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For the past decades, heart diseases remain the leading cause of death worldwide. In

the adult mammalian heart, damaged cardiomyocytes will be replaced by non-contractile

fibrotic scar tissues due to the poor regenerative ability of heart, causing heart failure

subsequently. The development of tissue engineering has launched a new medical

innovation for heart regeneration. As one of the most outstanding technology, cardiac

patches hold the potential to restore cardiac function clinically. Consisted of two

components: therapeutic ingredients and substrate scaffolds, the fabrication of cardiac

patches requires both advanced bioactive molecules and biomaterials. In this review, we

will present the most state-of-the-art cardiac patches and analysis their compositional

details. The therapeutic ingredients will be discussed from cell sources to bioactive

molecules. In the meanwhile, the recent advances to obtain scaffold biomaterials will

be highlighted, including synthetic and natural materials. Also, we have focused on the

challenges and potential strategies to fabricate clinically applicable cardiac patches.

Keywords: biomaterials, cardiac patch, myocardial infarction, cell therapy, cardiac tissue regeneration

INTRODUCTION

Heart disease remains a leading problem threatening millions of people worldwide (1–3). Due
to the lack of regeneration ability, cardiomyocytes (CMs) in adult mammalian heart can hardly
recover from ischemic injuries, like myocardial infarction (MI) (4–7). Suffered from such an
irreversible cardiac muscle death, CMs will be gradually replaced by fibrotic scar tissues (8–10).
The loss of the contractile capacity leads to the dysfunction of heart and causes heart failure
eventually (11, 12). Thus, it is still a challenge to explore novel therapeutic methods for
myocardium regeneration.

Preclinical studies have demonstrated the therapeutic performance of several approaches to treat
MI, such as the injection of stem cells (13, 14), genes (15, 16) and growth factors (17). However,
these therapeutics always suffer from low stability and short half-lifetime. Hence, delivery methods
are highly demanded to achieve better therapeutic performance. In virtue of the engineered
biomaterials, cardiac patches show promising potential in promoting cardiac function (18, 19).
The component of a cardiac patch can be simply divided into two parts: substrate and therapeutic
ingredients (20). With the development of fabrication technologies, more andmore cardiac patches
with excellent therapeutic performance have been developed (21) (Figure 1). The therapeutic
ingredients for cardiac patches range from cells (such as skeletal myoblasts, mesenchymal stem cells
and human pluripotent stem cells) to bioactive molecules (including growth factors, microRNA
and extracellular vesicles) (22–24). A large number of biomaterials used to fabricate cardiac patches

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2020.610364
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2020.610364&domain=pdf&date_stamp=2020-11-27
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kcheng3@ncsu.edu
https://doi.org/10.3389/fcvm.2020.610364
https://www.frontiersin.org/articles/10.3389/fcvm.2020.610364/full


Mei and Cheng Recent Development in Therapeutic Cardiac Patches

FIGURE 1 | Cardiac patches fabricated from different types of cells and bioactive molecules with various scaffolding materials.

have emerged during the last decade (25–28). Whether natural
or synthesized, these scaffolding materials offer a suitable
environment for therapeutic ingredients (29–31). Polymers are
the most used materials for cardiac patch fabrication (32,
33). Some patches are generated from in vivo sources like
collagen (34), fibrin (35), decellularized ECM (36) and even cell
sheets (37), providing outstanding biocompatibility compared to
synthesized materials (38). In this review, both the therapeutic
ingredients and biomaterials will be discussed (Table 1), but
topics such as disease modeling (58), bioreactor stimulation (59),
microphysiologic systems (60) will not be included. In addition,
we will focus on the limitations of current cardiac patches to
clinical application.

CELL SOURCES

The first type of cell reported for heart regeneration was skeletal
myoblasts (61, 62). Up to now, the functional benefits of
skeletal myoblasts to treat ischemic heart diseases have been
proved in clinical trials (63, 64). Since then, cell therapy for
cardiac regeneration has attracted wide interest (65). More
and more types of cells have been studied, including cardiac
stem/stromal cells (66), mesenchymal stem cells (MSCs) (67)
and human pluripotent stem cells (68). To enhance the cellular
retention and survival ratio, cell based cardiac patches have been
developed (69–72).

