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Breast cancer is the second most commonly diagnosed type of cancer among women as of 2021. Grading of histopa-
thological images is used to guide breast cancer treatment decisions and a critical component of this is a mitotic
score, which is related to tumor aggressiveness. Manual mitosis counting is an extremely tedious manual task, but
automated approaches can be used to overcome inefficiency and subjectivity. In this paper, we propose an automatic
mitosis and nuclear segmentation method for a diverse set of H&E breast cancer pathology images. The method is
based on a conditional generative adversarial network to segment both mitoses and nuclei at the same time. Architec-
ture optimizations are investigated, including hyper parameters and the addition of a focal loss. The accuracy of the
proposed method is investigated using images from multiple centers and scanners, including TUPAC16, ICPR14 and
ICPR12 datasets. In TUPAC16, we use 618 carefully annotated images of size 256×256 scanned at 40×. TUPAC16
is used to train the model, and segmentation performance is measured on the test set for both nuclei and mitoses.
Results on 200 held-out testing images from the TUPAC16 dataset were mean DSC = 0.784 and 0.721 for nuclear
andmitosis, respectively. On 202 ICPR12 images, mitosis segmentation accuracy had amean DSC=0.782, indicating
the model generalizes well to unseen datasets. For datasets that had mitosis centroid annotations, which included
200 TUPAC16, 202 ICPR12 and 524 ICPR14, a mean F1-score of 0.854 was found indicating high mitosis detection
accuracy.
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Segmentation of Mitoses and Nuclei using Conditional GANs

Introduction

Mitosis is the process of cell duplication, in which one cell divides into
two genetically identical daughter cells.1 In breast tumors, the number ofmi-
totic figures is related to tumor aggressiveness and proliferation2 and is used
for tumor grading and determining treatment options. Experienced patholo-
gists determine mitotic counts through visual examination of hematoxylin
and eosin (H&E) stained tissue sections by counting the number of mitotic
figures in 10 high-power fields (HPF). Due to large variations in mitosis ap-
pearance, the laborious and subjective nature of the task, as well as variabil-
ity in preparation protocols (staining, scanning), manualmitosis counts have
up to 25% discordance between pathologists.3 Computer-aided diagnostic
(CAD) tools hold promise to overcome the laborious and subjective nature
of mitotic grading4 by providing robust, consistent, and efficient analysis.
The public mitosis detection challenges at ICPR12,5 AMIDA13,6 ICPR14,7
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evier Inc. on behalf of Association
andTUPAC168 have facilitated development of various artificial intelligence
(AI) solutions to this problem. These methods employed a variety of tools
from handcrafted features,9 deep learning,10 or a combination of both ma-
chine learning (ML) and deep learning (DL) systems.11,12 Recently, DL sys-
tems for automated mitosis detection in breast cancer images have gained
in popularity due to the ability of these systems to adapt to diverse data
with often superior performance compared to traditional machine learning
methods.9,13 The DL methods employed on TUPAC16, ICPR12, and
ICPR14 datasets have largely considered convolutional neural networks
(CNNs) to classify candidate regions14 or to detect mitotic figures.1 State-
of-the-art methods apply a multistage methodology to locate ROI with
candidate mitoses and then detect cells in mitosis in those regions.1,10,15–19

To improve the performance and generalization, pre-processing methods
are commonly employed such as wavelet decomposition,20 color
deconvolution,21,22 and stain normalization.14,23,24 While most methods
focus on obtaining mitotic counts through mitosis detection, there could
be value in segmenting the mitosis as a whole, which can easily facilitate
mitosis counts, and can be used to analyze properties of the mitoses them-
selves (such as mitotic stage). Mitosis segmentation is the focus of this
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work. Generative adversarial networks (GANs) have recently been applied
to translate histopathology images between domains. Rana et al utilized a
GAN-based CNN network to virtually stain H&E specimens. Hou et al25

