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Abstract: Origin traceability is an important step to control the nutritional and pharmacological
quality of food products. Boletus edulis mushroom is a well-known food resource in the world.
Its nutritional and medicinal properties are drastically varied depending on geographical origins.
In this study, three sensor systems (inductively coupled plasma atomic emission spectrophotometer
(ICP-AES), ultraviolet-visible (UV-Vis) and Fourier transform mid-infrared spectroscopy (FT-MIR))
were applied for the origin traceability of 184 mushroom samples (caps and stipes) in combination
with chemometrics. The difference between cap and stipe was clearly illustrated based on a single
sensor technique, respectively. Feature variables from three instruments were used for origin
traceability. Two supervised classification methods, partial least square discriminant analysis
(FLS-DA) and grid search support vector machine (GS-SVM), were applied to develop mathematical
models. Two steps (internal cross-validation and external prediction for unknown samples) were
used to evaluate the performance of a classification model. The result is satisfactory with high
accuracies ranging from 90.625% to 100%. These models also have an excellent generalization ability
with the optimal parameters. Based on the combination of three sensory systems, our study provides
a multi-sensory and comprehensive origin traceability of B. edulis mushrooms.
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1. Introduction

In many countries, specific regulations have been introduced to protect the geographical
indications of agricultural products and foodstuffs in order to satisfy consumer requirements. Edible
mushrooms are one of the most popular food resources that are very appreciated by consumers due
to their aromatic flavor, and abundant nutritional and medicinal properties. As widely-consumed
food products, their origin traceability is also an important step for assuring quality and safety. Firstly,
their chemical constitution and corresponding nutritional and pharmacological functions obviously
vary depending on geographical origins [1–3]. There is another reason for discriminating based
on geographical origins. The accumulation of many beneficial and hazardous mineral elements is
obviously different between different geographical origins [4,5].

Boletus edulis Bull, belonging to Boletus, is one of the most well-known edible mushrooms in
Europe, North America and Asia. Compared with other mushrooms, this species has higher nutritional
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and pharmacological values [6–8]. Usually, it is appreciated as a flavorsome and delicious food material
in cooking and, for example, it has a remarkable importance in the Italian culinary tradition [9]. Hence,
many modern studies are focusing on them, demonstrating that their fruiting bodies are rich in many
beneficial constituents such as proteins, polysaccharides, minerals, amino acids [10,11]. They have
also been proved to show many pharmacological activities such as antioxidant, antibacterial and
anti-inflammatory [12]. These highlighted properties lead these mushrooms to be widely consumed
food products in the world. However, consumer acceptance mostly depends on their quality and
safety, which is obviously related to geographical origins.

To date, various analytical approaches have been implemented to determine important
components or metabolic fingerprints to analyze the quality of plants and food [13–16]. Many sensor
systems have also been well conducted for the discrimination of mushrooms according to different
microhabitats. Although these chemical profiles are unique and have been demonstrated to be
promising, they are separately applied and insufficient to obtain comprehensive metabolic information.
Besides, compared with other factors, geographical characterization is not an easy classification
problem, as it is determined by many complicated and interactional ecological factors such as
temperature, rainfall, elevation and so on. Therefore, a single sensor system will be subjected some
new challenges for comprehensive and accurate origin traceability when more factors are involved.

Comparatively, data fusion techniques may provide an alternative strategy to enhance the
accuracy and completeness for the geographical characterization of mushrooms [17]. This strategy can
combine the chemical information from several sensor systems and, therefore, provide a deep and
comprehensive perspective for understanding complex data variables. However, simple combination
may be not optimal because the fused data matrix is too large and many redundant variables may
be added. Therefore, many feature extraction procedures such as principle component analysis
(PCA), partial least square discriminant analysis (PLS-DA) and other techniques have always been
applied to screen effective characteristics in advance. It has been successfully applied to detect the
quality of many commodities such as wines [18], foods [19] and medicinal plants [20]. These studies
have demonstrated that data fusion on the feature level may present more effective and accurate
chemometric characterization for different samples.

