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For characterizing the complexity of hearing deficits, it is important to consider

di�erent aspects of auditory functioning in addition to the audiogram. For

this purpose, extensive test batteries have been developed aiming to cover

all relevant aspects as defined by experts or model assumptions. However,

as the assessment time of physicians is limited, such test batteries are often

not used in clinical practice. Instead, fewer measures are used, which vary

across clinics. This study aimed at proposing a flexible data-driven approach

for characterizing distinct patient groups (patient stratification into auditory

profiles) based on one prototypical database (N = 595) containing audiogram

data, loudness scaling, speech tests, and anamnesis questions. To further

maintain the applicability of the auditory profiles in clinical routine, we built

random forest classification models based on a reduced set of audiological

measures which are often available in clinics. Di�erent parameterizations

regarding binarization strategy, cross-validation procedure, and evaluation

metric were compared to determine the optimum classification model. Our

data-driven approach, involving model-based clustering, resulted in a set of

13 patient groups, which serve as auditory profiles. The 13 auditory profiles

separate patients within certain ranges across audiological measures and

are audiologically plausible. Both a normal hearing profile and profiles with

varying extents of hearing impairments are defined. Further, a random forest

classification model with a combination of a one-vs.-all and one-vs.-one

binarization strategy, 10-fold cross-validation, and the kappa evaluationmetric

was determined as the optimal model. With the selected model, patients

can be classified into 12 of the 13 auditory profiles with adequate precision

(mean across profiles = 0.9) and sensitivity (mean across profiles = 0.84).

The proposed approach, consequently, allows generating of audiologically

plausible and interpretable, data-driven clinical auditory profiles, providing

an e�cient way of characterizing hearing deficits, while maintaining clinical

applicability. The method should by design be applicable to all audiological

data sets from clinics or research, and in addition be flexible to summarize
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information across databases by means of profiles, as well as to expand

the approach toward aided measurements, fitting parameters, and further

information from databases.

KEYWORDS

auditory profiles, precision audiology, data mining, machine learning, patient

stratification, audiology

Introduction

It has become increasingly evident that characterizing

hearing deficits by the audiogram alone is not enough.

In addition to a loss of sensitivity, other factors, such as

suprathreshold distortions, determine how well individuals can

understand speech in daily life and communicate efficiently (1–

5). However, it is yet an open issue which measures should

be applied to achieve “precision audiology,” i.e., to characterize

the individual patient as completely and exactly as necessary

without losing too much time on comparatively irrelevant

measurements. Hence, a number of approaches were described

in the literature that differ in their general purpose, their amount

of measurements included, and their evaluation method to

characterize the most relevant measures.

For instance, van Esch et al. (6) proposed a test

battery (“auditory profile”) for standardized audiological testing

comprising eight domains (pure-tone audiometry, loudness

perception, spectral and temporal resolution, speech perception

in quiet and in noise, spatial hearing, cognitive abilities, listening

effort, and self-reported disability and handicap) aiming to

describe all major aspects of hearing impairment without

introducing redundancy among measures. Similarly, the BEAR

test battery was proposed for research purposes to characterize

different dimensions of hearing and was evaluated with patients

with symmetric sensorineural hearing loss (7). In spite of the

benefit of the proposed test batteries, widespread adoption in

clinical practice is currently lacking. The complete BEAR test

battery, for instance, takes ∼2.5 h to complete (7), even though

a shorter version for clinical purposes was also proposed in

(8). Nevertheless, in clinical practice, time is short and the

assessment of patients on such a multitude of tests may not

be feasible.

To tackle time constraints, Gieseler et al. (9) aimed at

determining clinically relevant predictors for unaided speech

recognition from a large test battery, thus, reducing the amount

of required tests. They showed that pure-tone audiometry,

age, verbal intelligence, self-report measures of hearing loss

(e.g., familial hearing loss), loudness scaling at 4 kHz, and an

overall physical health score were most important in predicting

unaided speech recognition, with the pure-tone audiometry

serving as the best predictor. Their model, however, left

38% of the variance in predicting unaided speech recognition

unexplained, indicating that further measures may be related to

unaided speech recognition. At the same time, their analyses

were tailored toward explaining unaided speech recognition

performance as an outcome measure. Predictors for aided

speech recognition performance, in contrast, or other outcome

measures, may vary. In Lopez-Poveda et al. (10), for instance,

temporal processing deficits as measured by the frequency-

modulation detection threshold (FMDT) were shown to be most

relevant in predicting aided speech recognition performance.

When including only predictors available in clinical situations,

however, the unaided speech recognition threshold (SRT) in

quiet was determined to be the best predictor. This demonstrates

the discrepancy between research and clinical applications and

highlights the importance to analyze insights from both clinical

and research datasets in combination. It further shows that the

relevance of predictors depends on the outcome measures, as

different predictors were determined most relevant for unaided

and aided speech recognition.

To improve patient characterization in the field of audiology,

patient data, therefore, need to be summarized efficiently and

flexibly. By summarizing patient data flexibly, the generated

knowledge could be used in a variety of settings (e.g., in

clinics, for mobile assessments, and decision-support systems

in general), and for a variety of outcome measures (e.g.,

diagnostic outcomes or unaided and aided speech recognition

performance). This, however, poses several challenges. First,

patients need to be characterized across different dimensions

of hearing loss. Second, to gain insights from a diverse patient

population, data aggregation across databases is required, which,

however, is hindered by the heterogeneity in the applied

measures across clinical and research databases in the field of

audiology (11). Lastly, for the general applicability of the stored

information, it needs to be accessible via measures also applied

in clinical settings, such that physicians can be supported.