Cardiac Stem/Stromal Cells
Cardiac stem/stromal cells, including cardiosphere-derived cells
(CDCs) (73), stem cell antigen-1+ (Sca1+) cells (74) and lslet-
1+ (Isl-1+) cells (75), have shown preclinical and clinical
evidence in ischemic tissue preservation and anti-remodeling.
Nowadays, the transplantation of CSCs for heart repairing has
been achieved clinically, however, the adverse immunoreaction
severely hampers the treatment performance (76, 77). One of
the strategies to enhance the safety during CSCs transplantation
is to introduce nanogel for encapsulation. In a recent work by
Tang et al. (78), human CSCs (hCSCs) were encapsulated in
thermosensitive P(NIPAM-AA) nanogel. It was found that with
the injection of nanogel, barely systemic inflammation or local
T cell infiltrations was elicited by hCSCs in immunocompetent
mice. Compared to xenogeneic hCSCs injection in saline, these
nanogel-encapsulated hCSCs exhibited largely reduced adverse
effect, while still preserving cardiac function and reducing scar
sizes in mouse and pig models. Another limitation of CSCs
therapy in cardiac diseases is the low cellular retention and
survival ratio (79). Cardiac patch provides an excellent platform
for cell engraftment improvement. For example, a vascularized
cardiac patch was recently developed, which shows promising
benefits to treat ischemic heart injury (80). This patch was
fabricated by encapsulating the biomimetic microvessels (BMVs)
and CSCs in a fibrin gel. As tested in a rat MI model, the
myocardial capillary density was improved significantly after
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TABLE 1 | Representative studies of cardiac patches in recent years.

Cell/Therapeutics type Scaffolding material type Animal model Major findings References

Cardiac stromal cells PVA microneedle patch Rat and porcine Provide channels for the communication

between the patch and the host myocardium

(39)

Synthetic cells ECM Rat and porcine Long term storage ability and clinically feasible (40)

Mesenchymal stem cells ECM/SF with Au NPs Rat Improve the cell proliferation and migration (41)

Collagen with VEGF and bFGF Rat Pro-angiogenic, anti-apoptotic and

-inflammatory

(42)

PPy coated PCL Rat Accommodate the strains and stresses of the

human myocardium

(43)

MSC-fibrin and collagen Rat Improve the retention and reparative functions

of MSCs

(44)

ECM Rat In vivo primed hepatocyte growth factor MSCs

for better therapeutic performance

(45)

PEGDMA Mouse Gel patch with microchannels for better

attachment

(46)

Human pluripotent stem cells ECM Rat The first non-supplemented bioink for 3D

printing

(47)

Fibrin scaffold Porcine Clinically relevant size (4 × 2 cm × 1.25mm) (48)

Biomaterial-free Rat 3D-bioprinted biomaterial-free cardiac tissue

patch

(49)

Fibrin and human Microvessel patch Mouse Rapidly perfused in vivo (50)

A blended fibrin and collagen scaffold PDMS molds An analytical method to better understand

cell-scaffold interactions

(51)

Cell spheroids Rat Biomaterial-free cardiac tissues created by a

novel net mold system

(52)

Scaffold free In vitro A scalable method to fabricate scaffold-free

human cardiac tissue patches

(53)

PGS Rat Revealed the advantages of PGS for stem

cell-based cardiac regeneration

(54)

SDF-1 Electroactive polymers In vitro Freestanding electronics integrated into a 3D

nanocomposite scaffold

(31)

HGF and IGF-1 Collagen scaffold In vitro Promote the expansion of CSCs (55)

Exosomes PGN hydrogel Rat Heart function improved with human umbilical

cord MSCs derived exosomes

(56)

Shear-thinning gel Rat Enhanced efficacy of exosome-mediated

myocardial preservation

(39)

Silk fibroin hydrogel Mouse Blood perfusion promoted by miR-675

contained exosomes

(57)

BMV–CSC patch therapy, which can be ascribed to the paracrine
factors release.

