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Inflammation plays a pivotal role in the development and progression of cardiovascular diseases, in which, the endothelium
dysfunction has been a key element. The current study was designed to explore the vasodilatory effect of anti-inflammatory
herbs which have been traditionally used in different clinical applications. The total saponins from Actinidia arguta radix (SAA),
total flavonoids from Glycyrrhizae radix et rhizoma (FGR), total coumarins from Peucedani radix (CPR), and total flavonoids
from Spatholobi caulis (FSC) were extracted. The isometric measurement of vasoactivity was used to observe the effects of herbal
elements on the isolated aortic rings with or without endothelium. To understand endothelium-independent vasodilation, the
effects of herb elements on agonists-induced vasocontractility and on the contraction of endothelium-free aortic rings exposed to a
Ca2+-free mediumwere examined. Furthermore, the role of nitric oxide signaling in endothelium-dependent vasodilation was also
evaluated. In summary, FGR and FSC exhibit potent anti-inflammatory effects compared to CPR and SAA. FGR exerts the strongest
vasodilatory effect, while CPR shows the least.The relaxation induced by SAA and FSC required intact endothelia.Themechanism
of this vasodilation might involve eNOS. CPR-mediated vasorelaxation appears to involve interference with intracellular calcium
homeostasis, blocking Ca2+ influx or releasing intracellular Ca2+.

1. Introduction

Inflammation plays a pivotal role in the development and
progression of several cardiovascular diseases, including
atherosclerosis [1]. Numerous epidemiologic studies support
the concept that vascular inflammation correlates with an
increased risk of atherosclerosis [2]. While inflammation
contributes to cardiovascular pathology, the question remains
whether inhibition of inflammation prevents or even reverses
the progress of vascular diseases. Multiple clinical studies
have shown that the use of statins reduces cardiovascular
morbidity and mortality [3, 4]. However, a direct test of the
inflammatory hypothesis of cardiovascular disease requires
an agent that can inhibit inflammation without affecting

other components of atherothrombosis, while also exhibit-
ing an acceptable safety profile. To address this issue, a
cardiovascular inflammation reduction trial (CIRT: Clini-
calTrials.gov.ID# NCT01594333) has begun at the Brigham
and Women’s Hospital and the National Heart, Lung, and
Blood Institute (NHLBI) that proposes the use of very-low-
dose-methotrexate (VLDM, 10mg weekly) on 7,000 patients
with stable coronary artery disease and persistent elevations
of high-sensitivity C-reactive protein (Hs-CRP). Despite its
anti-inflammatory effects, methotrexate is an antimetabo-
lite drug that is used to treat cancers and has significant
side effects at high doses. Therefore, alternative therapeutic
options should be considered.
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The anti-inflammatory traditional Chinese medicines as
well as botanic elements have been studied for years [5–8].
On the other hand, botanically derived elements have been
recognized for the beneficial effect on cardiovascular and
metabolism systems [9, 10]. To further explore the potential of
using those agents on the cardiovascular system, we studied
the vasodilatory effects of four of these herb elements and
reviewed theirmedical applications (Table 1).Actinidia arguta
radix (Tengligen) is a member of the Actinidiaceae family.
Pharmacology research has revealed anticancer, immune reg-
ulation and hypotensive activity from Actinidia arguta radix
[11, 12]. To the best of our knowledge, there are no scientific
reports on the blood-pressure lowering mechanisms of any
Actinidia arguta radix extracts.Glycyrrhizae radix et rhizoma
(Gancao) has multiple therapeutic uses, some of which are
related to its anti-inflammatory properties. These include
treating cough, relieving pain, clearing heat, and eliminating
toxins and poisons [13]. Modern pharmacology research
has also reported that the flavonoids from Glycyrrhizae
radix et rhizome (FGR) have antioxidant properties [14]
with therapeutic benefits including the inhibition of cough
and treatment of bacterial infections [15, 16]; however, its
effects on vascular contractility is unknown. Peucedani radix
(Qianhu) has been an important agent for treating respiratory
symptoms and diseases through the centuries. This herb is
traditionally characterized as dispelling wind and removing
heat, relieving cough, and resolving phlegm [17] and has
been used to relieve the symptoms of influenza and asthma.
Peucedani radix has strong anti-inflammatory properties as
one of its therapeutic mechanisms [18, 19]. Many coumarin
constituents have been extracted from this herb and they
are reported to be responsible, in major, for its biological
activity [20]. It has been noted that Peucedani radix can exert
beneficial effects in hypoxic pulmonary hypertension [21].
However, the action of this drug on the circulatory system
is largely unknown. Spatholobi caulis (Jixueteng) has been
traditionally used for irregular menstruation, numbness, and
inflammatory arthralgia [22]. According to pharmacology
research, it can reduce oxidative stress [23] and inflammation
[24]. Several studies have demonstrated in vitro and in
vivo cytotoxic effects of Spatholobi caulis extracts on tumor
cells [25–28]. It has been suggested that the flavonoids of
Spatholobi caulis (FSC) are themajor active components of its
therapeutic actions [29]. A few studies have demonstrated the
impact of Spatholobi caulis on cardiovascular conditions.This
botanical agent interferes with platelet aggregation via inter-
ference at the glycoprotein IIb/IIIa receptor [30]. It has also
been shown to reduce plasma lipid levels in hyperlipidemic
quail [31]. In a rat model of cerebral ischemia, Lee et al. found
a significant increase in cerebral blood flow after treatment
with Spatholobi caulis [32, 33]. Although it is speculated
that the blockage of calcium channels is responsible for this
action [34], a further vascular pharmacological study of this
botanical agent is warranted.