To tackle these challenges, different approaches toward

patient stratification exist that involve identifying subgroups in

patient populations based on measurement data from single

measures or from interrelations of measures. An example of

a data-driven stratification based on single measures is the

Bisgaard standard audiograms by (12). There, a set of 10

standard audiogram patterns occurring in clinical practice
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were defined. This has subsequently resulted in a variety of

studies investigating outcome measures such as aided SRTs

in relation to the 10 audiograms [(9, 13–15), to name a

few], aiming toward precision audiology, thus, demonstrating

the promising nature of finding sub-classes in the field

of audiology. In contrast, an expert-based approach, based

on single measures, was proposed by Dubno et al. (16)

that linked four audiometric phenotypes to knowledge about

possible etiologies from animal models of presbyacusis via

expert decisions. Schematic boundaries for the five phenotypes

“older-normal,” “pre-metabolic,” “metabolic,” “sensory,” and

“metabolic+sensory” are provided which allow for inferences of

etiologies, given patient presentations of presbyacusis.

In contrast to patient stratification based on single measures,

Sanchez-Lopez et al. (17) introduced a data-driven profiling

method based on multiple measures using a combination of

unsupervised and supervised machine learning. Based on the

hypothesis that two distortion types for the characterization

of hearing loss exist, four distinct profiles were generated by

means of principal component analysis and archetypal analysis.

Thereby, the most important variables for the characterization

of each distortion dimension were estimated and employed to

identify the most extreme data combinations (archetypes). All

patients of two existing research data sets (containing a certain

battery of tests) were labeled with the most similar archetype.

In a second step, decision trees were built to allow for the

classification of new patients into the four auditory profiles. The

obtained profiles are interpretable as they were defined based on

the hypothesis of two distortion components and the variables

used for classification are known. The meaning of the two

distortions, however, was different depending on the available

measures in the respective data set.

Sanchez-Lopez et al. (18) improved the profiling method

to be more robust (e.g., due to bootstrapping, a more flexible

number of allowed variables, and estimating the association of

a patient to a profile based on probability) and applied it to

the BEAR test battery (7), which was designed for the purpose

of including all relevant measures according to the literature

and previous work. As a result, a plausible interpretation of

the two distortion dimensions was obtained, namely being

associated with speech intelligibility and loudness perception,

respectively (18). However, by tailoring their analyses toward

four extreme distinct profiles and by using archetypal analysis, a

priori hypotheses were included in the derivation of the profiles.

Consequently, further distinctions between patient groups may

be lost.

A further example of summarizing audiological data

efficiently is provided by Buhl et al. (11, 19). The Common

Audiological Functional Parameters (CAFPAs) were derived

by experts and aim at representing audiological functions in

an abstract and measurement-independent way. The CAFPAs

further act as an interpretable intermediate layer in a

clinical decision-support system. Prediction models allow for

a data-driven prediction of CAFPAs (20) and a subsequent

classification into audiological findings (21). However, to relate

new measures from further data sets to the CAFPAs, experts

are currently required for labeling purposes, which consequently

does not allow for the automatic integration of new data sets

containing additional measures.

The aforementioned methods all contribute toward

enhancing patient characterization but are either restricted

to single measures or include prior assumptions regarding

the distinction of patient groups or audiological functions.

Consequently, not all existent differences between patient

groups may be detected. In this study, we aim at (1) providing

a method for a fully data-driven stratification of patients into

subgroups based on audiological measures, namely auditory

profiles. This patient stratification approach is not restricted

in terms of prior assumptions, the number of patient groups,

and contained measures. In that way, all differences between

patient groups can be summarized independently of outcome

measures. The auditory profiles aim to describe patient groups

with similar measurement ranges across audiological measures

and are defined based on the contained patient patterns,

instead of prior assumptions. In future, profiles could, hence,

be combined, added, or removed, depending on the provided

insights gained from applying the profiling approach to further

data sets, as well as based on the relevance of profile distinctions

in clinical routine. The applicability of defined profiles to

different settings (e.g., clinical settings) can, however, only

be obtained if the knowledge from within the profiles, in the

form of plausible ranges for the contained measures, can be

linked to patients, given their results on widely used measures

(e.g., pure-tone and speech audiometry). We, therefore,

further aim at (2) maintaining clinical applicability by building

classification models using random forests, based on measures

available in clinical routine. This allows for classifying new

patients into the auditory profiles. In clinics, it could support

physicians to associate a new patient to a profile and in that

way exploit statistical knowledge available for the respective

profile.

The current study, thus, aims at answering the following two

research questions:

RQ1: Does our proposed profiling approach result in a

meaningful and distinct grouping (auditory profiles) of patients

with respect to important hearing loss factors contained in the

employed data set?

RQ2: Which classification model can provide high precision

and sensitivity in classifying patients into the auditory profiles

using only a subset of the contained audiological measures?

Materials and methods

Data set

To define the first set of auditory profiles, we analyzed

an existing data set that was provided by Hörzentrum
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Oldenburg gGmbH and is described in detail in Gieseler

et al. (9). In contrast to Gieseler et al. (9), we did not

exclude any patients with, e.g., an air-bone gap >10 dB

HL but aimed for a diverse patient sample. Our patient

sample, consequently, consisted of all patients that completed

the full test battery, resulting in 595 patients (mean age =

67.6, SD = 11.9, female = 44%) with normal to impaired

hearing. For each patient, information with respect to a broad

range of measures, including audiogram data, loudness scaling,

speech tests, cognitive measures, and anamnesis questions

is contained.

The contained measures either are, or can easily be

integrated into clinical routine. The audiogram and the

Göttingen sentence test (GOESA) (22) are commonly used

for the assessment of individuals’ hearing status. The former

assesses an individual’s thresholds across frequencies; the latter

assesses the speech recognition threshold (SRT), here, in noise

for the collocated condition (S0N0). Both the audiogram

and the GOESA are used in hearing aid fitting, for gain

adjustments, and as an outcome measure, respectively. From

the contained measures, we used several features to generate

the auditory profiles (see Table 1 for an overview of the

features). For the audiogram, the pure-tone average (PTA,

threshold averaged across 0.5, 1, 2, and 4 kHz) for air-, and

bone conduction was used for the more severely affected ear.