synthesize histopathology images based on nuclei masks which are then
used for task-specific CNN training. Jerry Wei et al26 presented an image
translation methodology to generate augmented data to mitigate data im-
balance issues in colorectal histopathology images. Bentaib et al uses a dis-
criminator with stain normalization that transfers stains across different
datasets with various staining appearance. Tellez et al27 use an unsuper-
vised image-to-image translation for color normalization and augmentation
and the effects of these preprocessing steps are evaluated on different clas-
sification tasks. In, Quiros et al,28 pathologyGAN is proposed to segment nu-
clei and learn pathological features within cancer tissue images to correlate
breast cancer disease with molecular information. Mahmood et al29 use a
conditional GAN to generate H&E training images with labels and both syn-
thetic and real images are utilized to train an unpaired GAN framework to
segment nuclei. Inspired by the challenges of mitosis segmentation and pre-
vious works in image translation using GANs, this paper proposes the use of
conditional generative adversarial networks (cGANs) to segment bothmito-
ses and nuclei at the same time. cGANs may hold potential by constraining
solutions to bemore "realistic" through discriminatorswhich couldmitigate
inconsistency and generalization challenges. Although themain application
is mitosis segmentation and detection, dual segmentation of nuclei serves
two purposes. Firstly, providing the classifier with annotations of non-
dividing nucleimay help the system learn themitosis class more effectively.
Secondly, segmenting nuclei can help to facilitate automated nuclear grad-
ing. The cGANmodel utilized in this work consists of a conditional encoder
decoder network for a generator which offers a coarse to fine representa-
tion of imaging data, and a multiscale discriminator network that uses
both local and global scales to differentiate between real and fake images.
The result is a translated image that represents the segmented mitoses
and nuclei. Ground-truth delineations for nuclei andmitoses provide condi-
tional labels for the generator and a focal loss is investigated to emphasize
the mitosis (imbalanced) class. Adversarial and feature matching losses
frommultiple scales are utilized. Training onmultiple scales enables the ar-
chitecture to generate images with finer details. Mitosis and nuclear anno-
tations were developed for 618 images from the TUPAC16 dataset (3
centers) where 418 were used to train and validate the segmentation
model. This dataset was acquired from three different centers and has
wide color variability. Segmentation accuracy for both nuclei and mitoses
ismeasured using the DSC through 5-fold cross-validation, and is compared
to baseline U-Net andU-Netwith focal loss. To examinemitosis detection in
unseen datasets, the model was tested on images from ICPR12 (202),
ICPR14 (524), and held out TUPAC16 (200). In multicenter breast cancer
pathology images, data variability can arise from different staining proto-
cols, scanner vendors, and patients with different tissue morphology
Figure 1.Mitosis (green) and nuclear
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which can create generalization challenges for deep learning methods.
Therefore, experimenting with large and diverse datasets is needed to
optimize such tools for clinical translation.

Dataset

In this work, we consider three open source datasets for mitosis detec-
tion and segmentation: TUPAC16, ICPR12, and ICPR14. From each dataset,
random patches of size 256×256 were extracted from the HPF from each
dataset such that patches had at least one mitosis that was not on the
boundary. TUPAC16 has a total of 656HPF for 73 patients, scanned at 3 dif-
ferent centers. Annotations for both nuclei and mitoses were generated for
TUPAC16 since it contains more variability (three centers with wide stain
variations). Annotations were generated using Pathcore Sedeen30 by a bio-
medical student trained by a breast pathologist. Pixel-level annotations
were completed for 48 of the 73 patients resulting in 418 patches for train-
ing and validation. This dataset is used tofine-tune the segmentationmodel
and to determine validation performance over all 418 patches through 5-
fold cross-validation. Othermodel comparisons also use this dataset to com-
pare segmentation performance. Example annotations are shown in Fig. 1.
During testing, patches from 25 patients from TUPAC16 are used to deter-
mine held-out mitosis and nuclear segmentation performance. Images from
these patients are not used during training. The number of patches from the
25 patients for testing was 200. In the ICPR12 dataset, there are images
with pixel-level annotations for mitosis from five patients, acquired using
two scanners (Aperio and Hamamatsu) for a total of 70 HPF. In this work,
202 test images of size 256×256 were sampled from the HPF to create
the ICPR12 test set. In ICPR14, there are 11 HPF scanned with Aperio
and Hamamatsu scanners and 524 test images of size 256×256 were sam-
pled from all HPF. In this dataset, only mitosis centroid annotations are
available. ICPR12 and ICPR14 datasets are used to measure
generalization performance. The total number of patches generated for
each dataset is described in Table 1. All the images are scanned at 40×
magnifications.