In the present study, we examined anti-inflammatory
effects of the four botanical extracts by using LPS and
IFN-𝛾-stimulated macrophages. The isometric vasoactivity
was measured to evaluate the vasodilating properties of the

extracts on isolated rat thoracic aortas. The action mecha-
nisms were explored through pharmacological examinations.

2. Methods and Materials

2.1.Herbs andChemicals. Herbswere purchased fromShanghai
Yang He Tang TCM Pieces, Ltd. Company (Shanghai, China)
and authenticated by the Shanghai Institute of Food and
Drug Control. Acetylcholine (Ach), phenylephrine (PE),
NG-nitro-L-arginine methyl ester (L-NAME), indomethacin
(Indo), 1H-[1,2,4]-oxadiazole-[4,3-a]-quinoxalin-1-one (ODQ),
glibenclamide (Glib), tetraethylammonium (TEA), pros-
taglandin 2𝛼 (PG

2𝛼
), BaCl

2
, angiotensin II (AngII),

5-hydroxytryptamine (5-HT), dopamine (Dopa), endothe-
lin-1 (ET-1), RPMI 1640 medium, IFN-𝛾, and lipopoly-
saccharide (LPS) were all purchased from Sigma Chemical
Co. (St. Louis, MO, USA). Ethylene glycol bis (2-aminoethyl
ether) tetraacetic acid (EGTA) and other inorganic salts were
all purchased from Sinopharm Chemical Reagent Co., Ltd.
(Batch number F20060620). Ach, PE, TEA, AngII, 5-HT,
dopamine, and ET-1 solutions were prepared with distilled
water. Glibenclamide andODQ solutions were prepared with
DMSO. Control experiments demonstrated that the highest
DMSO concentration (1 : 400) had no effect on vascular tone.

2.2. Cell Cultures. RAW 264.7 cells were used in current
study for the following considerations. First, the RAW 264.7
cell line is a pure clone that can be grown in a pretty
much identical and indefinitely manner which is necessary
for our drug screen platform. Second, RAW 264.7 cells are
transformed and are not functional for certain signaling
pathways such as activated inflammasomes [35], which will
benefit the purpose of our designed study in which anti-
inflammatory effect of the herbs will be evaluated. RAW
264.7 cells were obtained from the American Tissue Culture
Collection. The cells were maintained in complete RPMI
1640media supplemented with 10% heat-inactivated FBS and
1.5% sodium bicarbonate at 37∘C in a humidified 5% CO

2

atmosphere. Cells were plated at a density of 1 × 105 cells/well
in 96-well plates or 2 × 106 cells in each 30mm dish and
allowed to attach for 2 hours. For stimulation, the media
were replaced with fresh RPMI 1640, and the cells were then
stimulated with 10U/ml of IFN-𝛾 and 100 ng/mL of LPS in
the presence or absence of FGR for the indicated periods.