In view of the necessity of origin traceability and the superiority of feature fusion, three
sensor techniques of inductively coupled plasma atomic emission spectrophotometer (ICP-AES),
ultraviolet-visible (UV-Vis) and Fourier transform mid-infrared (FT-MIR) were jointly applied to collect
the chemical information and conduct the origin traceability of B. edulis mushrooms, in combination
with chemometrics. This work can provide a reference for the quality control of this mushroom species.

2. Materials and Methods

2.1. Sample Preparation

Eleven microhabitats were chosen to represent the wide distribution of B. edulis mushrooms in
Yunnan Province (Figure S1). Well-developed mushroom individuals were collected between June
and September from each microhabitat. Firstly, they were cleaned and washed with deionized water.
Each fruiting body (Figure S2) was divided into cap and stipe in order to characterize the difference
between two parts. Then these samples were dried in a drying oven at 60 ◦C to constant weight. Dried
samples were smashed by a pulverizer and a sample powder was passed through a 100 mesh sieve.
Finally, the obtained powder was stored in a dry condition. Cap and stipe were separately tested and a
total of 184 samples were collected. The detailed information is shown in Table 1.
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Table 1. Information of B. edulis samples.

Geographical Origins Quantity Longitude Latitude Altitude (m)

Potatso national park, Xianggelila, Diqing 10 99.908 27.802 3515
Midu, Dali 10 100.491 25.344 1670

Baohe, Weixi, Diqing 7 99.286 27.177 2300
Longyang, Baoshan 10 99.166 25.121 1680

Wenshui, Bajie, Anning, Kunming 9 102.393 24.577 1846
Fengyi, Bajie, Anning, Kunming 10 102.333 24.692 1984

Tongchang, Yimen, Yuxi 7 102.039 24.714 2198
Songgui, Heqing, Dali 6 100.210 26.354 1944
Dongshan, Wenshan 6 104.281 23.400 1430

Liujie, Bajie, Anning, Kunming 8 102.686 24.532 1998
Suoyishan, Weize, Shilin, Kunming 9 103.346 24.645 1893

2.2. Instruments and Reagents

A total of 16 elements (K, P, Fe, Mg, Ca, Na, Cr, Zn, Ba, Mn, Ni, Cu, V, Sr, Cd and Co) were
determined using an inductively coupled plasma atomic emission spectrophotometer (Shimadzu,
Tokyo, Japan). Dry sample power (0.5 g) was accurately weighted with an electronic balance (Precisa,
Zurich, Switzerland). Then they were transferred into the polytetrafluoroethylene (PTFE) pressure
vessels and mixed with 6 mL HNO3 and 2 mL H2O2. This extract was digested with an automatic
microwave digestion system. Finally, the digestion solution was filtrated and diluted to 25 mL using
deionized water. Blank digestion was similarly prepared. Precision and accuracy were evaluated using
standard reference material (GBW07605, Tea leaves). Differences between measured and certified
values were all below 10%.

UV-Vis spectra were determined using an ultraviolet-visible spectrophotometer (Shimadzu, Tokyo,
Japan). The scan range was set as 200–600 nm and the scan interval was set as 1 nm, respectively.
The experimental conditions were based on a developed study by Li et al. [21]. Dry sample powder
(0.1 g) was dissolved by 10 mL trichloromethane solution in a test tube for 20 min. Then the mixture
was ultrasonically extracted at 150 W for 30 min and filtered by analytical filter paper. Extracted
solution was used for the UV-Vis analysis.

FT-MIR spectra were determined using a Fourier transform mid-infrared spectrometer
(Perkinelmer, Foster City, CA, USA). It was equipped with a deuterated tri-glycine sulfate detector.
The scan range was 4000–400 cm−1 and the resolution was set as 4 cm−1, respectively. Each spectrum
was recorded with 64 successive scans. The measurement of infrared spectra was based on a KBr pellet
method. Each sample (1.0 mg) was evenly mixed with KBr (100.0 mg). Then they were pressed into
a pellet by a tablet press (Shanghai Shanyue instrument Inc., Shanghai, China) for FT-MIR analysis.
The pressure was set as 10 MPa. A blank KBr pellet was also recorded to remove the influence caused
by the H2O and CO2 in the air.