Methods

The proposed cGAN architecture called MiNuGAN for dual mitosis and
nuclear segmentation is adapted from the original pix2pixHD cGAN
architecture31 and is shown in Fig. 2. An encoder‑decoder architecture
with ResNet32 blocks are used for the generator network, consisting of
five convolutional layers and nine residual blocks in the encoding arm,
four convolutional upsampling layers in the decoder, followed by three re-
sidual blocks after deconvolution, and two more convolution layers. The
output is a generated segmentation mask for both mitosis and nuclear clas-
ses. After each convolution layer, instance normalization33 is employed,
(red) annotations from TUPAC16.



Table 1
Experimental datasets.

Dataset Patches Centres Scanners Mitoses Labels

TUPAC16 618 3 Leica, Aperio 730 Pixel-level (mitosis, nuclear), centroid (mitosis)
ICPR14 524 1 Aperio, Hamamatsu 550 Centroid (mitosis)
ICPR12 202 1 Aperio, Hamamatsu 226 Pixel-level (mitosis), centroid (mitosis)

S. Razavi et al. Journal of Pathology Informatics 13 (2022) 100002
followed by rectified linear unit (ReLU) activation. The coarse-to-fine gen-
erator encodes features from multiple scales, which permits for different
sized-details to be detected. Skip connections are added between the local
enhancer (G1) and global (G2) enhancer which aims to maintain and trans-
fer global information from G1 to G2. G1 and G2 generators are jointly
trained to generate masks from input images and the inputs are 128×128
and 256×256 in size, respectively. The last convolution layer in the archi-
tecture is followed by Tanh. The discriminator in Fig. 2 predicts whether the
generated segmentation masks are real or fake. The discriminators use im-
ages of size 256×256, 128×128, and 64×64 for scales 1, 2, and 3. The
baseline discriminator has three multiscale discriminators (D1, D2, D3)
which use images of different resolutions to predict image realism based
on multiple resolutions. For each scale, the discriminator adopts the
PatchGAN34 architecture with four convolutional layers, followed by a sig-
moid output layer for classification. The multiscale PatchGAN discrimina-
tor classifies patches of various resolutions. The multiscale D1, D2, and D3

discriminators are trained simultaneously to distinguish the generated seg-
mentation masks from ground truth images.

In this work, a focal loss35 is implemented in the generator and de-
ployed after the last hidden layer to improvemitosis and nuclear segmenta-
tion performance. Unlike general classification tasks that assume an equal
occurrence from all of the classes, medical applications suffer small sample
sizes and resulting class imbalances. In mitosis segmentation, there is a
heavy imbalance between the classes (there are much more nuclei than mi-
tosis pixels) which can hamper the detection of mitotic cells.6 Training a
network on imbalanced datasets can make the network biased towards
Figure 2. MiNuGAN for dual mitosis and nuclear
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learning more representations of the data-dominated class (i.e., nuclei)
while other classes (i.e., mitosis) will receive less importance. A focal loss
can be used to reduce the contribution of themore commonly occurring nu-
clear pixels and focus the classifier on the harder to predict (mitosis) pixels
and is incorporated into the total loss function for cGANs in this work. The
total loss function for cGANs is a combination of the adversarial loss LGAN
and the feature matching (FM) loss LFM as in

minG maxD1D2

X

k¼1;2

L Dk ;Gð Þ ¼ minG maxD1D2

X

k¼1;2

LGAN Dk ;Gð Þ þ λ
X

k¼1;2

LFM Dk ;Gð Þ

where λ balances the influence of the featurematching loss LFMwith the ad-
versarial loss LGAN to prevent overfitting to specific distributions. The
feature matching loss considers dissimilarities between feature representa-
tions in local and global levels. The adversarial loss tries to maximize
the probability of real images and minimize the probability of fake inputs
to the discriminator. In this work, LGAN is computed by considering
a focal loss parameter γ that reduces or increases the relative loss for
well-classified or poorly classified pixels, as in