Mesenchymal Stem Cells
With the strong ability of differentiation and immunoprivileged
nature, MSCs have been the most studied cell type for
cardiac cell therapy in clinical trials (81, 82). MSCs can
be derived from various organs and tissues, especially bone
marrow and adipose tissue (83, 84). According to current
researches, the therapeutic effects of MSCs are achieved through
the secretion of paracrine effectors (such as growth factors)
(85). To achieve better treatment, various methods have been
developed to extend the therapeutic potential of current MSCs
(86). Primed MSCs through genetically engineered hepatocyte
growth factor–expressingMSCs (HGF-eMSCs) was developed by

Park et al. (45), showing largely improved vasculogenic ability
and enhanced cell viability. After encapsulated in a cardiac
patch, this kind of MSCs promoted vascular regeneration and
repaired cardiac function within MI hearts. Another issue for
the clinical use of MSCs is their restricted retention ability after
transplantation into failing hearts. Recently, a minimally invasive
approach was developed by Lee et al. (87), which utilized an array
of microneedles with an outer shell [poly(lactic-co-glycolic) acid]
and an internal gelatin methacryloyl (GelMA)-MSC mixture
(GMM). The mechanical strength and the regenerative ability
were demonstrated in vitro and in vivo. Apart from bone
marrow, other tissues also exhibit MSCs derived potential,
including adipose, placenta, and amnion (88). Cells derived from
different sources present diverse treatment performance after
transplantation into MI animals (89).
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Pluripotent Stem Cells
Human pluripotent stem cells, including embryonic stem cells
(ESCs) and induced-pluripotent stem cells (iPSCs), have been
proved to generate various types of cells in the area of
regeneration (90). ESCs, derived from inner cell mass of pre-
implantation blastocyst, show the potential of differentiation
into cardiomyocytes (91). Compared to adult cardiomyocytes,
these differentiated cardiomyocytes have similar physiological
characteristics and can beat spontaneously (92). ESCs can also
differentiate into other types of heart cells, such as endothelium
and vascular smooth muscle (93). Moreover, these cells show
excellent ability in releasing paracrine factors for heart repair,
including growth factors, antifibrotic and antiapoptotic (94).
Another technology to fabricate ESCs is parthenogenesis-asexual,
which has successfully achieved in mice and non-human
primates through chemically stimulated (95).

Similar to the chemical stimulation process in producing
ESCs, the generation of iPSCs can be achieved by introducing
different transcriptional regulators (such as Oct4, Sox2, Klf4 and
Myc) (96). Taking the advantage of derived patients’ cells, the
utilization of iPSCs in treating heart diseases benefits a lot from
immunological aspect (97). The clinical potential of human iPSCs
(hiPSCs) derived cells encapsulated patches have been explored.
By suspending three different cardiac cells (cardiomyocytes,
smooth-muscle cells, and endothelial cells) derived from hiPSCs
in fibrin scaffold, a clinically relevant size (4 × 2 cm × 1.25mm)
human cardiac muscle patches (hCMPs) was fabricated (48). It
was found that the infarct region was significantly reduced after
the transplantation of this patch. Because of the reduction in
LV wall stress, cardiac function was largely restored while the
arrhythmogenicity showed little change. The safety of hiPSCs
in clinical trial has been confirmed, while the enhancement of
therapeutic efficacy is still on the way (98, 99). A dual approach
was explored in recent study (100). Cardiomyocytes derived
from human induced pluripotent stem cells (hiPSC-CMs) along
with a hMSCs patch were applied in the meantime in MI rat
model. Since the hMSCs patch provided a microenvironment
for hiPSC-CMs to survive, the cardiac function of rat was
better restored then hiPSC-CMs along. Because of the ethical
controversy and immunological issues, it has been reported that
iPSCs takes more advantages in heart regeneration than ESCs
(101). To better understand the bioactivity of iPSCs,more specific
characterization like genetic programming is highly demanded.

ACELLULAR PATCH

Instead of the direct interact of cells with host cardiomyocytes,
paracrine factors released by cells play a key role in heart repair
(102). Among these factors, growth factors (GFs), extracellular
vesicles (EVs) andmicroRNAs aremostly studied (103). Different
from cellular patches, acellular patches integrated with paracrine
factors exhibit more direct therapeutic effects (104). In addition,
patches fabricated with only biomaterials also show passive
restrained ability toward injured myocardium (105).