2.3. Data Analysis

Sample characteristics were firstly explored based on each sensor system, respectively. A one-way
analysis of variance was used to analyze each element with regard to two parts at a level of P ≤ 0.05.
For the UV-Vis and FT-MIR datasets, an exploratory PCA that was widely used as a characterization
tool was performed to present the distribution trend, respectively [22,23]. The loading plot was
extracted to show the meaningful bands for exploratory analysis.

Subsequently, three data matrixes were fused according to a feature extraction procedure which
can eliminate the colinearity and simplify the enormous dataset. The PLS-DA method was chosen
to extract feature variables which are defined as latent variables (LVs) according to the lowest root
mean square error of cross validation (RMSECV). This parameter can guarantee that feature variables
are collected as much as possible and they are not overfitted. Finally, LVs extracted from each dataset
were concentrated into a new data array for final origin traceability. In the process of feature extraction,
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variable importance in the projection (VIP) was applied to search for meaningful chemical information
from each dataset to explain geographical difference from a chemometric point of view.

Based on fused data array, two supervised chemometric techniques were used for the origin
traceability of B. edulis mushrooms. The PLS-DA used in our study is based on partial least square
regression (PLS 1). It searches for related variables which have a maximum covariance with the “Y”
response from the “X” data matrix. This method is a binary classification algorithm between zero
and one [24]. A sample with Y = 1 indicates it belongs to a given class, while a sample with Y = 0
indicates it does not belong to this group. For example, a “Y” encoded {0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0}
denotes that this sample belongs to the third class (Baohe, Weixi, Diqing). By continuous variable
models, a predicted value will not be outputted as either one or zero perfectly, but it can estimate the
probability of each sample being assigned to each group. According to published studies, a predicted
value with a range from 0.5 to 1.5 was defined as the correct one [25–28].

Two parameters are important to evaluate the performance of a PLS-DA model. Root mean
square error of estimation (RMSEE) is used to evaluate the calibration error [28]. The RMSECV is
computed based on a cross-validation procedure (seven-fold). This parameter can effectively estimate
the prediction ability of a classification model for unknown samples. These parameters are also related
to the generalization ability of a PLS-DA model.

The other classification method, called grid search support vector machine (GS-SVM), was used
to verify the PLS-DA result. Generally, it has a good generalization ability because it can better solve
non-linear cases with the aid of kernels [29]. This method can map original data into a high dimensional
feature space using a kernel, and an optimal hyperplane is created for an excellent separation [30].
Radial basis function was chosen because it can reduce the complexity of training data and therefore
produce an excellent classification result [31]. With respect to this kernel, penalty parameter (C) and
regularization parameter (γ) are two important parameters to determine the performance of a GS-SVM
model. C is used to confirm the tradeoff between minimizing the training error and minimizing model
complexity [32]. This value is closely related to the fitting degree and generalization ability of the
classification model. γ is used to determine the non-linear feature hyperplane [32]. These parameters
are selected according to the highest cross-validation (10-fold) based on a grid search method.

For the PLS-DA and GS-SVM methods, when calibrated models are developed according to their
respective rules, two validation schemes are performed in sequence. The first one is called internal
cross-validation and second one is called external validation for unknown samples. The former
was evaluated by the accuracy of the calibration set. With respect to unknown samples, a classical
kennard-stone algorithm was used to choose 1/3 samples as the validation set. The accuracy of the
validation set was used to estimate the predicted ability of a classification model.

2.4. Software

The data analysis and chemometric models were performed using Simca (Version 13.0, Umetrics,
Umeå, Sweden) and Matlab (Version R2017a, Mathworks, Natick, MA, USA). Omnic (Version 8.2,
Thermo Fisher, Waltham, MA, USA) and UV Probe (Version 2.34, Shimadzu, Tokyo, Japan) were
applied to treat the FT-MIR and UV-Vis spectral data.