Asymmetric hearing loss was accounted for via the inclusion

of an asymmetry score (absolute difference between PTA of

left and right ear). Additionally, the air–bone gap (ABG),

the PTA of the Uncomfortable Loudness Level (UCL), and

the Bisgaard standard audiograms (12) were derived from the

audiogram. The Bisgaard standard audiograms were included

to allow for a separation of different audiogram patterns (e.g.,

moderately and steeply sloping audiograms), while reducing

the dimensionality of the audiogram. A further speech test

[digit triplet test (DTT)] (23) was included to add information

to the auditory profiles from a measure mainly used for

screening purposes. The adaptive categorical loudness scaling

(ACALOS) (24) provides relevant information with respect to

an individual’s loudness perception and recruitment, and has

also shown its effectiveness in hearing aid fitting (25). To

characterize both the lower and upper part of the loudness

curves, both L15, L35, and the difference between L15 and

L35 were selected as features. As a relation between cognition

and hearing exists (26), the age-normed sum score from

a screening test for dementia (Demtect) (27) and the raw

score from a measure of verbal intelligence [Vocabulary test

(WST)] (28) were also included. Further, information regarding

the socio-economic status (sum score of education, income,

and occupation) (29), the presence of tinnitus [none (1),

unilateral (2), bilateral (3)], and the age of the patients

were available.

TABLE 1 Overview of audiological domains and features used for the

generation of the profiles.

Domain Number of

features

Features

Audiogram 6 AC PTA, BC PTA, Asymmetry

(left/right ear), ABG, UCL PTA,

Bisgaard standard audiograms

Loudness Scaling 6 ACALOS (L15,L35, L15-L35) for 1.5 &

4 kHz

Speech tests 3 GOESA (SRT, slope), DTT (SRT)

Cognitive measures 2 DemTect score, WST score

Anamnesis 3 Tinnitus, Socio-economic status, age

Features used for the classification into the profiles are shown in bold.

Generating auditory profiles using
model-based clustering

To generate auditory profiles that are capable of

separating patients with respect to ranges of audiological

tests, we applied clustering, as it has shown promising

for purposes of patient stratification. For the current

analyses, the clustering pipeline consists of two steps,

namely robust learning and profile generation (see Figure 1

for visualization).

Robust learning

Bootstrapping and imputation of missing data

As bootstrapping techniques have shown to improve

the robustness of clustering solutions (30, 31), we first

subsampled the data set 1,000 times containing 95% of the

original data set. We chose subsampling over resampling

with replacement, in order to avoid duplicate samples being

seen as a “mini”-cluster, hence, artificially increasing the

number of clusters. As missing values existed in the original

data set, each of the 1,000 subsamples also contained

missing values and needed to be imputed. Missing values

pose a common problem in clinical data sets, and a

loss of patient information, e.g., complete-case analysis, is

often undesirable, thus, requiring an adequate technique to

solve it.

Consequently, for audiogram data, prior to extracting pure-

tone averages and Bisgaard standard audiograms, missing

thresholds were interpolated if the thresholds prior to and after

missing values were available. For the remainder of missings

(on average 1.5% with a maximum of 2.5%), multivariate

imputations with chained equations (MICE) (32) was applied.

MICE results inmultiple completed data sets that account for the

uncertainty that stems from imputing missings. With MICE, the
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FIGURE 1

Analysis pipeline to generate auditory profiles. After selecting the optimal model parameters (robust learning, upper part), model-based

clustering is applied to the original data set (profile generation, lower part).

analyses of interest are subsequently performed on all completed

data sets and the results are combined (32). For the present

analyses, we generated 20 completed data sets. Accordingly,

clustering was performed on each of the 1,000× 20 data sets.

Model-based clustering

Before clustering, we transformed the features of Bisgaard

standard audiograms and tinnitus and treated them as

continuous for clustering purposes. Bisgaard standard

audiograms were ordered with respect to increasing PTA;

tinnitus with respect to its absence, unilateral, or bilateral

presence. All features (see Table 1) were then scaled using min–

max scaling, resulting in values between 0 and 1. As the number

of features (N = 20) can be considered small, we refrained

from further dimensionality reduction and instead aimed at

maintaining a balance of the number of features stemming

from the different measures. Depending on the clustering goal,

dimension reduction with, e.g., principal component analysis

can prove problematic as the reduction of dimensionality could

also lead to the removal of information that would have proved

to be discriminatory for the clustering goal (33).

On the scaled feature set, we applied model-based

clustering. Model-based clustering was especially suitable for

our purposes of uncovering patient groups existent in the

data set, as it assumes that the data stem from a mixture

of subgroups. The mixture of subgroups is further assumed

to be generated by an underlying model which model-

based clustering aims to recover (34, 35). For this purpose,

the number of clusters k and a parameterization of the

covariance matrices with respect to their shape, size, and

orientation [see (36) for possible covariance parameterizations]

need to be specified beforehand. Subsequently, each cluster’s

mean vector muk and covariance matrix Σk is learned

and a likelihood estimate for the given clustering solution

is computed.

