vectors. Inspired by this, it is interesting to explore the
hybrid CNN-SVM system in which CNN is trained to extract
features and SVM computes a classifier function in the learned
high dimensional feature spaces. To date, CNN-SVM models
have shown impressive performance in a wide range of
applications, such as object categorization (Huang and LeCun,
2006) and image recognition (Mori et al., 2005; Niu and Suen,
2012). For example, Niu et al. put forward a CNN-SVM model
for handwritten digitals recognition with recognition rate of
99.81%. In their work, the proposed CNN-SVM replaced the
back propagation neural network classifier with SVM in the last
layer of the CNNmodel (Niu and Suen, 2012). Mori et al. trained
a convolutional spiking neural network using different fragment
images. The outputs of each layer in the model were input to the
SVM model. A 100% face recognition rate was obtained for 600
images of 20 people (Mori et al., 2005). In terms of regression
problem, Li et al. proposed CNN combined with support vector
regression (CNN-SVR) for no-reference image quality
assessment. This method achieved advanced outstanding
performance compared with traditional CNN model (Li
et al., 2016).

The prior success of CNN-SVM in computer vision inspired
us to extend CNN-SVM application to CRISPR/Cas9 gRNA
efficacy prediction. Until now, to the best of our knowledge,
there is no such application. Previous studies have suggested that
CRISPR gRNA efficacy prediction using linear regression
achieved better performance than classification (Moreno-
Mateos et al., 2015; Kim et al., 2018). Therefore, SVR, which is
a common application form of SVM for regression, may be more
appropriate for gRNA efficacy prediction when applied to well-
behaved feature vectors. In this work, we developed a hybrid
architecture incorporating CNN and SVR for CRISPR/Cas9
gRNA on-target activity prediction. The key idea of our system
is to train a specialized CNN to extract robust gRNA sequence
and epigenetic features, and to provide them to the SVR classifier
for predicting gRNA cleavage efficacy. First, we trained the CNN
model with back-propagation on the benchmark dataset, aiming
at model selection and parameters tuning. Second, the initial
CNN features were input into the SVR for training and
evaluating. A two-step strategy was performed to select the
important features from well-trained CNN intrinsic gradients
features. Third, the well-trained CNN-SVR was used to test the
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independent cell-line dataset. Specifically, the test data was input
to the well-trained CNN model to obtain the test features. Using
the test feature vector, the well-trained SVR classifier was
performed to predict the gRNA cleavage efficacy. Experiments
showed improved performance of the proposed CNN-SVR
model for CRISPR/Cas9 gRNA on-target activity prediction
compared with state-of-the-art algorithms.
MATERIALS AND METHODS

Data Resources
Benchmark Dataset
Previous studies have shown that PAM-distal region has a high
tolerance for sequence mismatches (Kim et al., 2016; Kleinstiver
et al., 2016). To be specific, gRNAs with two mismatches in the
first two positions from the 5’ end has little influence on cleavage
efficiency (Doench et al., 2014; Doench et al., 2016). Inspired by
these studies, Chuai et al. applied a data augmentation procedure
by changing each gRNA into a new one with two mismatches in
the PAM distal region (Chuai et al., 2018). Consequently, a 23-nt
gRNA sequence can be expanded into 16 gRNAs with identical
cleavage efficacy. The augmented dataset was generated from
~15,000 gRNAs with known on-target cleavage efficacy. By
adopting this data augmentation strategy, they obtained
180512 non-redundant gRNAs. Each observation in the data
contains a 23-nt gRNA sequence and its corresponding cleavage
efficiency. In this work, we used this augmented dataset as the
benchmark data for model selection and pre-training.

Four Cell Line Independent Test Datasets
In order to evaluate the performance of our method, we used
four public experimental validated gRNA on-target cleavage
efficacy independent human datasets, which were integrated
and processed by Chuai et al (Chuai et al., 2018). These
experimented-based datasets were originally collected from
public datasets (Wang et al., 2014; Hart et al., 2015; Doench
et al., 2016). They covered gRNAs targeting 1071 genes from four
different cell lines, including HCT116 (4239 samples) (Hart et al.,
2015), HEK293T (2333 samples) (Doench et al., 2016), HELA
(8101 samples) (Hart et al., 2015), and HL60 (2076 samples)
(Wang et al., 2014) with redundancy removed. The gRNA on-
target activity was strictly restricted to experimental assay, where
the cleavage efficiency was defined as the log-fold change in the
measured knockout efficacy. Readouts of cleavage efficacies
without in vivo (in vitro) experimental validation were excluded.

Each entry in the datasets contained the 23-nt gRNA
sequence, four kinds of corresponding symbolic epigenetic
features, as well as numerical and binary cleavage efficacy. The
epigenetic features information was obtained from ENCODE
(Consortium, 2004), including CTCF binding information
obtained from ChIP-Seq assay, H3K4me3 information from
ChIP-Seq assay, chromatin accessibility information from
DNase-Seq assay, and DNAmethylation information from RRBS
assay. Each epigenetic feature was represented by an “A-N”
symbolic sequence with length of 23. Here, the presence of the
Frontiers in Genetics | www.frontiersin.org 3
epigenetic feature at a particular base position ofDNAregionswas
denoted by “A,” and its absence was represented by “N.”