3. Results and Discussion

3.1. Comparison Analysis between Cap and Stipe

3.1.1. ICP-AES

The comparison of the 16 elements in the samples is shown in Figure 1. Elements of K, P, Fe, Mg,
Ca, Na, Cr and Zn (exceeding 100 mg/kg) are more-highly accumulated than others. Accumulations
of K, P, Fe, Zn, Ba, Mn, Cd and Co between cap and stipe show significant variations (P ≤ 0.05)
indicating that these elements change severely depending on different parts. Higher levels of K, P, Zn
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and Cd are accumulated in the cap while Fe, Ba, Mn and Co are more concentrated in the stipe. Other
elements (Mg, Ca, Na, Cr, Ni, Cu, V and Sr) have no significant variations between the cap and stipe.
Additionally, it is noteworthy that the standard deviations of Na, Cr, Sr and Co are very large. These
obvious intragroup variations may be mainly caused by different geographical origins. Many previous
studies [33–36] have proved that soil condition and human activities in a certain geographical origin
strongly affect the level of elements in mushrooms.
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significant difference at P ≤ 0.05 according to Duncan test.)

3.1.2. UV-Vis

The UV-Vis fingerprints of mushroom chloroform extract (Wenshui, Bajie, Anning, Kunming,
China) are presented in Figure 2. Except solvent peaks, the main absorptions are observed at 270,
280 and 295 nm in the UV region and no absorptions are emerged in the Vis region. The band of
280 nm may arise due to protein compounds [37]. With respect to 295 nm, this peak may be attributed
to phenolic constitutes which are closely related to the antioxidant properties of mushrooms [38,39].
Visually, the spectral difference between cap and stipe is obvious in terms of absorptive intensity.
According to previous studies [40,41], the mushroom cap has more protein accumulation and higher
antioxidant capacity than the stipe. A PCA score plot is shown in Figure 3A. Some overlapped
samples are presented indicating that some interference may be introduced due to different sampling
locations. The loading plot indicates that bands of 330–600 nm make a greater contribution to the first
principle component (PC) and that 250–330 nm bands make a greater contribution to PC 2 (Figure 3B).
The UV-Vis fingerprints of mushroom chloroform extract from other geographical origins are shown
in Figure S3.
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3.1.3. FT-MIR

The FT-MIR spectra of mushroom samples (Wenshui, Bajie, Anning, Kunming, China) are
displayed in Figure 4. Broad bands of 3600–3200 cm−1 are attributed to hydroxyl stretch absorption.
This region is always not chosen for chemometric analysis because it is mostly caused by intense
water interference. The 3000–2850 cm−1 bands may belong to the methylene group dominated by
fatty acid compounds [42]. With respect to 1700–1500 cm−1, this portion is closely related to protein
constitutes. Peaks around 1655 and 1550 cm−1 are mainly caused by amide I and amide II ingredients,
respectively [43]. The 1450–1200 cm−1 bands are complicated because many small peaks are raised
in this region. A study for the discrimination of seven porcini species assigned these peaks as mixed
vibration absorptions of protein, fatty acids and polysaccharides [44]. Mohaček-Grošev et al. [45]
have indicated that some peaks such as 1460, 1410, 1380, 1316, 1260, 1202 cm−1 may be the result
of a pyranose ring structure. In addition, the band of 1000–1200 cm−1 is an obvious carbohydrate
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area that has two sharp peaks of 1032 and 1080 cm−1 that are mainly assigned as the structure of
chitin [46,47]. Chitin is a major structural polysaccharide in macrofungi [47]. The 900–800 cm−1 region
may be assigned as glucan and mannan bands [45]. The rest bands below 900 cm−1 are the fingerprint
region where many peaks are unidentified. However, many studies have showed that this region may
be useful for a good chemometric analysis.
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A PCA score plot based on FT-MIR spectra is exhibited in Figure 5A. Visually, the first two PCs can
provide an excellent separation between two parts. The loading plot (Figure 5B) shows that 1500–400 cm−1

bands make a higher contribution to PC 1 while 1800–1500 cm−1 bands are more important to PC 2.
The FT-MIR fingerprints of the mushroom samples from other geographical origins are shown in
Figure S4.
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3.2. Regional Differences Based on VIP

3.2.1. ICP-AES Dataset

For the cap data, the VIP scores are exhibited in Figure 6A. Sr and V are the most significant
elements for explaining the variation caused by geographical origins. Scores of Ca, Na, Co, Cd, P, Zn
and Mg are higher than one, showing that they are also important.
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Similarly, the VIP scores for the stipe data are exhibited in Figure 6B. Sr and Ba are the most
important elements for geographical difference. Elements of Cd, Ca, Ni and Cu also make a greater
contribution because their VIP values are higher than one.