In contrast to simpler clustering techniques such as k-

means clustering, model-based clustering is able to detect

more complex shapes in the data (37). It is, therefore,

more suitable for our purposes of detecting all plausible

differences in the data. At the same time, the parameterization

of the covariance matrices can constrain the complexity

of the clustering solution by enforcing stronger restrictions

and reducing the number of parameters that need to be

estimated (38). To select the most suitable model, all candidate

parameterizations (k and covariance matrix parameterization)

are computed and the model with the highest likelihood of

explaining the underlying data structure is selected using the

Bayesian Information Criterion (BIC) (39). More complex

clustering structures (i.e., less covariance matrix restrictions)

may suffice in explaining the dataset with fewer clusters

but require the estimation of a much larger number of

parameters and are, thus, not always feasible with smaller

datasets. Less complex clustering structures, in contrast, could

explain the same underlying data structure by increasing

the number of clusters (38). This also holds for increasing

the number of features used for clustering. Increasing the

number of features increases the number of parameters to

be estimated (i.e., the complexity), which, however, can be

reduced by restraining the covariance matrices. This may, in

turn, increase the number of estimated clusters required to

explain the data. To avoid increasing the number of clusters

beyond clusters that enhance the explanation of the data

structure, however, the BIC penalizes for the complexity of

the covariance parameterization and number of clusters k, and
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thus, results in a trade-off between model complexity and over-

parameterization (34).

Here, for each of the 1,000 × 20 data sets, we computed all

potential parameterizations for 2–30 clusters and then derived

the optimalmodel for each data set using the BIC, which resulted

in 1,000 × 20 candidate models. The dimensionality of the

candidate models was then reduced across the 20 completed

data sets of each of the 1,000 subsamples. The most frequently

occurring model parameterization was selected as a candidate

model, resulting in a reduced set of 1,000 candidate models. We

then defined the overall optimal model via its frequency across

the 1,000 candidate models, which resulted in an estimate for the

model parameters (i.e., the number of profiles and the model’s

covariance parameterization).

Profile generation

In the profile generation step, we generated the auditory

profiles using the original data set without prior subsampling.

First, we imputed missings using multivariate imputation with

chained equations (MICE) in the same manner as described in

Section Bootstrapping and imputation of missing data. Thus,

20 completed data sets were generated with differing estimates

for missings. Second, we applied model-based clustering

using the estimated optimal model structure from the robust

learning step for each completed data set, which resulted in

20 candidate clustering solutions. From these 20 candidate

clustering solutions, we aimed to select the solution showing the

highest overlap with the remaining solutions regarding patient

allocation into the clusters. The rationale behind this is that,

since model parameters are kept constant, differences between

clustering solutions stem from differences in the imputed values.

The solution showing the highest overlap can then be assumed

to be least influenced by imputed values, as patient allocations

into the clusters were agreed upon by most solutions.

Building classification models to classify
patients into auditory profiles

Features and labels

To allow for the usage of the auditory profiles for different

purposes (e.g., clinical applications), it is necessary to classify

patients into the profiles based on a subset of measures widely

available. Therefore, we built classification models using the

profiles as labels and a reduced set of measures as features.

From the aforementioned features used for clustering (see

Table 1), only the features from ACALOS, GOESA, and the

air-conduction audiogram (PTA, Asym PTA, Bisgaard) were

used next to the age of the patients (12 features), to simulate

the case that these measures were conducted for a to-be-

classified patient.

Model training

For model training, we split the reduced data set, containing

the above-mentioned 12 features, into a training (75% of

patients) and test data set (25% of patients). The training data set

was used for training themodel, which included cross-validation

(CV), model tuning, and the selection of the best model

tuning parameters containing different binarization strategies,

CV procedures, and evaluation metrics defining the prediction

error, and are described in more detail in the following. The best

model is defined as the model minimizing prediction error. We

then evaluated the training data set’s best model on the test data

set to estimate its predictive performance on patient cases not

used for model training, which indicates how the classification

model would generalize on unseen patient cases.

To build the classification models on the training data

set, we used random forests (40), as it has shown competitive

classification performance, while remaining interpretable. It is

also less prone to overfitting and handles relatively small sample

sizes well (41, 42). Random forests are an extension of simple

decision trees. Multiple decision trees are built, each segmenting

the predictor space into several smaller regions, based on derived

decision rules. Predictions are consequently derived from the

ensemble of trees. For classification purposes, the label predicted

most frequently among trees is selected. In other words, it

has the highest estimated probability among candidate labels.

To avoid building correlated trees, the tuning parameter mtry

defines the number of features considered at each split. At each

split, the specified number of features is then randomly sampled

from the feature set, thus, enforcing different tree structures,

which in turn reduce the variance of the predictions (41). For

the current analyses, we tunedmtry using cross-validation.

To provide optimal prediction models for each of

the profiles, we applied different binarization techniques.

Binarization strategies to tackle multi-class problems have

proved beneficial in enhancing predictive performance. They

involve building base learners for binary classification tasks

which are subsequently aggregated to provide a prediction

(43, 44).

Consequently, we compared multi-class classification to

three different binarization strategies. First, we built predictive

models for each auditory profile separately (k models), with the

one-vs.-all (OVA) technique, allowing the model to learn the

specific differences of a profile, as compared to all remaining

ones. Thus, for each profile, we built a classification model that

decides whether a patient belongs to a given profile, or not. If

more than one of the k OVA models predicted that a patient

belonged to its profile, the profile with the highest probability

among candidate profiles is selected, as defined by the frequency

of its prediction in the random forest. Second, we used a one-

vs.-one (OVO) technique to build predictive models for all

k(k-1)/2 profile combinations. Thus, differences between each

pair of profiles were learned. To provide a prediction, voting

aggregation was applied, which means that the most frequently
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predicted profile was selected. Lastly, we used a combination

of OVA and OVO (OVAOVO). Here, again, we used OVA to

predict profile classes. However, for uncertain cases, if more than

one profile was predicted, instead of selecting the profile with

the higher probability, we used OVO to decide upon the final

profile prediction.

Across profiles, a class imbalance exists, either due to

differing profile sizes or due to the applied binarization strategy.