Numerical cleavage efficiency of candidate gRNA was
calculated using a collaborative fi ltering-based data
normalization technique (Badaro et al., 2013). In particular, a
matrix Y was formulated where each row denoted the
experiments and each column represented one gRNA. ymn

represented the n-th gRNA on-target cleavage efficacy in the
m-th experiment. Normalized numerical gRNA on-target
efficiency value was defined as

ynor = ymn − (mrow +mcol +mall)=3 (1)

where mrow denoted the mean value for each row, mcol

represented the mean value for each column, and mall denoted
the mean value of Y. Next, a rank-based normalization method
(Doench et al., 2016) was applied for gRNAs within each gene,
and these normalized ranks were averaged across cell types, then
were rescaled in [0, 1], where 1 indicated the successful on-target
cleavage efficacy. The binary cleavage efficiency of gRNA was
determined by using a log-fold change of 1 as the cut off, where 1
and 0 represented the high-efficiency and low-efficiency gRNAs,
respectively. The processed datasets can be downloaded at
https://github.com/bm2-lab/DeepCRISPR.

Sequence Encoding
We formulated one-hot encoding to encode gRNA sequence
with 23 nucleotides in length. Each base in the sequence can be
encoded as one of the four one-hot vectors [1,0,0,0], [0,1,0,0],
[0,0,1,0] and [0,0,0,1]. Therefore, the 1-by-23 nucleotide
sequence was represented by four binary channels: A-channel,
C-channel, G-channel, and T-channel. Taking A-channel as an
example, the presence of the nucleotide A at a particular base
pair position was denoted by 1 and the absence of the nucleotide
A was represented by 0. Consequently, each gRNA was expressed
by a 4 × 23 matrix, where 23 was the length of the
gRNA sequence.

Analogously, epigenetic feature information including CTCF
binding, H3K4me3, chromatin accessibility, and DNA
methylation were represented by a 4 × 23 binary matrix. Each
type of epigenetic information was denoted by a 1 × 23 matrix
using “A” and “N,” with these notations meaning presence and
absence of that epigenetic feature at specific position of DNA
regions, respectively. To encode the epigenetic feature
information, we derived a 23-length vector to encode each
epigenetic feature. Thus, four epigenetic features were donated
by a 4 × 23 binary matrix (see Figure S1 for an example). The
encoded sequence and epigenetic matrix of gRNA were then fed
into CNN-based gRNA stream and epigenetic stream sub-
networks for model training and testing.

CNN Model Structure
We developed a CNN model to learn deep features of gRNA
sequence and its corresponding epigenetic information (Figure
S2). The proposed CNN is composed of two branches, namely
gRNA stream and epigenetic stream. These two sub-networks
are structurally identical, including two one-dimensional (1D)
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convolution layers, two average-pooling layers, and four fully
connected layers.

Taking gRNA stream as an example, the input is a 4 (size of
nucleotides vocabulary) × 23 (sequence length) binary matrix.
The first layer of the sub-network is a 1D convolution layer
(conv_1), which is designed for extracting the important local
features between neighboring element values of gRNA sequence
information using 256 convolution kernels of size 5. Rectified
linear unit (ReLU) (Krizhevsky et al., 2012) is used as the
activation function to the convolution outputs.

The second layer is a local average pooling layer (pool_1) with
window size of 2 connected with the outputs of previous layer for
down-sampling. Each of the average-pooling windows only
outputs the average value of its respective convolution
layer outputs.

The structures of the following convolution layer (conv_2)
and average pooling layer (pool_2) are identical with the first
(conv_1) and second (pool_1) layers mentioned above. After
being flatten, the features are followed by four fully connected
layers (fc_1, fc_2, fc_3 and fc_4) with the sizes of 256, 128, 64,
and 40, respectively. We used dropout for model regularization
to avoid overfitting.

The feature maps of the fourth fully connected layer from
both gRNA and epigenetic branches are concatenated by the
“concatenate” operator. Subsequently, the outputs of the
concatenation layer are input to the last fully connected layer
of the merged CNN network. The final output layer consists of
one neuron corresponding to a regression score that highly
correlates with gRNA activity. The loss function for our CNN
is mean squared error (MSE) which was adapted in a previous
study (Kim et al., 2018). We chose MSE because it is a good
measure to prevent undesired outliers in the dataset.

Hybrid CNN-SVR Model
We next proposed a network combining CNN and SVR called
CNN-SVR to provide a data-driven and deep learning method
for CRISPR/Cas9 gRNA activity prediction. For cell line-specific
prediction, CNN-SVR receives a 23-nt gRNA sequence and four
“A-N” symbolic epigenetic sequences with length of 23 as inputs,
and it produces a regression score of gRNA on-target cleavage
Frontiers in Genetics | www.frontiersin.org 4
efficacy. Compared with machine learning-based methods that
rely heavily on hand-crafted features, CNN-SVR can get rid of
the dependence on manual feature engineering. The basic
flowchart of CNN-SVR consists of two major stages, namely
model selection and pre-training stage as well as fine-tuning and
testing stage (Figure S3). The dataset was randomly divided into
two separate sets of training and testing, respectively. One-hot
encoding converts the input sequences into binary
representations for downstream processing.