2.3. Experimental Animal and Blood Vessel Ring Prepara-
tions. Male Sprague-Dawley rats (250–300 g) were obtained
from Shanghai Slac Experimental Company, Ltd. (Shanghai,
China). The animal procedures were carried out in strict
accordance with the Guide for the Care and Use of Labo-
ratory Animals (Shanghai University of Traditional Chinese
Medicine). All experiments were performed under license
from the Government of China.

The preparation of the vascular rings was performed as
described by Zhang et al. [36]. Briefly, the rats were sacrificed
by decapitation and their thoracic aortas were rapidly and
carefully dissected away into ice-cold freshly prepared Krebs-
Henseleit (K-H) solution. The aortas were cut into ring
segments of approximately 3mmwide. For some aortic rings,
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the endothelial layer was mechanically removed by gently
rubbing the luminal surfaces of the aortic rings back and forth
several times.

2.4. Recording of Isometric Vascular Tone. Each ring was sus-
pended by means of two L-shape stainless-steel hooks in an
organ bath filled with Krebs-Henseleit solutionmaintained at
37∘C while being continuously infused with bubbled 95% O

2

and 5%CO
2
.The lower hooks were fixed to the bottom of the

organ bath and the upper wires were attached to an isometric
force transducer connected to a data acquisition system
(PowerLab/4P ADInstruments, Australia) for continuous
recording of tension. The baseline load placed on the aortic
rings was 2.0 g.

Examination of endothelial integrity was performed as
described by Xing et al. and others [37–39]. Briefly, endothe-
lial integrity or functional removal was verified by the
appropriate relaxation response to 10 𝜇mol/L acetylcholine
on 1 𝜇mol/L phenylephrine contracted vessels.

2.5. Experimental Protocol

2.5.1. Nitric Oxide Production. RAW 264.7 cells were plated
in 96-well plates (1 × 105/well) and stimulated with 100 ng/mL
LPS and 10U/mL IFN-𝛾 for 24 h. The cell-free culture media
were collected and analyzed for nitrite accumulation as an
indicator of NO production using the Griess reagent.TheNO
assay was performed as described by Zhang et al. [39]. Briefly,
100 𝜇L of Griess reagent (0.1% naphthylethylenediamine and
1% sulfanilamide in 5% H3PO4 solution) was added to an
equal volume of supernatant from sample-treated cells. The
plates were incubated for 10 minutes and then were read at
540 nm against a standard curve of sodium nitrite. Percent
inhibition was expressed as 100 × [1 − (NO release with
sample − spontaneous release)/(NO release without sample
− spontaneous release)].

2.5.2. Testing the Effects of FGR, FSC, CPR, and SAA on PE-
Induced Constriction. The vasodilatory effects of the four
botanical extracts were tested in both endothelium-intact and
endothelium-denuded rings constricted by PE (1𝜇mol/L).
Once a plateau of PE contraction was attained, each of the
botanical extracts was applied cumulatively according to
a concentration gradient. At the end of each experiment,
forskolin was added to induce blood vessel relaxation and the
tension of aortic rings was recorded.

To attempt to understand the mechanisms of vascular
relaxation, nitric oxide synthase inhibitor L-NAME, cycloox-
ygenase inhibitor indomethacin, soluble guanylyl cyclase
inhibitor ODQ, adrenergic 𝛽-receptor inhibitor propranolol,
KATP blocker glibenclamide, KCa blocker TEA, and KIR
blocker BaCl

2
were individually used to pretreat endothelium-

denuded rings for 15min, respectively, prior to addition of
1 𝜇mol/L of phenylephrine. Afterwards, relaxations induced
by each of the botanical extracts were observed, including the
concentration-dependent vasodilation.

2.5.3. Measuring the Effects of FGR, FSC, CPR, and SAA
on Vasoconstrictors. The endothelium-free aortic rings were

first exposed to constrictors at different concentrations. This
included Dopa (0.1, 1, 10, 100, and 1,000 nmol/L), 5-HT (10,
100, 1000, 10,000, and 100,000 nmol/L), Ang II (0.1, 1, 10, 100,
and 1,000 nmol/L), K+ (10.00, 15.85, 25.12, 39.81, 63.10, and
100.00mmol/L), Vaso (0.1, 1, 10, 100, and 1,000 nmol/L), ET-1
(10, 25, 50, 75, and 100 nmol/L), PG

2𝛼
(1, 10, 100, 1,000, and

10,000 nmol/L), and PE (1, 10, 100, 1,000, and 10,000 nmol/L).
Afterwashing, the ringswere incubated individually with one
of the four botanical extracts at concentrations of EC

50
for

10 minutes. Contractions induced by vasoconstrictors were
again observed. The level of vasoconstriction in response to
60mmol/L KCl was used as the maximum (100%).