Growth Factors
As one of the paracrine effectors, the significant role of growth
factors in multiple cellular processes have been determined.

Accumulating evidence supports that growth factors, such
as vascular endothelial growth factor (VEGF), hepatocyte
growth factor (HGF) and insulin-like growth factor-1 (IGF-1),
regulate the growth, survival and migration of cardiomyocytes
(106). To protect growth factors (mostly proteins) during
the delivery process as well as target the tissue site, growth
factors encapsulated cardiac patches have attracted tremendous
attention (107). Before clinical trials, the efficiency of growth
factors integrated cardiac patches have been evaluated via
various animal models. For example, a growth factor embedded
nanofibrous patch was developed and tested in a rabbit MI model
(107). With the rising death rate of cardiac diseases, the on-
demand release of therapeutic factors shows significant in clinical
treatment. Cardiac patches integrated with complex electronics
were fabricated, allowing the on demand releasing of growth
factors (31). With the electronics, this patch also performed
cellular electrical activities recording ability, facilitating the
electrically triggered cell contraction. Cardiac patches provide
a protection for growth factors from easy elimination. Due to
the pleiotropic functions of growth factors (108), local delivery
through cardiac patch shows significance to avoid unexpected
adverse effects.

Extracellular Vesicles
Extracellular vesicles (EVs) are miniscule vesicles with a diameter
between 30 and 150 nm (109). It is highlighted that EVs
play a key role in cell communication, regulating various
intercellular activities (110). The certain EVs markers are still
under exploration because of their complex overlapping surface
properties. Based on the surface proteins, EVs can be generally
divided into three types: apoptotic bodies, microvesicles, and
exosomes (111).

Among all the EVs, exosomes secreted by stem cells have
been studied extensively (112). Exosomes are phospholipid
bilayer-enclosed vesicles with contents inside, such as proteins,
mRNA and miRNA (113). Recent studies have illustrated that
it is paracrine factors rather than MSCs themselves contribute
to treating cardiovascular diseases (114). Moreover, lots of
pre-clinical evidence confirmed the cardiac function restored
ability through exosomes that extracted from MSC conditioned
media, demonstrating the potential cardiac repair performance
of exosomes (115). In addition to MSCs, exosomes secreted
by other cell sources, including iPSCs derived CMs, hESCs
derived CMs and monocyte, also help with cardiac repairing.
For example, a hydrogel patch encapsulated with EVs derived
from iPSCs derived CMs was developed by Liu et al. (104),
which allowed continuous treatment during the whole phase
of heart injury. In another work, PGSA-g-EG polymer was
investigated for the fabrication of cardiac patch (116). With the
loading of EVs, this adhesive cardiac patch exhibited a controlled
release behavior for more than 14 days. As evidenced by the
miRNA analysis, exosomes secreted by iPSCs derived CMs and
hESCs derived CMs have the same functional miRNAs for heart
repair (117). Because of the short half-life, current therapies
utilizing exosomes lack long-term effect. Although recent studies
have developed various delivery methods for exosomes (118),
explorations should still focus on fabrication technology to meet
clinical demands.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 November 2020 | Volume 7 | Article 610364

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Mei and Cheng Recent Development in Therapeutic Cardiac Patches

MicroRNAs
MicroRNAs (miR) are a kind of single-stranded RNAwith a small
number of nucleotides (usually 20–25) (119). Previous researches
have shown that miRs play an important role in regulating
downstream pathways of messenger RNA through RNA
interference, indicating effective cell modification ability (120).
In particular, both the survival and apoptosis of cardiomyocyte
are under the control of the miR network, such as miR-24,
-199a, and -590 (121). Thus, miR related therapy for myocardial
infarction (MI) has been identified as a promising treatment
method (24). Despite the feasibility of miR therapy, several issues
need to be addressed before further practical studies. Since naked
miRs are unstable during in vivo circulation, the leading challenge
would be how to deliver miRs to the targeted site with enhanced
retention (122).