In the model selection and pre-training stage, there are
mainly three steps: first, the encoded benchmark dataset is fed
into the proposed CNN model for pre-training by the back-
propagation algorithm. Randomized five-fold cross-validation
tests are conducted to determine hyperparameters of the merged
CNN model. Model with the minimum average validation loss is
regarded as the base model. Second, the initial CNN extracted
features are input to SVR classifier for training and evaluating.
SVR (i.e., cost C, gamma, and epsilon) is optimized using a grid
search approach to achieve the optimal performance. Third, a
two-step strategy is employed to remove the redundancy of CNN
features (see details in the section Feature Representation
Optimization). The extracted low-dimensional representative
feature data and their corresponding gRNA cleavage efficacy
values are fed into SVR classifier for model training.

In the fine-tuning and testing stage, there are mainly two
steps: First, the well-trained CNN model is applied to extract
features from new cell line data. Only the fourth fully connected
layer of gRNA stream and epigenetic stream, and the top fully
connected layer of the merged CNN are fine tuned. MSE loss
function is minimized by back-propagation approach. Second,
the extracted low-dimensional representative features are fed
into the well-trained SVR classifier to complete the final gRNA
activity prediction. Figure 1 displayed the overall framework of
our CNN-SVR; the procedures were described as follows:

• The gRNA sequence and epigenetic feature sequences are
converted into two 4×23 binary matrices by one-hot encoding.

• The encoded gRNA and epigenetic sequences are fed into the
well-trained CNN-based gRNA stream and epigenetic feature
stream to fine-tune and extract features, respectively.
FIGURE 1 | An illustration of procedures for cell line-specific gRNA on-target activity prediction based on CNN-SVR. Here, [f_1,f_2,⋯,f_n ] is the subset of [f_1,f_2,
⋯,f_80 ].
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• SVR classifier is trained based on the optimal feature set.
Ultimately, the well-trained SVR model assigns a prediction
cleavage efficacy score for the candidate gRNA.
Experimental Setup
To evaluate feasibility of CNN-SVR for gRNA activity
prediction, we conducted numerical experiments on public
datasets. We implemented our algorithms using Keras (2.1.0)
with Tensorflow (1.4.0) as the backend, running on Intel Core i7
CPU at 3.6 GHz with 16 GB RAM and NVIDIA 8 GB GTX 1080
GPU. The optimized parameters were tuned automatically under
the Adam optimizer (Kingma and Ba, 2014).

Implementation of the Hybrid CNN-SVR
Model
CNN Model Selection and Training
In the proposed architecture, the distribution of each network
parameter was determined empirically. The main purpose of
hyperparameter optimization was to choose a set of
hyperparameters for a deep architecture, usually with the goal
of optimizing performance of the architecture on an independent
dataset. Grid search from the Scikit-learn Python library was
adopted to tune the hyperparameters of the proposed
architectures. Hyperparameter optimization experiments were
performed sequentially as follows: the network weight
initialization over the choice (“zero,” “he_uniform,” “uniform,”
“glorot_uniform,” “lecun_uniform,” “normal,” “he_normal”),
dropout regularization over the choice (0.2, 0.3, 0.4, 0.5, 0.6),
batch size over the choice (64, 128, 256, 512), and number of
epochs over the choice (50, 100, 200, 300).

All the constructed neural network models were trained and
validated on the benchmark dataset (180512 samples). We
randomly assigned the samples of the no-redundant dataset
with 80% of samples for training and 20% of samples for
testing with five-fold cross-validation in the training phase.
Cross-validation contributed to avoiding overfitting and
guaranteeing the accuracy of our model in which the datasets
were divided into five equal parts randomly. In each training, one
part was regarded as the testing dataset, while the remaining four
parts were taken as the training dataset. Thus, we obtained
115528 training samples, 28881 validation samples, and 36103
testing samples, respectively. Separate training and validation
data were applied to train the model, while the test data was used
to evaluate the performance of the trained model. We chose the
model that showed the minimum average validation loss as the
final CNN model. After optimization, the hyperparameters were
as follows: kernel_initializer: glorot_uniform; batch size: 256;
epoch: 200; dropout: 0.3 (keeping 70% of the connections).

SVR Training and Testing
Next, CNN extracted features were fed into the SVR classifier.
We implemented the SVR algorithm in Scikit-learn library. Grid
search procedure was performed to find the optimal penalty
parameter C, kernel parameter gamma, and epsilon. For training
SVR with Gaussian radial basis kernel (RBF) classifier, grid
search range of each parameter was as follows: cost C from the
Frontiers in Genetics | www.frontiersin.org 5
choice (1.0,1.1,⋯,1.9), kernel coefficient gamma over the choice
(0.11,0.12,⋯,0.15), epsilon from the choice (0.08,0.09,⋯,0.12).
We selected the parameters that maximized the maximum
average area under ROC curve (AUROC) value as the final
parameters of SVR classifier. The optimized parameters of the
SVR were as follows: C was 1.7, gamma was 0.12, epsilon was
0.11. These parameters were then used to train the CNN-
SVR model.