2.5.4. Measuring the Effects of FGR, FSC, CPR, and SAA on
Calcium Influx. Endothelium-free aorta rings were washed
and treated with calcium-free, high-K+ solution (contain-
ing 100 𝜇mol/L EGTA and 60mmol/L KCl). Then, the
preparations were incubated and cumulatively exposed to
increasing concentrations of CaCl

2
(0.4, 0.8, 1.2, 1.6, 2.0,

and 2.4mmol/L). The vasoconstrictor responses to CaCl
2

were compared between four groups using each of the
botanical extracts as well as a control group. The level of
vasoconstriction in response to 60mmol/L K+ in normal
Ca2+-media was used as the maximum (100%).

2.5.5. Measuring the Effects of FGR, FSC, CPR, and SAA
on Calcium Release. Endothelium-free aortic rings were
washed and exposed to calcium-free Krebs-Henseleit solu-
tion (containing 100𝜇mol/L EGTA) for 10minutes. After this,
1 𝜇mol/L of phenylephrine was added. This resulted in small
tonic contractions that were mainly caused by the release
of intracellular calcium. Once a plateau of PE contraction
was attained, the bath solution was instead in calcium-
free Krebs-Henseleit solution (containing 100 𝜇mol/L EGTA)
for 5 minutes. Four groups were exposed to each of the
botanical extracts at a concentration of EC

50
in addition to

a control group, and these groups were compared. The level
of vasoconstriction in response to 60mmol/L K+ in normal
Ca2+-media is used as the maximum (100%).

2.5.6. Effect of Four Botanical Extracts on Organ Tissue Via-
bility. The effects of four botanical extracts on the viability of
freshly isolated aortic organ tissue were tested by repeatedly
treating the extracts with the same aortic rings either with or
without endothelium. The multiple treatments did not affect
the contractility of the vessel induced by 60mmol/L K+. The
vasodilation towards acetylcholine of the aortic rings was also
intact after several times of applications of botanical extracts.

2.6. Statistical Analysis. All of results are expressed as mean
± SD. Statistical significance was analyzed using unpaired
Student’s 𝑡-tests for comparisons between two groups. A value
of 𝑃 < 0.05 was considered statistically significant.

3. Results

3.1. FGR, FSC, CPR, and SAA Blocked LPS and IFN-𝛾-Induced
NO Production in RAW 264.7 Cells. 264.7 cells were stim-
ulated by 10U/ml of IFN-𝛾 and 100 ng/ml of LPS that
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Figure 1: Effects of four botanical extracts on nitrite accumulation
in macrophages stimulated by LPS plus IFN-𝛾, ∗𝑃 < 0.05, ∗∗𝑃 <
0.01 versus model group (M), 𝑛 = 6.

can upregulate the expression of iNOS. iNOS has a key
role in inflammatory action. Targeting de novo regulation
of iNOS is the therapeutic strategy to cure inflammation-
related diseases [40]. RAW 264.7 cells were stimulated by
10U/ml of IFN-𝛾 and 100 ng/ml of LPS with and without
pretreatment of four botanical extracts. The concentration of
nitrite was measured at 24 hours after the stimulation. As
shown in Figure 1, total flavonoids from Glycyrrhizae radix
et rhizoma (FGR) and total flavonoids from Spatholobi caulis
(FSC) significantly suppressed the IFN-𝛾 and LPS-induced
production of NO in a dose-dependent fashion. LPS and
IFN-𝛾-induced NO in RAW 264.7 cells were inhibited by
FGR and FSC in a concentration-dependent manner. The
maximal inhibition achieved (at 200mg/L) was 75.06% and
39.44%, respectively, for the two drugs. However, higher
concentrations of total saponin from Actinidia arguta radix
(SAA) and total coumarins of Peucedani radix (CPR) were
required to suppress the IFN-𝛾 and LPS-induced production
of NO.Themaximal inhibition achieved of SAA and CPR (at
200mg/L) was 29.69% and 33.65%, respectively (Figure 1).