To overcome these obstacles, several methods have been
investigated, including chemical modification and carrier
development (123). For example, a recent study showed that
with the assistance of a tissue-engineered three-dimensional
(3D) culture environment, the reprogramming efficiency of
miRs from cardiac fibroblasts into functional cardiomyocytes
was enhanced (124). Such an improvement was confirmed
from both gene and protein levels by the assessment of cardiac
differentiation markers, which provided a fundamental basis
for the fabrication of cardiac patch with miRs. Given that
several human miRs, such as hsa-miR-199a-3p, exhibited
therapeutic potential in cardiac regeneration, a pig MI
model was constructed for more clinically relevant research
(15). In this 1-month study, the de-differentiation and
proliferation of cardiomyocyte were observed, indicating
the expression of human microRNA-199a contributed to
restoring cardiac function. However, unexpected sudden
arrhythmic death occurred among treated pigs, which required
further careful control on the dosage. The delivery of miRs
with cardiac patches is appealing for cardiac restoration, but
more detailed studies are required to better understand this
emerging technology.

Acellular Patch Without Biomolecules
In spite of providing a pathway for cellular or biomolecule
delivery, cardiac patches fabricated with only acellular
biomaterial matrices have shown potential to treat MI (125).
Served as mechanical-structural supports, such cardiac patches
without any external therapeutic agents exhibited passively
restraining ability toward infarcted ventricle, protecting left
ventricular from remodeling and dilation (126). To understand
the mechanisms as well as maximize the therapeutic efficiency,
a simulation-guided strategy was carried out recently (21).
In this study, finite-element simulations were applied to
simulate the remodeling of left ventricular, which accounts
for the balanced material properties between fluid and solid.
Benefit from such design, a viscoelastic adhesive patch was
fabricated, which not only restrained dilatation but also restored
the cardiac function after MI. To match the mechanical
properties of heart tissue, technologies such as excimer laser
microablation was applied for the fabrication of mechanical
support cardiac patch (127). By virtue of such micropattern

strategy, the patch was determined with a negative Poisson’s
ratio, showing priority in conforming to the mechanics of
the heart. Although the design of such matrices only cardiac
patches is to provide mechanical support to reduce pathological
cardiac remodeling, their contributes to providing a favorable
physiological environment for biomolecule delivery cannot be
ignored (105).

MATERIALS FOR PATCH FABRICATION

The exploration of materials used to fabricate cardiac patches
never stops. Due to the unstable bioactivity of cells or
other biological molecules, a substrate is highly needed
to provide cellular microenvironment as well as enough
mechanical support (128). Some key points should be taken
into consideration when select suitable materials, such as
biocompatibility, biodegradability and mechanical strength
(129). In the meantime, materials whether synthetic or natural,
must be deliberated carefully to meet the demands of clinical
applicability (130), such as easy to acquire and long-term storage.
In this section, biomaterials for cardiac patch fabrication will be
discussed from synthetic to natural ones.

Synthetic Materials
Taking advantages of reproducible synthesis processes, synthetic
materials with stable physical and mechanical properties have
shown potential to meet clinical requirements (131). A lot
of synthetic materials for tissue engineering have been well-
studied, such as polymer poly(vinyl alcohol) (PVA), poly(lactic-
co-glycolic) acid (PLGA), poly-(L-lactic) acid (PLLA) and
polyurethanes (PU) (132).

With the strong mechanical properties, it is possible to
make a linker between cells and host myocardium through
a synthetic polymer patch (133). Currently, how to deliver
secreted factors efficiently to MI region remains a challenge
in cardiac stem cell therapy. Microneedle patch provides such
an opportunity for drug delivery. Recently, a cardiac stromal
cell-encapsulated microneedle patch (MN-CSCs) was fabricated
through micromolding approach, using biocompatible PVA (39).
Microneedle played a role as the channels between cells and
the host myocardium, from which cells got sufficient nutrients
to survive and released more paracrine factors to restore the
heart function.