Feature Representation Optimization
Considering that CNN extracted features might introduce
redundancy which can undermine model performance, we
employed a two-step feature optimization strategy to identify
important feature subsets from the initial CNN features. To be
specific, we first applied random forest to the learnt feature
representation from well-trained CNN model and obtained the
ranked feature list based on information gain (Liaw and Wiener,
2002). We trained the random forest model with 250 decision
trees using Scikit-learn. The feature importance distribution of
the top 20 features based on their importance scores was
illustrated in Figure S4. As can be seen, the seventeenth
feature of CNN extracted initial features was the most
predictive feature. Second, the sequential forward search (SFS)
(Whitney, 2006) was performed to determine the optimal feature
set. We gradually added features from random forest feature
rank from higher score (lower rank) to lower score (higher rank)
to reconstruct the SVR models. The feature subset with the
relatively higher value of AUROC was regarded as the optimal
feature set. We used the AUROC since it is a good indicator to
evaluate the real performance of models. We noted that, when the
feature number reached at 13, the model achieved the maximum
AUROC of 0.9769. Hence, the top 13 features (i.e., “feat_17,”
“feat_26,” “feat_9,” “feat_19,” “feat_30,” “feat_6,” “feat_12,”
“feat_39,” “feat_36,” “feat_21,” “feat_22,” “feat_3,” “feat_25”) in
the random forest rank list were integrated into SVR classifier to
train the prediction scheme. Here, “feat_17” means the 17th
feature of CNN extracted initial features (total 80 features).
Thereby, we carried out the determined hyperparameters by
integrating the optimal features on the benchmark dataset
under five-fold cross-validation to obtain the well-trained CNN-
SVR model. The training data, validation data, and testing data
were built consistent with the above mentioned data partitioning
way in the CNN Model Selection and Training section. The well-
trained CNN-SVR reached an overall Spearman correlation of
0.952, AUROC value of 0.977.

Transfer Learning for New Cell Line
Specific Prediction
In this section, we proposed a fine-tune strategy by borrowing
information from the benchmark data, aiming at boosting the
prediction performance on small sample size cell line-specific
data. To this end, four above cell-line datasets were combined
together for model training and testing. We constructed the
training, validation, and test data from total four datasets based
on gRNA sequence composition and epigenetic feature
information. The training data (13401 samples) and test data
January 2020 | Volume 10 | Article 1303
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(3748 samples) were also generated in the same way in the CNN
Model Selection and Training section. Randomized five-fold
cross-validation was implemented in the training phase.

Considering training a full CNN network with small number
of cell line data may result in overfitting, which may lead to poor
performance. Transfer learning (Bengio, 2012) is effective to
address the challenge where the learned parameters of well-
trained networks on a large dataset are shared. The main idea of
transfer learning is to use a pre-trained model which is trained on
large dataset and to transfer its well-trained parameters (e.g.
weights) to the targeted network model. Though the dataset is
different from the one that the network was trained on, the
lower-level features are similar. Thus, the last fully connected
layers are usually trained on the new dataset. Transfer learning
has been widely applied to computer vision (Shin et al., 2016;
Cheng andMalhi, 2017) and achieved a valuable efficacy in terms
of accuracy. We applied transfer learning from the benchmark
dataset pre-trained CNN model, and fine-tuned for small sample
cell line data. Note that, the low-level features between the
benchmark data and cell line-specific data are similar.
Therefore, we froze the convolution layers, average pooling
layers and the first three fully connected layers of both gRNA
stream and epigenetic stream. After borrowing weights of the
well pre-trained CNN base network, we fine-tuned the weights of
the last fully connected layers of both gRNA and epigenetic sub-
networks and those of the merged fully connected layer to
optimize the mean validation squared error loss function.
During fine tuning, we only updated 5281 free parameters. By
fixing the weights parameters in the other layers, CNN-SVR
could prevent overfitting and effectively learn to integrate the
sequence representative and epigenetic information. For any
given cell line of interest, the training process was described
as follows:

• Pre-train a CNN model with the benchmark data for 200
epochs.

• Freeze the convolution layers, average pooling layers, the first
three fully connected layers (for both the gRNA stream and
epigenetic stream).

• Train the fourth fully connected layer of the above two
streams and the top fully connected layer of the merged CNN
model with training data from the cell line of interest for
another 200 epochs.

• Evaluate the model on the test data.
Settings of Other Methods
For the L1-regularized linear regression (L1), we applied
LassoCV from Scikit-learn Python library to find out the
optimal parameters of alpha by cross-validation. Grid
searching range of regularization parameter alpha was (0.01,
0.02,⋯,0.1). Other parameters were set with default values. We
achieved an optimal value of 0.01. Similarly, we applied RidgeCV
and ElasticNetCV with the same grid searching range of L1 to set
parameter alpha for L2-regularized linear regression (L2) and
L1L2-regularized linear regression (L1L2), respectively. After
optimization, the best alpha values of L2 and L1L2 were 0.04
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and 0.01, respectively. These parameters were then used to train
the CNN-L1, CNN-L2, and CNN-L1L2 models. Other
parameters of L2 and L1L2 were set with default values.

We ran the code of Seq_deepCpf1 using the same data and
basic training process (downloaded from GitHub at https://
github.com/MyungjaeSong/Paired-Library). Note that, the
input of Seq_deepCpf1 was a 4-by-34 dimensional binary
matrix. Here, we changed the input shape of Seq_deepCpf1
model into 4-by-23 to match the size of the data in this study.
Besides, we used the benchmark dataset to pre-train the
Seq_deepCpf1 model. To make a fair comparison, we only
fine-tuned the weights parameters in the last two layers (1681
free parameters) for cell line-specific prediction. The numerical
experimental condition was set consistent with DeepCRISPR.
The source codes of DeepCRISPR were downloaded from
https://github.com/bm2-lab/DeepCRISPR. SSC, sgRNA
Designer and WU-CRISPR provided available web based
applications. More details can be found in Table S1.