3.2. FGR, FSC, CPR, and SAA-Induced Vasodilation. Ach-
elicited relaxation in aorta ringswas used for evaluating intact
and deleted endothelium (Figure 2). FGR and CPR relaxed
isolated aortic rings in a dose-dependent and endothelium-
independentmanner.Themaximumrelaxation by FGRof the
aortic rings with or without endothelium was at concentra-
tions of 91.28% ± 5.15% and 84.36% ± 23.80%, respectively.
The maximum relaxation by CPR of rings with or without
endothelium was at concentrations of 75.51% ± 21.30% and
57.07% ± 18.63%, respectively. The half maximal effective
concentration (EC

50
) was 17mg/L for FGR and 61mg/L for

CPR for aortic rings with absent endothelium as shown in
Figure 3(a).

SAA and FSC relaxed isolated aortic rings in a dose-
dependent and endothelium-dependent manner. The max-
imum relaxation of isolated aortic rings by SAA with and
without endotheliumwas at concentrations of 81.66%±7.36%
and 5.20% ± 1.62%, respectively. The maximum relaxation
induced by FSC with and without endothelium was at
concentrations of 70.70% ± 6.12% and 7.53% ± 14.08%,
respectively. The EC

50
was 45mg/L for SAA and 40mg/L for
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Figure 2: Concentration-response curves showing endothelium-
dependent relaxation by Achwith PE pretreated rat aortic rings with
intact endothelia (+Endo) and without intact endothelia (−Endo).
𝑛 = 5, ∗∗𝑃 < 0.01 versus +Endo.

FSC for aortic rings with intact endothelium as shown in
Figure 3(a).

To evaluate the involvement of the NO/cGMP signaling
in endothelium-dependent vasodilation, the aortic ringswere
pretreated with ODQ (10𝜇mol/L) or L-NAME (100 𝜇mol/L)
for 15minutes each. Soluble guanylate cyclase (sGC) inhibitor
ODQ affected FGR and CPR-induced vasodilation (Fig-
ure 3(a)). The FSC and SAA-induced relaxations of the
aortic tissue were inhibited by pretreatment with ODQ or
nitric oxide synthase blocker L-NAME in a concentration-
dependent manner (Figure 3(b)).

To investigate the involvement of the cyclooxygenase
(COX)/PGI

2
pathway, one set of aortic tissue was pretreated

with indomethacin (10𝜇mol/L), a nonselective inhibitor of
COX. The relaxation curves by FSC or SAA were not signifi-
cantly altered by the blockage of PGI

2
pathway (Figure 3(b)).

3.3. Effects of FGR and CPR on Endogenous Vasoconstrictors.
PE, 5-HT, Ang II, ET-1, PG

2𝛼
, Vaso, and Dopa are all endoge-

nous vasoconstrictors which play key roles in maintaining
vasculature tension [41]. To study endothelium-independent
vasodilation, the effects of herb elements on vasocontrac-
tility were examined. Aortic rings without endothelium
were pretreated with 17mg/L of FGR and 61mg/L of CPR,
respectively. FGR exerted inhibitory effects on the vaso-
contraction by Dopa, Ang II, ET-1, and Vaso in a dose-
dependent fashion (Figure 4(a)). The maximal inhibitions
on vasocontractions by FGR were 38.40%, 50.71%, 59.58%,
and 33.67% for Dopa, AngII, ET-1, and Vaso-induced con-
tractilities, respectively. However, FGR failed to suppress
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Figure 3: Concentration-response curves showing relaxation by four botanical extracts with PE pretreated rat aortic rings with intact
endothelia (+Endo + Control) and without intact endothelia (−Endo + Control). The effects of exposure to 10𝜇mol/L ODQ on the FSC
(b-A), SAA (b-C), FGR (a-A), and CPR (a-B) groups of PE (1𝜇mol/L) pretreated rings (−Endo + ODQ). The concentration-response curves
of FSC (b-B) and SAA (b-D) with pretreatment with Indo.The concentration-response curves of FSC (b-A) and SAA (b-C) with pretreatment
with L-NAME. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01 versus −Endo group, 𝑛 = 4.

vasocontraction induced by PE, PGF, and 5-HT (see Sup-
plemental Figure 1 in Supplementary Material available
online at https://doi.org/10.1155/2017/1021284). CPR signifi-
cantly inhibited vasoconstriction in the presence of Ang II,
Dopa, PGF

2𝛼
, 5-HT, PE, Vaso, and ET-1 by 86.75%, 59.57%,

74.55%, 41.84%, 64.60%, 79.51%, and 60.55%, respectively
(Figure 4(b)).