Due to the strong mechanical strength, acellular epicardial
patches also show excellent therapeutic efficacy to help rebuilt
damaged cardiac tissues. A viscoelastic adhesive patch was
developed, exhibiting LV remodeling reversing ability in both
acute and subacuteMI ratsmodel (21). This patch wasmade from
ionically crosslinked transparent hydrogel with a low dynamic
modulus. Through finite-element simulations, this acellular
epicardial patch was designed at the “gel point,” contributing
to the balance between fluid and solid properties. Without
biomolecules or cells, cardiac patches made from synthetic
materials have priorities than natural materials for clinical
application, such as long-term storage, stable quality and easy
manufacturing process.
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Natural Materials
Different from synthetic materials, natural materials such
as collagen, fibrin, alginate, hyaluronic acid, gelatin, and
decellularized extra-cellular matrix (ECM) show superior
biocompatibility (134). Whether derived from in vivo sources
or naturally occurring, these materials retain the structure to
mimic originally cellular microenvironment. Notably, materials
generated from biological sources offer extra protection for
therapeutics to escape from immune inflammation, allowing
improved therapeutic function (135).

Collagen is the most widely used natural material for
cardiac patch fabrication, which mainly exists in cardiac ECM.
Due to the minimal antigenicity and chemotactic properties,
collagen can provide a tissue-like environment for cells (136).
The latest technology to fabricate collagen patches including
electrospinning, which requires electrically charging. Different
cells can be seeded into electrospun nanofibrous collagen
scaffolds, such as iPSCs and MSCs (39). Benefit from paracrine
signaling and force transmission, collagen scaffold patches show
potential therapeutic performance in treating both MI and
dilated cardiomyopathy (DCM). The development of conductive
collagen cardiac patch has become a tendency. With the addition
of conductive components, such as carbon nanotubes, metal
nanoparticles and graphene oxide, the online monitoring of
tissue statues can be achieved (127). Other in vivo source natural
materials, like fibrin, HA and alginate, also exhibit therapeutic
potential for clinical studies.

Currently, the most studied biomaterials for cardiac patch
fabrication is decellularized ECM (137). Either derived from
cardiac sources (such as myocardium and pericardium) or non-
cardiac sources (small intestinal submucosa and urinary bladder
matrix), decellularized ECM provides an ideal environment to
support cardiac restore processes (138). In addition, recent
studies also demonstrated the vital roles of decellularized ECM
in cardiac repair. Inspired by the excellent regeneration ability of
neonatal mouse heart, researchers found that one of the proteins
in neonatal extracellular matrix named agrin, played a key role in
promoting heart regeneration (139). This kind of protein helped
with the disassembly of the dystrophin–glycoprotein complex,
thus promoted the division of cardiomyocytes in vitro. For
cardiac stem therapy with patches, the difficulty in cell viability
retaining becomes the limitation for clinical trials. To solve
this problem, a strategy using synthetic cardiac stromal cells
(synCSCs) was generated to fabricate an off-the-shelf therapeutic
cardiac patch (40). Through the encapsulating of synCSCs on
to the decellularized ECM, the potency of this fully acellular
artificial cardiac patch (artCP) was well-maintained for a long
time. The cardiac repair function of the artCP was confirmed in
a rat MI model. Furthermore, the clinical potential of this artCP
was revealed in a porcine model with MI.

The strong physical properties of decellularized ECM
allow the application of novel technologies during fabrication
process, such as 3D Printing. For cardiac tissue engineering,
immunological problem remains an unmet gap for patients.
Recently, personalized bioink for 3D printing was developed
from ECM hydrogel (47). Since this ECMwas generated from the
patient’s personalized omental tissue, the biocompatibility of this

bioink was guaranteed. With the addition of two different types
of cells, cardiac patch with enhanced vascularization ability was
printed. Moreover, cellularized hearts with a natural blood vessel
architecture was printed via this kind of bioink. Such technology
extended the further potential of ECM for tissue engineering in
personalized therapy.