Performance Measurements
To quantitatively evaluate the performance of our CNN-SVR,
Spearman correlation coefficient between predicted and
measured on-target activity was calculated. We chose
Spearman correlation is due to it is more robust to outliers
than Pearson’s correlation coefficient (Mukaka, 2012). Besides, it
was adapted in previous studies (Doench et al., 2016; Chuai et al.,
2018; Kim et al., 2018). Spearman correlation was calculated
using SciPy library (http://scipy.org). In addition, AUROC was
employed to comprehensively quantify the overall predictive
model performance. The value of AUROC ranges from 0.5 to
1. A larger AUROC value represents that model achieves better
and more robust performance. Note that, we used 0.5 AUROC as
the baseline. Statistical test was performed using SciPy library for
comparing the differences between GC content distributions of
different datasets. Two-sample Kolmogorov–Smirnov test was
used for testing the distance between two distributions under the
null hypothesis that samples from the same continuous
distribution. P < 0.05 was considered to indicate statistically
significant difference.
RESULTS

Comparison CNN-SVR With CNN Model
To verify the feasibility of our approach, we compared our CNN-
SVR with CNN model on the above four cell-line datasets. The
current practice of training a model was to use cell-line specific
data for prediction. Each data set was randomly split into a
training set and an independent testing set with 80% and 20%
classes. Table 1 summarized the results regarding evaluation
criteria including Spearman correlation and AUROC under 10-
round 10-fold cross-validation tests. CNN-SVR showed
substantially better performance in terms of Spearman
correlation. As for AUROC, CNN-SVR was superior to CNN
on datasets HEK293T, HELA, and HL60. These results showed
that CNN-SVR is more predictive than CNN for gRNA on-target
January 2020 | Volume 10 | Article 1303
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activity, further conforming the feasibility and effectiveness of
the combination of CNN and SVR classifier.

Comparison of Various CNN Combined
Regression Models
We then attempted to access the regression performance of
CNN-SVR. To this end, we compared CNN-SVR with three
CNNs plus regression approaches, including CNN plus L1
(CNN-L1), CNN plus L2 (CNN-L2), and CNN plus L1L2
(CNN-L1L2) on the above four cell lines datasets. Note that
for each cell line, the training data and test data were generated in
the same way as described in the section Comparison CNN-SVR
With CNN Model. Ten-time 10-fold cross-validation tests were
randomly performed and the average of the individual
performance were summarized in Table 2. Overall, CNN-SVR
performed better than CNNs with different regression methods
on all datasets. These observations revealed that the regression
learning performance of our SVR surpasses other regression
methods on gRNA activity prediction.

Comparison With State-Of-the-
Art Methods
To validate the performance of proposed CNN-SVR, we
compared it with one deep learning-based method
(DeepCRISPR) and three machine learning methods including
sgRNA Designer, SSC, and WU-CRISPR (Table S2). Note that
Seq-deepCpf1 only allows for receiving gRNA sequence as input.
So, this approach was not compatible with other methods when
considering both gRNA sequence and epigenetic information. To
make a fair comparison, we trained CNN-SVR model based on
Frontiers in Genetics | www.frontiersin.org 7
the training data strictly consistent with other methods. The
above four datasets were used for performance evaluation. For
each cell line, the training and test data were constructed in the
same way as described in the section Comparison CNN-SVR
With CNN Model. For any given cell line of interest, the training
data was built by integrating all the training data from four cell
lines. The performance was evaluated on each cell line-specific
testing set, respectively.

On the whole, CNN-SVR achieved the highest average
Spearman correlation (Figure 2A). Specifically, CNN-SVR
exhibited better Spearman correlation on three datasets (i.e.,
Total, HCT116, HELA and HL60), whereas for dataset
HEK293T, it performed slightly worse than DeepCRISPR.
Figure 2B illustrated the performance in terms of AUROC.
Some interesting conclusions can be extracted from this figure.
First, deep learning models were superior to machine learning
methods. Second, CNN-SVR exhibited better predictive power
than another deep learning model DeepCRISPR. The details of
their performance can be found in Table S3. To sum up, these
observations indicated that CNN-SVR outperforms the
compared state-of-the-art methods for predicting gRNA on-
target activity.

Assessment of Generalization
Performance With a Leave-One-Cell-
Out Procedure
Next, we investigated the generalizability ability of CNN-SVR
in new cell types. For this purpose, we took turns to test the
model on the above four cell-line datasets using a leave-one-cell-
out approach. The training data and test data for each cell
TABLE 1 | Performance comparison between CNN-SVR and CNN models for gRNA activity prediction on four cell-line datasets under 10-time 10-fold cross-validation.

Model CNN-SVR CNN CNN-SVR CNN

Spearman AUROC

HCT116 0.719 ± 0.008 0.661 ± 0.030 0.933 ± 0.001 0.932 ± 0.001
HEK293T 0.807 ± 0.016 0.725 ± 0.029 0.983 ± 0.002 0.972 ± 0.001
HELA 0.699 ± 0.006 0.702 ± 0.007 0.933 ± 0.001 0.916 ± 0.001
HL60 0.589 ± 0.006 0.576 ± 0.040 0.934 ± 0.003 0.914 ± 0.003
January 2020 | Volume 10
Performance is shown asmean ± standard deviation. This representation also applies to Table 2. The best performance across different folds cross-validation method is highlighted in bold
for clarification. These highlights also apply to Tables 2 to 4 and Tables S3 to S5.
TABLE 2 | Performance comparison of CNN-SVR and different CNNs combined regression models for gRNA activity prediction on four cell-line datasets under 10-time
10-fold cross-validation.