Classifiers trained on imbalanced data sets tend to favor the

majority class over the minority class in order to reduce

the prediction error, which leads to undesirable results if the

minority class is of interest (e.g., in an OVA or OVO model).

Consequently, we upsampled all profiles to contain at least the

number of patients of the largest profile p in terms of sample

size (maxNp). Upsampled patients were selected randomly from

each profile and across features Gaussian noise was added to the

observations (+/- 1 SD). Upsampling with Gaussian noise was

shown to be especially suitable for clinical data sets (45). As a

result, no class imbalance was present for multi-class and OVO.

For OVA, the class imbalance was still present due to the OVA

design. As upsampling would require upsampling for several

magnitudes of the original profile size, and downsampling would

discard too much valuable information, a different technique

was applied. In addition to upsampling to maxNp,we used a

weighted random forest model using cost-sensitive learning.

Thus, weights were introduced, which more severely punished

for the misclassification of the minority class over the majority

class (46). The issue of the tendency toward majority predictions

was, therefore, addressed also for the OVA binarization strategy.

Further, we compared two different CV schemes for optimal

model tuning, namely, leave-one-out CV (LOOCV) and 10-fold

CV repeated 10 times (RepCV). LOOCV is a special case of CV,

in which the validation set consists of only one observation;

RepCV splits the training set randomly into 10-folds, which

is then repeated 10 times. LOOCV provides advantages for

small data sets, as models are trained on larger sample size as

compared to RepCV. However, in return, predictions may have

high variance, as the variation in training sets is small. RepCV,

in contrast, has lower variance due to differing training sets, but

may be biased due to smaller sample size (41).

Lastly, we compared different evaluation metrics

which optimize classifiers to different aspects of predictive

performance. The main measures to evaluate the performance

of a classifier are accuracy, sensitivity, specificity, and precision.

Accuracy defines the ratio between correctly classified instances

and the total sample size. Sensitivity (also called recall) and

specificity are evaluation metrics for binary classification

problems, but can be easily extended toward multi-class

classification problems by employing an OVA binarization of

the classification problem. This, however, again introduces an

imbalance in the data regarding the evaluation. Sensitivity refers

to correctly classifying all classes of interest as positive, whereas

specificity refers to the ability to correctly classify all remaining

classes as negative. The precision of a classifier, in contrast,

determines the preciseness of a classifier. That means precision

is high if no other class was misclassified as the class of interest

(47). The four evaluation metrics we compared in the current

study, namely, Cohen’s kappa, balanced accuracy, F1-score, and

the Area under the precision–recall curve (AUPRC) differently

weight aspects of accuracy, sensitivity, specificity, and precision.

Cohen’s kappa is inherently capable of evaluating multi-class

problems, by comparing the accuracy to the baseline accuracy

obtained by chance (48). Balanced accuracy weights sensitivity

with specificity, and is consequently less able to handle multi-

class problems, since specificity increases with imbalanced

data sets. The F1-score addresses this issue by calculating the

harmonic mean between sensitivity and precision, instead of

sensitivity and specificity. Likewise, the AUPRC has shown to be

especially suitable for imbalanced data (49). To determine the

optimal classifier, it is important to select an adequate evaluation

metric, suitable for the class distribution in the data set. Since we

have different class distributions across our four classification

strategies (multi-class, OVA, OVO, OVAOVO), we compared

different evaluation metrics.

Model selection and evaluation

To select the optimal classification model, we evaluated the

four different classification strategies (multi-class, OVA, OVO,

OVAOVO) on the training data set with respect to the different

metrics (Kappa, balanced accuracy, F1-score, and AUPRC)

and cross-validation procedures (repCV, LOOCV). To compare

the performance of the models that were optimized with the

different evaluation metrics, after training, a general post-hoc

performance measure is needed. Here, we chose the F1-score as

it summarizes both sensitivity and precision, and can adequately

describe the performance of a classifier in case of imbalance.

Accordingly, we determined themodel leading to the highest F1-

score by averaging the F1-scores across profiles and then selected

it as the best performing classification model. Lastly, to evaluate

the predictive performance of the selected classification model

and its generalizability to new data, we evaluated the model on

the test data set. Here, instead of the F1-score, we used both

sensitivity and precision to provide a more thorough assessment

of the classifiers’ performance for the distinct auditory profiles.

Results

Generation of profiles

Estimation of profile number and covariance
parameters

To generate auditory profiles which characterize a diverse

range of patient patterns across measures, the number of

separable patient groups and the covariance parameter were

determined. Figure 2 depicts the distribution of estimated
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cluster numbers across the 1,000 bootstrapped samples. Across

bootstrapped samples, 11–19 profiles were estimated as an

optimal model with a maximum of 13 clusters. Further, the

covariance parameterization “VEI” was selected across all 1,000

subsamples. VEI (variable volume, equal shape, coordinate axes

orientation) is a rather parsimonious model as it restricts both

the shape and axis alignment of the clusters and requires a

diagonal cluster distribution. The sizes of the clusters, however,

may vary. Hence, 13 clusters with the covariance parameter

“VEI” are estimated to represent the data structure best.

Subsequently, the above-defined parameterization (k = 13,

“VEI”) was used to generate profiles on all 20 completed data

sets of the original data set. The completed data set showing

the highest overlap with the remaining completed data sets

regarding patient allocation into the profiles (max_similarity

= 0.794) was selected to base the auditory profiles on. Mean

classification similarity across all 20 completed data sets was 0.75

(SD= 0.032).