LGAN Dk ,Gð ÞFL ¼ E 1−Dð Þγ log Dð Þ½ � þ E Dγ log 1−Dð Þ�ð½

The output of the model is a mutliclass image with pixel-level labels
for each of the predicted mitosis and nuclear objects. To measure segmenta-
tion performance, pixel-level predictions are compared to ground truth
delineations on a per-pixel basis. For mitosis detection, the mitosis
segmentation in H&E breast cancer images.



Table 2
cGAN configurations and average DSC of mitotic and nuclear classes.

Configuration Discrim Resblocks Lambda DSC

1 2 9 0 0.739 ± 0:208
2 2 9 0.1 0.742 ± 0:200
3 2 9 1 0.741 ± 0:196
4 2 9 2 0.747 ± 0:194
5 2 9 5 0.738 ± 0:208
6 3 9 0 0.747 ± 0:189
7 3 9 0.1 0.747 ± 0:199
8 3 9 1 0.737 ± 0:210
9 3 9 2 0.758 ± 0.192
10 3 9 5 0.752 ± 0:185
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segmentation masks are used to automatically determine the centroids of
each mitosis object.

Metrics

We evaluate segmentation performance of the cGANmodel using the dice
similarity coefficient (DSC) which compares automated segmentations to
manual delineations for themitosis and nuclear classes separately. Tomeasure
mitosis detection performance on datasets with ground-truth mitosis
Figure 3. DSC distributions for cG

Figure 4.Mean DSC and DSC coefficient of v
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centroids, the F1-score is utilized. Precision and sensitivity are determined
by the number of correctly predicted mitosis centroids within a 25 pixel-size
window centered on the ground truth centroid. This corresponds to a distance
of 7 μM and was chosen since it is the average of the mitosis competitions.
Results and Discussion

All models are developed using TUPAC16 data with pixel-level annota-
tions of nuclei and mitoses (334/84 training/validation split and 5-fold
cross-validation). Average segmentation performance is reported for all 418
patches for nuclei and mitoses separately. Model fine-tuning is done using
the detailed annotation dataset and the final dual nuclear and mitosis seg-
mentation model termed "MiNuGAN" is carried forward for further analysis.
To measure generalization performance of the proposed system, two held-
out test sets with pixel-level annotations were used. There were 200 patches
from TUPAC16 that had mitosis and nuclear annotations, and 202 patches
from ICPR12 with mitosis delineations. The segmentation results of
MiNuGAN are compared to baseline models, such as U-Net and U-Net with
a focal loss, which all were trained using the same 5-fold cross-validation
datasets. In addition to measuring segmentation performance, additional ex-
perimentswere conducted tomeasuremitosis detection accuracy through the
F1-scores. These are reported all held out datasets for mitosis centroid
AN configurations in Table 2.

ariation (CoV) for cGAN configurations.



Figure 5.Mitosis segmentation performance for TUPAC16 and ICPR12.
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annotations, which includes: ICPR12 (202 patches), ICPR14 (524 patches),
and for the held-out TUPAC16 set (200 patches). All models are trained on
Nvidia 2080TI GPUwith 11 GBmemory. The training images consist of orig-
inal images along with RGB label maps (with each color representing either
the nuclei, boundary or background class). All images are of size 256×256.
Figure 6. cGAN segmentation results with and without focal loss. a) original images, b)
(baseline with focal loss).

5

Mitosis and Nuclear Segmentation

Performance of the proposed mitosis and nuclear segmentation model is
reported in this section. In total, 418 patches (334 training/84 validation, 5-
fold cross-validation) from TUPAC16 are used for training and model fine-
ground truth, c) configuration 1 (baseline without focal loss) and d) configuration 4



Figure 7. DSC distributions for mitoses and nuclei for MiNuGAN, UNET, UNET/focal.