Model HCT116 HEK293T HELA HL60

(A) Spearman correlation
CNN-SVR 0.719 ± 0.008 0.807 ± 0.016 0.699± 0.006 0.589± 0.006
CNN-L1 0.712± 0.010 0.793 ± 0.004 0.633± 0.020 0.542± 0.033
CNN-L2 0.670± 0.025 0.731 ± 0.032 0.683± 0.009 0.517± 0.034
CNN-L1L2 0.701± 0.008 0.803 ± 0.012 0.682± 0.005 0.589± 0.018
(B) AUROC
CNN-SVR 0.933 ± 0.001 0.983 ± 0.002 0.933 ± 0.001 0.934 ± 0.003
CNN-L1 0.931 ± 0.001 0.982 ± 0.001 0.924 ± 0.002 0.930 ± 0.003
CNN-L2 0.919± 0.002 0.975 ± 0.002 0.923± 0.002 0.895± 0.008
CNN-L2 0.918± 0.003 0.977 ± 0.001 0.915± 0.002 0.912± 0.004
The tables from top to bottom respectively record the Spearman correlation and AUROC of CNN-SVR and three CNN combined regression methods.
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line were built in advance. Note that, the partitioning method
for each cell line data followed the way illustrated in the
section Comparison CNN-SVR With CNN Model In the
training phase, for a given cell line to be predicted, we just
used the training data from all other three cell lines (lacking
training data of given cell-line of interest). In the testing stage,
we evaluated the performance on the test data of the given cell-
line of interest. Taking leave-HCT116-out procedure as an
example, we trained the model by combining training data
of HEK293T, HELA and HL60 cell lines (without HCT116
cell line training data), and evaluated the model on HCT116
cell line testing set. For fair comparison, we tested the proposed
CNN-SVR under the same condition with DeepCRISPR,
Frontiers in Genetics | www.frontiersin.org 8
sgRNA Designer, SSC, and WU-CRISPR on the four cell-
line datasets.

As can be seen from Figure 3A, among the compared models,
CNN-SVR exhibited the best predictive power, with average
Spearman correlation of 0.714. Compared with DeepCRISPR,
which was one of the best state-of-the-art approaches, CNN-SVR
showed superior performance on all datasets except for dataset
HCT116. DeepCRISPR got comparable performance with CNN-
SVR on HCT116 dataset. Furthermore, CNN-SVR outperformed
other methods on all datasets in terms of AUROC (Figure 3B).
Together, these results demonstrated the excel lent
generalizability of CNN-SVR. More details of the performance
can be found in Table S4.
FIGURE 3 | Performance comparison of CNN-SVR and other prediction models on various testing cell line data with a leave-one-cell-out procedure.
FIGURE 2 | Performance comparison of CNN-SVR and other prediction models on various testing cell line data.
January 2020 | Volume 10 | Article 1303
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Evaluation of Robustness of
Prediction Models
In this section, we aimed to compare the robustness of the above
methods. To this end, we examined the changes between
Spearman correlation and AUROC values obtained by training
with four cell datasets (Figure 2) and those produced by the
leave-one-cell-out approach (Figure 3). For each evaluation
criterion, we calculated the difference of each model by
subtracting the results of training with leave-one-cell-out
(Table S4) from the cell-line independent (Table S3). Taking
CNN-SVR as an example, the AUROC difference of HCT116
dataset was calculated as follows:

DAUROCCNN−SVR = 0:936 − 0:939 = −0:003 (2)

where “ΔAUROC”means the difference value of AUROC. It can
be seen that our CNN-SVR substantially showed smaller changes
than DeepCRISPR in terms of the above mentioned two
evaluation measures (Table 3). Interestingly, we observed that
the performance of DeepCRISPR on dataset HEK293T using the
whole training set was significantly better than that by leave-one-
cell-out approach (with Spearman correlation difference value of
0.805, AUROC difference value of 0.455). Previous studies have
shown that gRNAs with low or high GC content tended to be less
active (Doench et al., 2014; Wang et al., 2014). We analyzed GC
content of the four cell datasets. As expected, dataset HEK293T
has the lowest GC content (vs. dataset HCT116, P=1.35E-52; vs.
dataset HELA, P=1.14E-69, vs. dataset HL60, P=1.45E-07, two-
sample Kolmogorov-Smirnov test, Figure S5).

Effect of Epigenetic Features on gRNA
Cleavage Efficacy
In this section, we determined whether cell line-specific
epigenetic features really boost the predictive performance. We
examined the performance of deep learning-based methods on
the four cell-line datasets only considering gRNA sequence
composition and compared them with those considering both
gRNA sequence and epigenetic information (see the section
Assessment of Generalization Performance With a Leave-One-
Cell-Out Procedure). We trained the prediction models without
epigenetic information (sequence only) for each cell line with a
leave-one-cell-out procedure. Note that, we trained the model
just considering the gRNA stream. Other numerical
experimental conditions were in accord with the section
Assessment of Generalization Performance With a Leave-One-
Cell-Out Procedure. For fair comparison, we compared our
methods with two deep learning-based methods (i.e.,
Frontiers in Genetics | www.frontiersin.org 9
DeepCRISPR and Seq-deepCpf1) only consider ing
sequence composition.