Profile ranges across audiological measures

Figure 3 shows the profile ranges of the generated auditory

profiles and Table 2 contains the number of patients contained

in each profile. The profiles cover a large range across

audiological measures and show profile-based differences in

patient presentation of the contained measures. All profiles

can be distinguished from each other based on at least one

audiological feature. The speech test results (Figure 3, blue box)

regarding GOESA and the DTT are generally comparable. The

profiles cover different extents of impairments, ranging from

normal hearing (profile 1) to strong difficulties in understanding

speech in noise (profile 13), as indicated by the increasing SRT.

Likewise, the slope of the GOESA decreases with increasing SRT.

FIGURE 2

Distribution of optimal profile numbers across bootstrapped

samples.

Within the SRT range of −5 to 0 dB SNR, most of the profiles

are contained. Here, the different profiles show similarities

regarding SRT ranges, and the difference between the profiles

can be found via other measures. Audiogram results (Figure 3,

green box) indicate the existence of normal hearing (profile 1),

moderately (profiles 2, 3, 6, 7, 8, 9, 11, 13), and rather steeply

sloping (profiles 4, 5, 10, 12) patterns. Generally, we observe

a trend of increasing thresholds on the audiogram together

with increasing SRTs. There are, however, also exceptions.

Profile 11 displays the highest thresholds across frequencies

and profiles, but does not show the strongest impairment on

the GOESA. Instead, it includes patients with an air–bone gap

and asymmetric hearing loss, as indicated by the asymmetry

score. Profiles can also be distinguished based on the ACALOS

(Figure 3, loudness scaling—yellow box) and the UCL. With

increasing SRTs, we can observe an increase in the UCL, as well

as a decrease in the dynamic range, as shown by the difference

between L35 and L15 for both 1.5 and 4 kHz. In spite of this,

differences exist across profiles unrelated to the increasing SRT.

Profiles 4 and 5, for instance, show overlapping ranges regarding

the SRT, but differ with respect to the UCL. Across cognitive

measures (Figure 3, cognitive measures—orange box), no clear

distinctions across profiles were found. Likewise, ranges for

the age of patients and the socio-economic status (Figure 3,

anamnesis—gray box) overlap across profiles, with the exception

of profile 1 containing younger patients.

To summarize, similarities exist to varying extents between

profiles. Some profiles can be easily distinguished. For instance,

profiles 1 and 2 can be easily distinguished from profiles 11,

12, and 13 across audiogram, GOESA, and loudness scaling

data. In contrast, other profiles only differ on certain measures.

Profiles 2 and 3, for instance, show overlapping ranges on both

the audiogram and the GOESA, but different average loudness

curves and distinct distributions regarding the UCL.

Classification into profiles

Model selection

To allow for a classification of new patients into the

auditory profiles based on a reduced set of measures widely

available in clinical practice, classification models were built

using random forests. Different parameterizations (optimization

metrics, binarization strategies, and CV procedures) were

compared with the aim to provide the classification model

best suited for the auditory profiles. The mtry parameter was

inherently determined within each model.

Figure 4 displays the results of the comparative performance

with respect to the binarization strategies, optimization metric,

and cross-validation procedure on the training data set. Model

performances with respect to the F1-scores were averaged across

profiles to result in an overall F1-score. This allowed for a

selection of the best model parameterization. Profile 7 was not
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FIGURE 3

Profile ranges across measures. Plot backgrounds are colored according to underlying domains. Blue corresponds to the speech domain, green

to the audiogram, yellow to the loudness domain, orange to the cognitive domain, and gray to the anamnesis. Profiles are color-coded (yellow

to violet) and numbered (1-13) with respect to increasing SRT (impairment) on the GOESA.
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selected for averaging, as the number of patients contained in

the profile (N = 6) is not large enough to lead to reliable results

and interpretations.

All models perform well in predicting profile classes, as

indicated by the overall small and high range of mean F1-

scores. The highest F1-score was obtained by the OVAOVO

model using the kappa evaluation metric and repeated 10-fold

CV. Consequently, the OVAOVO (kappa, repCV) model is

selected as the classification model to allow for a prediction

of patients into profiles. Across models, the kappa metric

provided the best results, whereas optimal CV procedures

differed across binarization strategies, with the exception of the

OVAOVO model in which repCV provided the best results for

all evaluation metrics.

Model evaluation

The previously selected optimal model (OVAOVO, repCV)

was selected based on its performance on the training data

set (75% of the patients). To investigate the generalizability of

the classification model to new patients, its performance was

subsequently evaluated on the test data set (25% of the patients).

Figure 5 displays the performance results with respect to the

sensitivity and precision across all profiles.

Generally, the classifier’s performance is adequate regarding

achieved sensitivity and precision on the test data set. Across

profiles 1–6 and 8–13, average precision and sensitivity on the

test data set are 0.9 and 0.84, respectively. Results for profile

7 were plotted for completeness, however, are unreliable due

to the small sample size, since the test data set only consisted

of two patients. Overall test performance is only slightly lower

than training performance for most profiles, except for profiles

3, 6, and 7. For these profiles, the generalization of the learned

classification approach toward unseen data is limited. Profile 3

and profile 6 show low levels of sensitivity, but high levels of

precision. Thus, not all cases of the two profiles are detected,

however, if the two profiles are predicted one can be highly

certain that the patient does, indeed, belong to profile 3 or

profile 6.

Discussion

The aim of this study was to propose a flexible and data-

driven approach to patient stratification in the field of audiology

that allows for a detailed investigation into the combination

of hearing deficits across audiological measures. Our results

demonstrate the feasibility and efficiency of our proposed

profiling pipeline in characterizing hearing deficits in the form

of patient groups, namely, auditory profiles. The proposed 13

auditory profiles separate patients with respect to ranges on

audiological tests. Further, to ensure the applicability of the

auditory profiles in clinical practice with only a basic set of

audiological tests, classification models were built that allow for

an adequate classification of the auditory profiles given such a

reduced set of audiological measures.