Sr is the most important element for explaining the regional difference both in the cap and
stipe, which is consistent with the high standard deviation in Figure 1. Similar conclusions were also
concluded according to previous chemometric analyses for elements in B. edulis. Sr, Na, V, Ca, Ni
and Ba were proven to be important elements for discriminating fruiting bodies of this mushroom
from different geographical origins [48]. Based on PCA loading analysis, elements of Sr, Al, Ba,
Ca, Fe and Mn in the cap, and Ca, Sr, Ba, Al, Mn and Fe in the stipe have a strong influence on
geographical variation (11 different sites across Poland) of King Bolete [49]. However, this conclusion
may be species-independent. For Pleurotus tuber-regium, elements of Co, Cr, Fe, Hg, Na, Ni, and Pb are
important variables for interpreting their variation based on two sites in Nigeria [50]. Another study
on Sarcodon imbricatus indicated that elements of Ag, As, Cd, Cu, Cs, etc. make a great contribution to
the PCA exploratory analysis [51].

3.2.2. UV-Vis Dataset

The VIP scores (values ≥ 1) of cap data are shown in Figure 7A. Significant variables are mainly
concentrated in 260–330 nm. Especially absorptions around 295 nm make the most contribution.
With respect to the stipe, VIP scores (values ≥ 1) for this data matrix are shown in Figure 7B. Similarly,
260–330 nm is the main contributive region and the peak around 295 nm is the most important variable.

The important bands of both the cap and stipe for explaining geographical variation are similar.
Different levels of some characteristic compounds such as protein and phenols may be responsible for
this difference. Additionally, because spectra absorption mainly arose in the UV region, importance
variables mostly appeared in this area. The UV region has been successfully used to describe variation
among mushrooms. Li et al. [52] have proven the feasibility of this region for discriminating Wolfiporia
extensa (a Chinese traditional mushroom) from different geographical origins. The UV region was also
successfully applied to classify different bolete species, showing that 270–300 nm bands make the most
important contribution [21].
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3.2.3. FT-MIR Dataset

Compared with the above sensory techniques, the FT-MIR technique can present abundant and
complicated descriptive information for mushroom samples due to its high-throughput capacity.
The VIP scores (values ≥ 1) of the cap data are shown in Figure 8A. The regions of 1800–1500 and
1200–900 cm−1 make a great contribution to the geographical difference. These characteristic bands
are mainly assigned to protein and polysaccharide compounds, respectively. Some non-identified
compounds in the fingerprint region are also important.
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For the stipe samples, VIP scores (values ≥ 1) are shown in Figure 8B. The contributive bands are
very similar to those of the cap data that 1800–1500, 1200–900 cm−1 and some peaks in the fingerprint
region generate an important contribution for geographical difference.

The protein and polysaccharide bands make an important contribution to geographical difference.
Many studies have demonstrated that these constituent elements are prominent in the mushroom
fruiting body and they are always varied on the basis of different geographical origins [53]. In our
study, this conclusion is proved from the chemometric point of view by using FT-MIR spectra.
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3.3. Origin Traceability Based on Chemometrics

3.3.1. Cap

A total of 56 variables containing 11 LVs from ICP-AES, 16 LVs from UV-Vis and 29 LVs from
FT-MIR data matrixes were used to develop PLS-DA and GS-SVM models, respectively. The results are
shown in Tables 2 and 3. With respect to PLS-DA, the accuracies for the calibration set and validation
set were 100% and 90.625%, respectively. Two samples from Diqing city and one sample from Dali
city were incorrectly predicted. The generalization ability was also acceptable, with a low RMSEE and
RMSECV of 0.076 and 0.251, respectively. Comparatively, a better result was obtained using GS-SVM
methods. Accuracies for both the calibration set and validation set are 100% and the parameters of
C and γ were 1 and 0.044194, respectively (Table 3). Score plots of the GS-SVM model are shown in
Figure S5.