3.4. Effects of FGR and CPR on Potassium Channels. Potas-
sium channels are important to vascular relaxation.There are
many types of potassium channels in vascular smooth mus-
cle including calcium-activated potassium channel (KCa),
ATP-sensitive K+ channels (KATP), and inwardly rectifying
potassium channels (KIR). To test the possible involvement
of K+ channels in relaxations induced by FGR and CPR,
endothelium-denuded rings were preincubated with KCa
blocker (TEA) at 100mmol/L, KATP blocker (glibenclamide)
at 10mmol/L, and KIR blocker BaCl

2
at 100mmol/L, respec-

tively, for 15 minutes. In each case, the FGR- and CPR-
induced vascular relaxation was not inhibited by gliben-
clamide, TEA, or BaCl

2
. Glibenclamide, TEA, or BaCl2 did

not inhibit vascular relaxation by FGR. We also used gliben-
clamide, TEA, or BaCl

2
to preincubate the endothelium-

denuded rings, which did not inhibit vascular relaxation
induced by CPR (Figure 5).

3.5. Effects of FGR and CPR on Extracellular Calcium Influx
and Intracellular Calcium Release. Endogenous vasocon-
strictors, such as PE, contract vascular smoothmusclemainly
through the activation of receptor-operated calcium channels

(ROCC), while KC1 mainly activates potential-dependent
Ca2+ channels, all of which result in both extracellular
calcium influx and intracellular calcium release. To confirm
whether calcium-mediated vasoconstriction is affected by
FGR and CPR, aortic ring samples denuded of endothelium
were exposed to Ca2+-free K-H solutions, and the addition
of 1 𝜇mol/L PE induced small tonic contractions which were
most likely activated by the release of intracellular Ca2+ from
endoplasmic reticulum stores. CPR reduced PE-induced
contractions better than FGR under extracellular Ca2+-free
condition (Figure 6).

Experiments on depolarization elicited by voltage-
dependent Ca2+-influx in high concentrations of K+ were
tested as shown in Figure 6. The data suggested that the
K+ (60mmol/L) stimulated, Ca2+-induced vasoconstriction
was not inhibited by 17mg/L of FGR. However, the
vasoconstriction was suppressed by 61mg/L of CPR.

4. Discussion

The total saponins from Actinidia arguta radix (SAA), total
flavonoids from Glycyrrhizae radix et rhizoma (FGR), total
coumarins from Peucedani radix (CPR), and total flavonoids
from Spatholobi caulis (FSC) were extracted and used in cur-
rent studies. Four anti-inflammatory herbal extracts relaxed
thoracic aortic ring in a concentration-dependent manner.
The rank order of the EC

50
for relaxation of these extracts was

as follows: Glycyrrhizae radix et rhizoma < Spatholobi caulis
< Actinidia arguta radix < Peucedani radix.

https://doi.org/10.1155/2017/1021284
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Figure 4: Effects of the four botanical extracts on endothelium-denuded aortic tissue that were exposed to endogenous vasoconstrictors.
Inhibited by FGR (a): the contraction curves of Dopa, AngII, Vaso, and ET-1. Inhibited by CPR (b): the contraction curves of Dopa, PGF2𝛼,
AngII, 5-HT, PE, Vaso, and ET-1. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01 versus +Endo control group, 𝑛 = 5.
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Figure 5: Concentration-response curves showing relaxation induced by FGR (a) and CPR (b) compared to control in endothelium-free
tissues pretreated with potassium channel inhibitors: 3mmol/L TEA, 10𝜇mol/L Glib, and 100 𝜇mol/L BaCl

2
, 𝑛 = 6.