Generation of profiles

The proposed profiles aim to represent the underlying

patterns of the current data set best. Hence, the profiles describe

the patterns across measures for the available patients and

etiologies, rather than aiming to cover all generally existent

patient groups with the current set of auditory profiles.

Additionally, the number of profiles that can be generated is

variable and dependent on the underlying data. This becomes

evident when inspecting the distribution of optimal profile

numbers in Figure 2. Across bootstrapped data sets different

profile numbers were suggested. This may in part be due to the

applied method. Different subsets of the bootstrapped data may

miss extreme patient patterns, and thus, lead to a reduction or

increase in suggested profile numbers. This, next to the added

FIGURE 4

Performance of di�erent models on the training data set. The

mean F1-score was calculated as the mean of F1-scores across

profiles 1–6 and 8–13. Metrics and cross-validation schemes

can be distinguished by color and shape, respectively. BA refers

to balanced accuracy. LOOCV refers to leave-one-out

cross-validation; repCV to repeated 10-fold cross-validation.

TABLE 2 Number of patients contained in each auditory profile.

Profile 1 2 3 4 5 6 7 8 9 10 11 12 13

N 27 76 19 24 77 33 6 44 68 51 42 79 39
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FIGURE 5

Train-test data set performance for the OVAOVO (kappa, repCV model) for both sensitivity and precision. The dashed lines indicate the mean

across profiles 1–6 and 8–13 for the respective condition.

uncertainty that stems from imputing missings, may explain

the variability in suggested profile numbers across bootstrapped

samples. By using a bootstrapping approach, where the optimal

number of profiles is defined as the most frequently proposed

profile number, it can be assumed, however, that the effects

of imputations and extreme patient patterns on the generated

profile number were minimized.

The number of profiles may further be influenced by

the employed model restrictions. Since the covariance

parameterization “VEI” restricts both the shape and axis

alignment and requires diagonal cluster distributions, a

parsimonious model was selected as describing the underlying

data structure best. The number of profiles, therefore, may

be large in order to characterize the data structure best with

the given restrictions (38). It would be of interest to apply the

modeling approach to a larger dataset that allows for a less

restrictive model in order to investigate if the resultant number

of profiles would decrease. A more parsimonious model that

leads to a larger number of profiles, however, is in line with our

aim of detecting all plausible differences between patient groups.

Interpretation of profiles

The profiles, generally, cover a large range of different

types and extents of hearing deficits and appear audiologically

plausible. All profiles can be distinguished from each other by

at least one audiological feature and can, thus, be considered as

distinct patient groups regarding audiological measures (RQ1).

The relevance of the distinction has to be evaluated with respect

to the outcome measure of interest. Certain distinctions are,

for instance, not necessarily relevant for diagnostic purposes.

It can be assumed that profiles 4 and 5 would be categorized

as bilateral sensorineural hearing loss (ICD code h90.3) (50)

and could, thus, for purposes of coarse diagnostic classification

be combined. Profile 5, however, shows a lower range of UCL

levels, indicating that loudness would need to be compensated

differently in a hearing aid for patients within profile 5 as

compared to profile 4. The distinctions regarding loudness

perception could influence the benefit that patients within

the separate profiles may experience from hearing aids, if

the same hearing aid parameters are applied to both groups.

This highlights our motivation for flexible profiles that can

be combined or separately considered given different outcome

measures. The exact number of profiles may, therefore, change

with the inclusion of further datasets and also depend on the

targeted outcome measure. The proposed auditory profiles,

however, enable a detailed investigation into differences that

exist between patient groups.

Most of the profiles can be assumed to be caused by

symmetrical sensorineural hearing loss. Profile 11, however, also

contains an asymmetric conductive hearing loss, as indicated by

the presence of both an asymmetry between the ears and an air–

bone gap in the group (51). For the remainder of the profiles,

however, we can interpret the profiles in the consideration of the

four-factor model for sensorineural hearing loss by Kollmeier

(52). The current profiles contain measures that allow for an

estimation of the first two factors (attenuation and compression

loss), but not binaural and central loss. The audiogram can

provide an indirect indication for the attenuation loss, which

is defined as the required amplification for each frequency

to obtain an intermediate loudness perception (L25), whereas

the ACALOS can indicate a compression loss via a reduced

dynamic range (52). Overall, we can observe differences in both
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the audiogram shapes and the dynamic ranges across profiles.

Most importantly, similar audiogram shapes (e.g., profiles 2

and 3) do not necessarily lead to a similar compression loss

and our profiles are able to detect these differences, which is

in line with the assumption of the four-factor model, that the

audiogram alone cannot explain all underlying characteristics

of sensorineural hearing loss. We, therefore, conclude that the

13 auditory profiles provide meaningful information regarding

two important factors of hearing deficits, i.e., attenuation and

compression loss (RQ1), and that the profiling pipeline has the

potential for the detection of patient group differences also for

further datasets, if suitable measures are included.

In general, the interrelation across speech tests, loudness

scaling, and audiogram data lead to a separation of patients

into profiles. For instance, profiles 2 and 3 contain patients

with both similar SRTs and audiogram thresholds. Profile 3,

however, shows a reduced dynamic range with its uncomfortable

loudness level (UCL) thresholds derived from the audiogram

and the range between soft (L15) and loud (L35) sounds on the

ACALOS reduced, which indicates recruitment. This, in turn,

has implications for hearing aid fitting. It can be assumed that

patients within the two profiles require different compression

settings, in spite of similar audiograms (53, 54). In contrast, the

main difference for profiles 8 and 9 lies within their thresholds

on the audiogram, with profile 9 showing about 10 dB higher

thresholds, while showing similar SRT and loudness curve

ranges. The relevance of a distinction between these two profiles,

for both diagnostics and hearing aid fitting, thus, needs to be

further investigated. For other profiles, differences are more

strongly pronounced and they can well be separated.