Figure 8.Mean DSC and DSC coefficient of variation for MiNuGAN, UNET, UNET/focal.

Figure 9. Segmentation results using three different models. a) input image, b) ground truth, c) MiNUGAN d) U-Net e) U-Net with focal loss.
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tuning without any preprocessing such as stain normalization. The dataset is
split in a 5-fold stratified fashion (mixing the validation and training sets)
and average performance on the validation data over 5-folds is reported.
Each model is trained for 100 epochs with a learning rate of 0.5. The base-
line pix2pixHD model has three multiscale discriminators, nine residual
blocks in the generator and uses λ = 5. In addition to these parameters,
we also investigated a focal loss with γ = 0; 0:1; 1; 2; 5 to increase the im-
portance of mitosis when classifying pixels. We varied the number of dis-
criminators, residual blocks, λ, and the focal loss and report some of the
top-performing configurations for mitosis and nuclear segmentation. In
total, this resulted in 10 configurations as outlined in Table 2. The average
DSC over both mitosis and nuclear classes in the validation set, for 5-folds
for each configuration is shown in the last column of Table 2, and graphi-
cally in Figs 3 and 4. The highest DSC for the mitosis class is obtained for
configurations that use a focal loss and baseline parameters: threemultiscale
discriminators, nine residual blocks, and γ = 2. This configuration also
Figure 10. Segmentation and detection of mitosis using MiNuGAN for a) ICPR12, b) IC
positives are denoted by a yellow box, and false negatives by an orange box.

7

results in the lowest coefficient of variation, indicating that this model
segments mitoses with the highest consistency. Visual results for the top-
performing method (baseline + focal loss) and the same architecture with-
out focal loss are shown Fig. 6. Without focal loss, there are lots of small
false-positive mitoses that would decrease mitosis detection accuracy. Pre-
dictions based on a focal loss have more accurately segmented the mitotic
figures.

When considering the DSC for the nuclear and mitosis class separately,
it is apparent that lower performance is generally obtained for the cells in
mitosis. This could be a result of the complex nature and variable appear-
ance of mitotic cells and could also be due to a relative class imbalance.
However, as shown in Fig. 6, the focal loss improves the imbalance issue
and segments mitoses with improved accuracy. Furthermore, in Figs. 3
and 4, using fewer residual blocks in the generator decreases overall DSC
performance and nine ResNet blocks (as per baseline Pix2pixHD) seems ap-
propriate for this task. Results also show that increasing the number of the
PR14, c) TUPAC16. Segmented mitoses are shown in green and nuclei in red. False
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discriminators from two to three increases the DSC, which may indicate
that mitotic cells are better detected at lower resolutions. For the remainder
of this work, we use the baseline cGAN (three multiscale discriminators,
nine residual blocks, and γ = 2) with focal loss and call this configuration
MiNuGAN.

Using thefinalizedmodelMiNuGAN just described, themitosis segmen-
tation testing performance on the held-out TUPAC16 and ICPR12 is com-
puted. In total, there were 402 patches, and the results are summarized in
Fig. 5. The mean mitosis and nuclear segmentation performance on
TUPAC16 were: 72.1% and 78.4%, respectively. On ICPR12, the mean mi-
tosis segmentation accuracy was 78.2%, which is slightly higher than the
TUPAC16 dataset (on which the model was trained). This may be due to
a number of factors. Firstly, the TUPAC16 dataset has large variability
and may be allowing the model to learn more diverse features which
permits for better generalization to unseen data.