The vascular relaxation evoked by SAA is endothelium
dependent and the vasodilatory effect by the element from
Radix and Stemma Actinidia argute (Teng Li Gen) is clocked
by ODQ, a soluble guanylyl cyclase (sGC) inhibitor. Thus,
our study first revealed that a NO-cGMP dependent pathway
is critical for the action of the SAA. As a major component
of saponin from the Actinidia argute, it has been known
that corosolic acid possesses various biological properties,
including antidiabetic, antiobesity, and anti-inflammatory
activities [42–44] The compound’s efficacy in diabetes has
resulted the development of Glucosol (or GlucoFit), a com-
mercially available product primarily marketed in Japan and
the United States as a dietary supplement for weight loss and
blood sugar balance. The inflammatory and oxidative stress
impact metabolism through lipid and glucose metabolism
and insulin resistance which is linked to mitochondrial func-
tion [10]. TEO (2a,-3a,-24-trihydroxyurs-12-en-28-oic acid),
a corosolic acid analogue, declined the mitochondrial mem-
brane potential and altered mitochondrial ultrastructure
which may serve the mechanism for the antioxidative stress
effects [45]. Nevertheless, cGMP has been reported to exert
an action onmitochondrial function [46].On the other hand,
corosolic acid has been shown to suppress glioblastoma cell
proliferation by inhibiting the activation of signal transducer
and activator of transcription-3 and nuclear factor-kappa B
in tumor cells and tumor-associated macrophages corosolic
acid inhibits glioblastoma cell proliferation [47]. Our analysis
of GEO databases (National Cancer Institute) revealed a
statistically significant reduction of sGC transcript levels
in human glioma specimens. Pharmacologically manipulat-
ing endogenous cGMP generation in glioma cells through

either stimulating pGC by ANP/BNP or blocking PDE
by 3-isobutyl-1-methylxanthine/zaprinast caused significant
inhibition of proliferation and colony formation of glioma
cells. Our study proposes the new concept that suppressed
expression of sGC, a key enzyme in the NO/cGMP pathway,
may be associated with an aggressive course of glioma. The
sGC/cGMP signaling-targeted therapy may be a favorable
alternative to chemotherapy and radiotherapy for glioma and
perhaps other tumors [48].

The relaxation induced by FSC was inhibited by L-
NAME, indicating the involvement ofNO in vascular dilatory
action of the extracts. Spatholobi caulis is a traditional blood-
activating and stasis-dispelling herb medicine, which has
been used to treat diseases related to blood stasis syn-
drome by inhibiting platelet aggregation and stimulating
hematopoiesis. A recent study further revealed that the FSC
presented proangiogenic activity in human umbilical vein
endothelial cells (HUVECs) as well as in zebrafish [49].
With an LPS-activated Raw264.7 cells model, the Spatholobi
caulis MeOH extract (containing flavonoids) inhibited the
expressions of iNOS and COX-2 and suppressed the pro-
duction of proinflammatory cytokines, such as IL-1beta and
IL-6 [50]. Genistein, an isoflavonoid from the herb, has
been reported to decrease the generations of ROS and
malondialdehyde [51]. In mammalian cells, NO is produced
by a family ofNO synthases (NOS).ThreeNOS isoforms have
been identified as neuronal NOS (nNOS), inducible NOS
(iNOS), and endothelial NOS (eNOS). In vascular system,
NO is generated from the conversion of L-arginine to L-
citrulline by eNOS, which requires Ca2+/calmodulin, FAD,
FMN, and tetrahydrobiopterin (BH

4
) as cofactors. Under
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Figure 6: Effects of four botanical extracts on calcium channel and cytoplasmic calcium release. The concentration-response curves of
CaCl
2
in Ca2+-free media were inhibited by FGR (a) and CPR (b); maximal (100%) contraction was represented by 60mmol/L KCl-induced

contractions. Effects of four botanical extracts on the transient contraction induced by PE in Ca2+ free media. The effect of PE in Ca2+
free media was inhibited by FGR (c) and CPR (d); maximal (100%) contraction was represented by 60mmol/L KCl-induced contraction.
∗∗
𝑃 < 0.01 versus control, 𝑛 = 5–7.

the inflammatory pathological conditions, the cofactors of
eNOS can be oxidized and eNOS then shifts to produce
superoxide anion instead of NO. This state is referred to as
the “uncoupled state of eNOS” (eNOS uncoupling), which
may further enhance the inflammation [52]. Considering
the significant anti-inflammatory effect of the FSC which
markedly inhibited the expressions of iNOS and proinflam-
matory cytokines, we speculate that the vasodilatory effect

of the FSC may be partially due to its promoting of eNOS
function through antioxidative properties.