Figure 4 and Table 4 compared the prediction performance
of various deep learning methods trained using different datasets.
Two interesting conclusions can be drawn as below. First, CNN-
SVR showed better performance compared with other models.
Second, as expected, the prediction accuracies of models trained
only considering sequence composition (Figure 4A and Table
4A) became lower compared with those trained with both
sequence and epigenetic data (Figure 4B and Table 4B). To
conclude, these observations confirm that cell line-specific
epigenetic features contribute to gRNA activity and specificity.
More details of their performance of Spearman correlation can
be found in Table S5.

Visualizing Importance of Position-
Specific Nucleotides
Finally, we aimed to investigate what sequence patterns of gRNA
contribute to its on-target activity. Using the method in a
previous study (Xie et al., 2013), we investigated the feature
importance of all possible position-specific nucleotides. In brief,
we constructed a specific sequence and its corresponding
epigenetic features to feed the well-trained CNN model and
took the outputs for visualization. More details can be found in
Supplementary Material. Figure 5A depicts the importance of
all four nucleotides and epigenetic features at different positions.
Several interesting results can be observed: (i) Most of the top
features were generated by convolving the middle region of input
matrix. (ii) Thymines are found to be disfavored at the fourth
position adjacent to the PAM. The same observation was
obtained by Chuai et al., (2018), which is consistent with
previous finding that multiple uracils in the spacer result in
low gRNA expression (Doench et al., 2014). Another study also
found that thymine in the seed sequence might destabilize
interactions between the protein and crRNA (Kim et al., 2017).
(iii) Cytosine is informative at 3-nt upstream of the PAM since
the cleavage site usually resides 3 nt upstream the PAM. (iv) Our
model suggests that cytosine is also preferred at position 17,
which coincides with a previous finding that the cleavage is 3 nt,
4 nt or even further upstream of the PAM (Shou et al., 2018). (v)
In general, the middle region contains more information of the
epigenetic features. Notably, 3 nt upstream of the PAM has a
consistent preference for opening-chromatin information of
Dnase. This observation is in accordance with a previous
study, which corroborates that consideration of target site
accessibility can boost the accuracy of gRNA activity
prediction (Kim et al., 2018). Besides, we presented the
TABLE 3 | The differences of Spearman correlation and AUROC between independent test and a leave-one-cell-out approach between CNN-SVR and DeepCRISPR.

Model HCT116 HEK293T HELA HL60

(A) Spearman correlation
CNN-SVR -0.017 -0.002 0.011 -0.015
DeepCRISPR -0.107 0.805 -0.043 0.012
(B) AUROC
CNN-SVR -0.003 -0.001 -0.008 -0.045
DeepCRISPR -0.045 0.455 -0.038 0.096
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sequence logo to visualize the nucleotide differences on the
benchmark dataset. Overall, the result is in line with our
feature analysis (see Figure 5B).

We also explored the importance of dimers. Here, by
adopting the method proposed above, we generated a sequence
which only contains one dimer (out of 16 possible dimers) at
every position k and repeated the aforementioned process for all
subsequences. The scores of all the constructed subsequences for
all the positions were plotted as a heatmap in Figure S6. We note
that most of the top features were generated by convolving the
region of the seed sequence of the gRNAs. This observation
coincides with previous finding that a prototypical 10–12 nt
PAM-proximal seed sequence largely determines target efficacy
(Jinek et al., 2012; Cong et al., 2013).
DISCUSSION

Accurate prediction of gRNA cleavage efficacy is pivotal to
understanding the mechanisms of CRISPR/Cas9 system.
Although computational prediction of gRNA cleavage
efficiency has made much progress recently, the accuracy
remains to be improved. In this study, we introduced a novel
Frontiers in Genetics | www.frontiersin.org 10
and interpretable deep learning framework named CNN-SVR for
CRISPR/Cas9 gRNA on-target activity prediction. Specifically,
CNN works as a trainable feature extractor and SVR performs as
a gRNA cleavage efficacy predictor. Compared with CNN and
three CNNs combined regression-based algorithms, CNN-SVR
achieved the best performance. CNN-SVR could not only
automatically extract gRNA sequence and the corresponding
epigenetic features using the CNN, but also improve the
generalization ability of CNN and regression accuracy.

Previous studies suggested that ensemble learning (Woźniak
et al., 2014) by incorporating multiple neural networks together
can achieve higher accuracy than a single learner (Maqsood et al.,
2004). Inspired by this, instead of using a single convolution
network to train the feature vectors of gRNA like Seq-deepCpf1,
we merged two sub-networks (i.e., gRNA stream and epigenetic
stream) to train gRNA sequence and its corresponding
epigenetic information. In addition, the architecture of the
proposed sub-networks was considerably shallower than
DeepCRISPR. Compared with several current state-of-the-art
learning-based methods, CNN-SVR can effectively exploit deep
features of gRNA sequences. Experimental results demonstrated
the power of our CNN-SVR for CRISPR/Cas9 gRNA
activity prediction.
FIGURE 4 | Spearman correlation between different deep learning-based models and datasets. Models considering (A) gRNA sequence composition only and (B)
both gRNA sequence and epigenetic information.
TABLE 4 | AUROC of different deep learning-based methods by considering gRNA sequence only and incorporating both gRNA sequence and epigenetic features.