Second, the ICPR12 dataset is of relatively high contrast, which may
permit for bettermitosis segmentation. Third, the discriminator function al-
lows the classifier to learn realistic mitosis patterns. The high segmentation
performance across both datasets is a good indication that these features
are beneficial for generalization to new data. To compare the performance
of the MiNuGAN to baseline systems, we compared segmentation results
over the validation set with U-Net and U-Net with a focal loss. These sys-
tems were trained for 100 epochs using Adam optimizer, 0.001 learning
rate, batch size of 16, 4 layers and with/without focal loss. The same train-
ing and validation datasets were used in a 5-fold cross-validation manner.
Figure 7 shows the DSC distribution and Fig. 8 shows the mean DSC and
the DSC coefficient of variation (CoV) of both U-Net models versus
MiNuGAN. The mean DSC segmentation performance is lowest for U-Net
without focal loss, which is slightly improved when a focal loss is used.
The highest mean DSC performance is achieved by MiNuGAN for both nu-
clear andmitosis datasets. Additionally, the coefficient of variation is signif-
icantly lower for the proposed method, indicating results are more
consistent in this multicenter dataset. Visual results are shown in Fig. 9.
U-Net misses mitoses and also generates more false positives, even with
focal loss. In contrast, the proposed method has less false positives and neg-
atives, and the segmentation masks are smoother, which may be attributed
to themultiscale discriminator which forces the output segmentationmasks
to be more realistic (i.e., similar to ground truths).

Mitosis Detection Performance using MiNuGAN

Using the baseline cGAN system with focal loss (MiNuGAN), the
detection performance of the proposed method is evaluated on images from
multiple datasets and scanners (held-out TUPAC16 samples: 200 images,
ICPR12: 202 images and ICPR14: 524 images). As the model predicts both
nuclei andmitoses on a per-pixel basis, onlymitosis labels are retained for de-
tection. Morphological processing is applied to the mitosis masks (small ero-
sion, hole closing) and the centroid of every object is determined. The
ground-truth centroid is compared to the predicted centroids through the
F1. See Table 3 for the average F1 performance for each dataset. The average
F1 over all three datasets was found to be 0.854±0.268 and considering that
over 80% of the data comes from sources that were not seen by the classifier
during training this is a very promising result. F1-scores on ICPR12 and
ICPR14 were lower compared with the TUPAC16 dataset (roughly 10% per-
formance drop). See Fig. 10 for example mitosis detection results for
MiNuGANover all three datasets. The variation between dataset distributions
(color, stain, patient, scanner) could be the cause for some of the challenges in
ICPR12 and ICPR14, although over all the model is performing well. The last
Table 3
Mitosis detection performance on different datasets and scanners.

Dataset Scanner

TUPAC16 ICPR14 ICPR12 Aperio Hamamatsu

F1-score 0.872 0.847 0.851 0.832 0.881
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column in Fig. 10 shows example segmentations in patches with no mitoses.
As can be seen, only nuclei were detected in these images. In futureworks,we
will apply thismethod onwhole slide images and determine the effect of neg-
ative patches on performance. We may consider an RCNN to find candidate
regions first, and then use MiNuGAN to segment and detect mitoses from
those patches. To improve generalization, we will investigate color normali-
zation as a means to mitigate stain and color variability in multicenter
datasets.

Conclusion

This work proposes a cGAN-based model called MiNuGAN that seg-
ments both mitoses and nuclei at the same time from H&E stained breast
cancer images. It is based on the baseline pix2pixHD model, except a
focal loss has been added to bring attention to the imbalanced mitosis
class. Testing results show that segmentation performance is high for both
mitoses and nuclei in TUPAC16 with mean DSC= 0.721 and 0.784 for mi-
toses and nuclei, respectively, over 200 image patches and mean DSC =
0.782 for 202 ICPR12 images. Results show the proposedmethod generates
more realistic and accurate segmentationmaps compared to baseline U-Net
models, even U-Net with focal loss, indicating the discriminator forces con-
tinuity in the segmentation mask that is beneficial for segmentation. Using
the mitosis segmentations, mitosis centroids were detected and compared
to datasets with centroid annotations. The F1-scores were computed over
three multicenter H&E datasets (TUPAC16, ICPR12, ICPR14) and an aver-
age F1-score of 0.854was achieved. Ablation studies show the effectiveness
of the focal loss to increase the performance of mitosis segmentation and
detection. In the future, stain normalization will be considered, as well as
augmentation to see if performance across scanners and centers can be im-
proved. In thiswork, we focusedmainly onmitosis segmentation and detec-
tion in breast cancer H&E images. In the future, it is possible to evaluate
MiNuGAN on different tissue types and datasets.
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