Scaffold-Less Cardiac Patches
Patches made from scaffold materials have shown priority
in improving cell engraftment, however, problems remain
in the cause of undesirable arrhythmogenicity and immune
rejection toward xenogeneic materials (140). To avoid these
drawbacks, the strategy to develop scaffold-less cardiac patches
has been developed. As one of the most promising scaffold-less
cardiac patches, cell sheets have demonstrated some advantages,
including a more biomimetic microenvironment and better
cell-cell communication (37). Currently, the fabrication of cell
sheets involves a specially coated cell culture dish, which is
covered with a temperature-responsive polymer named poly-N-
isopropylacrylamide (141). When temperature changes from 37
to 20◦C, the surface of this polymer will turn from hydrophobic
to hydrophilic because of the conformation transformation.
Cells only adhere to the hydrophobic surface and detach
from the hydrophilic surface. During the fabrication process,
cells are firstly cultured under 37◦C until the formation of a
confluent film. Afterwards, cells are placed at 20◦C until detached
spontaneously. Eventually, the cell sheets can be obtained in the
upper layer of the media.

The first in-man study of cell sheets was reported in 2012
(142), in which a male with idiopathic dilated cardiomyopathy
received the transplantation of cell sheets made from his skeletal
myoblasts. Showing the treatment efficiency and safety, cell sheets
made from different cell types have been reported, like myoblasts,
cardiomyocytes and stem cells. Recent studies have demonstrated
the advantages of adipose-derived stem cells (ASCs) in heart
regeneration (143). The transplantation of ASCs sheet was
developed, which showed restoration ability toward the injured
heart. It has been proved that the enhanced secretion of VEGF
induced by norepinephrine was the functional process for ASCs
sheet therapy. In addition to the secretion of paracrine factors,
heart therapy via cell sheets also benefits from the prevention
of arrhythmogenicity. It was demonstrated for the first time
by Suzuki et al., that skeletal myoblasts (SMBs) sheets not
only restored heart function but also prevented ventricular
arrhythmias by maintaining the regular electrical conductance
(144). To better understand the therapeutic effects of cell sheets,
the mechanism studies remain urgent. In addition, it is necessary
to seek novel fabrication technology to meet the complicated
requirement of clinical trials.

CHALLENGES AND FURTHER DIRECTION

Although cardiac patches have shown promising performance in
pre-clinical studies in cardiac repair, problems still remain before
their clinical implementation (145). Therapeutic integrates
benefit a lot from cardiac patches with enhanced delivery
efficiency, however, the implementation of most cardiac patches
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requires open-chest surgery. As known to all, patients with MI
may be not strong enough to recover from the surgical caused
damage and inflammation, which brings panic to patients with
psychological anxiety (146). Thus, minimally invasive delivery
of cardiac patches is highly needed. Not only the implantation
method should be improved, novel fabrication technology as
well as materials should be the strong back support. More
precious technologies, such as 3D printing and photoetching, are
highly recommended for patch fabrication (147). Materials
with shape memory ability and stronger mechanical
property would be the next generation of biomaterials for
cardiac patches.

Although it has been confirmed in animal models, the
biocompatibility of current cardiac patches is still far below
satisfaction and unable to meet the clinical requirement (148).
On the one hand, the integration ability of patches with host
myocardium is important in enhancing therapeutic efficiency,
like improving cardiomyogenesis and angiogenesis at injured
heart. On the other hand, it should be highly addressed that
the tissue adhesion after cardiac patch transplantation appears
commonly, leading to severe side effects (149). It is an immune
response since patches are still foreign constituents. This would
be the vital concern before cardiac patches can be applied
clinically. Currently, researchers have discovered that surface
modification will largely reduce the tissue adhesion (150),
which may be good candidates for polymer cardiac patches.
The biodegradation should also be taken into consideration,
as immune rejection will last unless the patches can be
degraded after treatment (151). Such improvement requires the

biodegradable of materials themselves, while having little impact
on therapeutic period.

In addition, long-term storage is necessary for clinical
application. Because of the special requirements for cell culture,
current cell therapy with cardiac patches are time-consuming
and mostly can only be achieved in laboratory (152). How to
retain the viability and functionality of cells remains a block for
the large-scale production of such therapeutic patches. Although
various studies have found that cell retention and engraftment
are enhanced to some extent with cardiac patches (153), the
therapeutic efficiency is still far below clinical requirement.
Artificial materials have a similar function to cells that are highly
needed, which requires more mechanism studies of cell therapy
for heart regeneration. In conclusion, the development of cardiac
patches paves the way for cardiac repair and gives inspiration for
heart regeneration.
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