Model HCT116 HEK293T HELA HL60 Average

(A) Sequence-only
CNN-SVR 0.938 0.976 0.930 0.928 0.943
DeepCRISPR 0.887 0.474 0.788 0.584 0.683
Seq-deepCpf1 0.931 0.976 0.925 0.920 0.938
(B) Sequence composition and epigenetic features
CNN-SVR 0.939 0.979 0.932 0.938 0.947
DeepCRISPR 0.919 0.506 0.820 0.643 0.722
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Besides, we found our CNN-SVR system has good
generalizability in new cell types by using leave-one-cell-out
approach on the four testing datasets. By analyzing the
changes of prediction results with and without considering
epigenetic information, we observed that considering of
epigenetic features slightly improves the accuracy of CRISPR/
Cas9 gRNA activity prediction. This result was consistent with
previous studies (Chen et al., 2017; Chuai et al., 2018; Kim et al.,
2018). Chuai et al. found that the prediction on HEK293T
became poor (Chuai et al., 2018). They speculated that it was
mainly due to the insufficient training data of the HEK293T
training dataset. Note that our findings suggested that the
reducing epigenetic features may be one possible explanation
for the observation. Additionally, the low GC content of dataset
HEK293T may be another possible explanation. We concluded
that our CNN-SVR gained better generalization and robustness
than DeepCRISPR.

Our model focused on gRNA sequence and four kinds of
epigenetic features for CRISPR/Cas9 on-target prediction. A
recent study on protein-related prediction has shown that
integration of other manual extracted features, such as
Frontiers in Genetics | www.frontiersin.org 11
molecular weight and hydrophobicity into the deep learning
model could improve the predictive power (Wang et al., 2016). It
has been reported that GC content is associated with gRNA
activity (Doench et al., 2014; Wang et al., 2014). We thus made a
preliminary exploration of adding this sequence-derived feature
with our CNN-SVR for gRNA activity prediction on the above
four datasets. Note that, the training data and test data were
constructed in the same way as described in the section
Comparison CNN-SVR With CNN Model. Overall, addition of
GC content to CNN-SVR increased the predictive ability, with
Spearman correlation coefficients of 0.645, 0.656 and 0.608 on
datasets HCT116, HELA and HELA, respectively. Detailed
results can be found in Table S6. Therefore, manual design of
proper gRNA features will contribute to the prediction ability. In
the future, we plan to develop deep learning models
incorporating indirect sequence-derived sequence features to
improve the prediction performance, such as chromatin
accessibility (Kim et al., 2018), RNA thermodynamics (Abadi
et al., 2017), secondary structure of gRNA (Abadi et al., 2017),
and GC content, which cannot be automatically obtained by
deep learning models.
FIGURE 5 | (A) Visualization of the importance of different nucleotides and epigenetic features at different positions for our model trained on the benchmark dataset.
The colors represent the contribution of the position-specific nucleotides to determining an efficient gRNA. The x-axis shows the positions of the nucleotide in the
sequence. The y-axis lists all possible nucleotides. This representation also applies to. (B) Preference of nucleotide sequences that impact CRISPR/Cas9 gRNAs
activity.
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Visualization method was applied to our model. Note that the
PAM and the core region (1-5 nt adjacent to the PAM) are very
important for gRNA target efficacy. However, we observed that
the most top features were generated by convolving the middle
region of the input matrix. Therefore, we believe expanding the
upstream and downstream of the target sequence in a proper
length can enhance the generalization performance of the model.
For example, Kim et al. found 34 bp (4 bp + PAM + 23bp
protospacer + 3bp) was adequate as the input sequence of their
models in CRISPR/Cpf1 system (Kim et al., 2018).

Several future improvements are expected. First, in the
present study, taking advantage of CNN and SVR, we designed
the relative concise hybrid CNN-SVR architecture. Research on
the deep learning-based model for CRISPR/Cas9 system gRNA
cleavage efficiency prediction is still at an early stage. Numerous
complex and modern deep learning models await exploration.
Second, as pre-training technique has great influence on the final
predictive performance, therefore critical to know on what a
model was trained before use. In general, sequencing-based
models are more general applicable, but are only capable of
predicting the genotype changes rather than functional result.
On the contrary, phenotypic trained models are fit for
recognizing target sites that cause functional changes but
limited to numerical experiments with the same condition as
the training set. However, the amount of available gRNA
knockout data is relatively small, which provides a big
challenge for training the deep learning model. Consequently,
appropriate data augmentation techniques are needed to increase
the training sample size. Third, reasonable encoding schemes,
which provide maximum biological characteristics information
as well as reducing the compute costs, will boost the CRISPR/
Cas9 gRNA activity prediction accuracy. Finally, it is possible
that integration of manual extracted features associated with
gRNA activity can also improve predictive power of deep
learning models.
CONCLUSIONS

In this study, we present CNN-SVR, an efficient and extendable
method to automatically learn the sequence features for CRISPR/
Cas9 gRNA activity prediction. We adopt a merged CNN
Frontiers in Genetics | www.frontiersin.org 12
architecture for gRNA and its corresponding epigenetic
features extraction, and subsequently incorporate SVR classifier
to predict gRNA cleavage efficiency. Compared with CNN, two
state-of-the-art deep neural network based models (e.g.
DeepCRISPR and Seq-deepCpf1) and three machine learning
tools (i.e., sgRNA Designer, SSC, and WU-CRISPR), CNN-SVR
can effectively exploit features interactions from feed-forward
directions to learn deeper features of gRNAs and their
corresponding epigenetic features. Experimental results on the
published datasets demonstrate the superiority of our CNN-SVR
for CRISPR/Cas9 gRNAs on-target activity prediction.
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