Table 2. Results of PLS-DA models.

Model RMSEE RMSECV Accuracy of Calibration Set Accuracy of Validation Set

Cap 0.076 0.251 100.000% 90.625%
Stipe 0.079 0.244 100.000% 96.875%

Table 3. Results of GS-SVM models.

Model C γ Accuracy of Calibration Set Accuracy of Test Set

Cap 1.000 0.044194 100.000% 100.000%
Stipe 1.000 0.0625 100.000% 100.000%

3.3.2. Stipe

Similarly, eight LVs from ICP-AES, 16 LVs from UV-Vis and 30 LVs from FT-MIR were used to
concentrate into a new data array. Based on the PLS-DA technique, 100% and 96.875% accuracies with
respect to the calibration set and validation set were calculated, respectively. Only one sample from
Diqing city was incorrectly predicted. The RMSEE and RMSECV were 0.079 and 0.244, respectively
(Table 2). Comparatively, according to this method, the generalization ability using the stipe data may
be better than that using cap data for geographical characterization, with a higher prediction accuracy
and a lower RMSECV. In order to understand which dataset led to this result, the averaged VIP score
of each data matrix for the cap and stipe models were extracted, shown in Figure 9. As can be seen in
this figure, the contribution of the ICP-AES data to the stipe model is obviously higher than that for
the cap model. The result proves that the accumulation of the elements in the mushroom stipe may
have a stronger correlation to geographical origins than that in the mushroom cap. This result may be
caused by the stronger relationship of the stipe than that of the cap.

Additionally, the discrimination performance of GS-SVM was better than that of the PLS-DA
method due its excellent capacity for non-linear conditions. The 100% accuracies with regard to the
calibration set and unknown samples were calculated with a small C and γ of 1 and 0.0625, respectively.
Score plots for the GS-SVM model are shown in Figure S6.

Conclusively, the origin traceability of B. edulis mushrooms can be successfully discriminated
based on either the cap or stipe data, in combination with the PLS-DA and GS-SVM methods.
The accuracies of these models range from 90.625% to 100% and their errors are minor, showing
that these models also have a good generalization ability. Comparatively, the cap may have a better
potential for the origin traceability of B. edulis mushrooms. Different parts of porcini mushrooms
(pileipellis, flesh and hymenium) and Wolfiporia extensa (the epidermis and inner part) have been used
for chemometric characterization of different mushroom samples, exhibiting that the classification
potential among different parts is different [54,55]. With respect to two chemometric techniques,
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the performance of GS-SVM is always better than PLS-DA. This could be contributed to its capacity
for solving non-linear problems with the help of kernels. The relationship between sensory data and
geographical labels may be complicated and non-linear. Therefore, a non-linear classification technique
may be superior to a linear one for the origin traceability of this species.
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4. Conclusions

Three sensor systems—ICP-AES, UV-Vis and FT-MIR—were applied for the origin traceability of
B. edulis mushrooms (cap and stipe) from 11 collection origins. The chemical variation between the cap
and stipe was first analyzed based on a single sensor system. Sr, V, Ba, protein and polysaccharide
constitutes were proven to be important variables for regional variation.

Feature variables from three data matrixes were concentrated into a new data array. PLS-DA and
GS-SVM were used as chemometric methods to develop mathematical models with regard to the cap
and stipe, respectively. The discrimination performance was satisfactory with accuracies ranging from
90.625% to 100%. These models also have an excellent generalization ability with reliable evaluation
parameters. Our study has showed that a multi-source data fusion strategy can be successfully applied
to characterize B. edulis mushrooms (caps and stipes) on the basis of different geographical regions.

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/18/1/241/s1, Figure S1:
Eleven microhabitats of Boletus edulis in Yunnan Province, Figure S2: The real product of Boletus edulis, Figure S3:
The UV-Vis fingerprints of mushroom chloroform extract from other ten geographical origins, Figure S4:
The FT-MIR fingerprints of the mushroom samples from other ten geographical origins, Figure S5: Score plots of
the GS-SVM model of mushroom cap, Figure S6: Score plots of the GS-SVM model of mushroom stipe.
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