Radix Glycyrrhizae (Licorice Root) is the most used herb
element in TCM. Licorice, the root extract of Glycyrrhiza
glabra I., is used as a medicine for various diseases. Anti-
inflammatory as well as antiallergic activities have been
attributed to one of its main constituents, glycyrrhizin.
These activities are mainly ascribed to the action of the
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aglycone, beta-glycyrrhetinic acid. beta-Glycyrrhetinic acid
has a steroid-like structure and is believed to have immuno-
modulatory properties [53]. Glycyrrhizin inhibits liver cell
injury and is given intravenously for the treatment of chronic
viral hepatitis and cirrhosis in Japan [54, 55]. It has also
proven itself effective in the treatment of autoimmune hep-
atitis in one clinical trial [56]. We demonstrate a signifi-
cant vasodilatory effect of FGR (total flavonoids from Gly-
cyrrhizae radix et rhizoma) and reveal that pretreatment with
FGR shifted contraction curves of Dopa, AngII, Vaso, and
ET-1 to the right.Those endogenous vasoconstrictors regulate
vascular tone via their respective receptors (mostlyGprotein-
coupled) in smooth muscle. Although overall mechanisms of
action are different, G protein-coupled receptors as a whole
activate PLC, DAG, and IP3. DAG elicits protein kinase C
by activating myosin light chains. IP3 induces intracellular
calcium release from the intracellular calcium pool or acti-
vates VDCCs in the cell membrane to regulate intracellular
calcium concentration and vascular tone [57]. However, FGR
failed to block Ca2+ influx or releasing intracellular Ca2+.
Glycyrrhetic acid, the active metabolite in licorice, inhibits
the enzyme 11-𝛽-hydroxysteroid dehydrogenase enzyme type
2 with a resultant cortisol-induced mineralocorticoid effect
and the tendency towards the elevation of sodium and
reduction of potassium levels. This aldosterone-like action is
the fundamental basis for understanding the pharmacology
of the extract [58]. However, the glucocorticoids inhibits
eNOS gene expression and reduces NO release through
the glucocorticoid receptor mediated signaling [59]. The
glucocorticoids also directly potentiate contractions of rabbit
and dog aortic strips to epinephrine and norepinephrine
[60, 61].Thus, the specific mechanisms underlying relaxation
of vascular smooth muscle by FGR need further study.

Khellactone (dihydroseselin) coumarins possess various
activities, including calcium blocker and antiplatelet aggre-
gation [62, 63]. Khellactone coumarins with 3S, 4S con-
figuration (praeruptorins A, B, C, and D) were first isolated
from dried roots of P. praeruptorum (Peucedani radix) which
is commonly used in Traditional Chinese Medicine (TCM)
for treatment of cough and upper respiratory infections
and as an antipyretic, antitussive, and mucolytic agent.
By using spontaneously hypertensive rats as experimental
model, praeruptorin-C improved the vascular hypertrophy
by decreasing the size of SMCs cells, collagen content, and
increasing NO production [64]. The vasodilatory effects of
praeruptorin-A was confirmed in isolated rabbit tracheas
and pulmonary arteries, as well as in swine coronary artery
[65, 66]. In our experimental setting, total coumarins from
Peucedani radix (CPR) induced vascular relaxation may not
be related to sGC/cGMP but is associated with blocking of
both VDCC and ROCC.

5. Conclusion

The present study shows that extracts from four herbs
relaxed thoracic aorta tissues isolated from rats. Glycyrrhizae
radix et rhizome and Peucedani radix induced vasorelaxation
independent of intact endothelium; however, their respective
mechanisms of action appear to be different. Vasorelaxation

induced by Peucedani radix appears to be mainly related
to effects on intracellular calcium homeostasis, specifically
the inhibition of Ca2+ influx and intracellular Ca2+ release.
Dopa-, AngII-, Vaso-, and ET-1 induced vasoconstrictionwas
inhibited by Glycyrrhizae radix et rhizome, but details of its
mechanism of action need further study. The vasorelaxation
induced by Spatholobi caulis and Actinidia arguta radix is
endothelium-dependent, and their mechanisms of relaxation
may involve the NO-cGMP pathway. The distinct vasodila-
tory effects of four anti-inflammatory botanical extracts are
significant and novel which will pave the way not only for
further mechanism study, but also for directing of new herb
formula for preventive and/or therapeutic usage.
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