Certain profiles also align well with the proposed phenotypes

by Dubno et al. (16). Profiles 6, 7, and 9 are consistent with

the metabolic phenotype, and profiles 2 and 3 appear to be

in between the pre-metabolic and metabolic phenotype with

respect to the ranges on the audiogram. Profile 4 can be

described in terms of the sensory phenotype and profiles 5

and 10 as the metabolic + sensory phenotype. However, the

auditory profiles also contain different patterns, with eithermore

severe presentations as described by the phenotypes (profiles

11 and 13), or different slopes in the lower frequency range

of the audiogram (profiles 8 and 12). Further, instead of an

older normal hearing profile to match the older normal hearing

phenotype, only a young normal hearing profile is included.

Regardless, certain probable etiologies can be inferred for the

respective profiles, exemplifying how alternate stratification

approaches could be connected to the auditory profiles proposed

in this study. Since more than one profile can be matched

to sensory and metabolic phenotypes, however, it can, again,

be assumed that further contributors regarding individual

presentations of hearing deficits exist, which are not assessed via

the pure-tone audiogram.

No distinctions across profiles regarding the cognitive

measures were found (WST, DemTect). Even though hearing

deficits and cognitive impairments have been widely associated

(55), the precise causal relationship remains unclear and

some studies did not find significant relations (26). With

the profiles, a slight trend toward increasing impairment on

the DemTect with increasing SRT can be observed; however,

the ranges across profiles overlap substantially. On the one

hand, this may indicate, that none of the present profiles

is significantly influenced by cognitive abilities and that the

observed patterns of hearing deficits may occur for both

cognitively impaired and non-impaired patients. This would

require further investigations and the inclusion of patients

with more severe cognitive impairments. On the other hand,

the DemTect, as a screening instrument, may not be sensitive

enough for detecting a further association between cognitive

impairment and hearing deficits. For the auditory profiles, this

indicates that cognitive differences are not well-represented,

such that patients’ cognitive abilities would need to be assessed

via further cognitive measures that are currently not included in

the database.

The currently available profiles naturally only provide a

picture of the contained measures. It can be assumed that the

inclusion of further measures will enhance the precision of

patient characterization. Of the specified eight domains relevant

for characterizing hearing deficits, defined by van Esch et al. (6),

currently, four are contained in the defined profiles (pure-tone

audiogram, loudness perception, speech perception in noise, and

cognitive abilities). Spatial contributors, i.e., the intelligibility

level difference (ILD) and binaural intelligibility level difference

(BILD) measures, were—unfortunately—not included in the

original database so no relation to the profiles given here

can be provided. However, it can be assumed that they could

provide an enhanced characterization of patients’ hearing status,

as well as prove valuable for hearing aid fitting. Similarly,

measures describing the central factor of hearing loss could be

incorporated if available in a data set, to comply with all four

factors as suggested by Kollmeier (52). Consequently, future

studies should work toward incorporating these measures into

the profiles.

Classification into profiles

By building classification models to match patients into the

auditory profiles using only features from the air-conduction

audiogram, loudness scaling, and GOESA, we aimed for the

applicability of the profiles in a variety of settings. First,

in clinical routine, both the audiogram and a speech test,

measuring the SRT, are the current standard in hearing aid fitting

(56), and in Germany, the GOESA is included in the German

guideline for hearing aid fitting (57). In addition, loudness

scaling has proved promising for hearing aid adjustments (58).

The three measures are, therefore, often available for hearing

professionals and do not extend the testing time of patients

and physicians. If fewer measures are available, e.g., only the

audiogram and the GOESA, or a different set of measures,
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the classification models would have to be retrained for this

purpose. We believe, however, that loudness scaling provides

valuable information for hearing aid fitting and should, thus,

be included in the fitting process. Second, to use the profiles in

further research and clinical data sets, it is important to include

measures that are frequently measured and available. Thus, even

though further measures may be contained in the data sets, it is

necessary to provide classification models containing measures

widely available across data sets.

The present results indicate the feasibility of classifying

patients into most of the profiles. The OVAOVO model with

the kappa loss function and 10-fold repeated CV reached the

highest F1-score and was, therefore, selected as the optimal

classification model for the analyzed dataset. With the model

test set, sensitivity was >75% for all profiles but profiles 3, 6,

and 7 (RQ2). For profile 7, this can be explained by the small

sample size of the profile as only six patients were classified

into the profile. Consequently, the training of a classifier for

profile 7 does not lead to reliable results, and its generalizability

is not assured. In spite of that, we included the results for profile

7 for completeness, since it may provide further separation

from the remaining profiles for the multi-class classifier, by

including counter-examples of patients. Profile 7, however,

cannot yet reliably be used to classify new patients into it.

Further information from databases is needed to investigate

whether this profile represents rare cases or whether this profile

was not represented enough in the present data set to provide

a large enough sample size for classification purposes. Profile

ranges for profile 6 are generally broader than for other profiles;

therefore, misclassifications may have occurredmore frequently,

thus, reducing the sensitivity for profile 6.

The current classification model naturally only covers

patient populations that were also contained in the analyzed

dataset. Given the adequate classification performance of the

classifier, it can be assumed that new patients with similar

characteristics to the patients within the dataset would also be

adequately predicted into the auditory profiles. At the same

time, random forests allow for an estimation of the classification

uncertainty when classifying patients into the profiles. This

uncertainty estimation refers to how often a patient was

predicted into a given profile across the decision trees of the

random forest as compared to the remainder of the profiles.

For certain predictions, there is a high amount of agreement

of the random forest, whereas for uncertain predictions there

is a lower amount of agreement of the random forest. New

patients are, therefore, classified into a given profile with an

estimate of uncertainty, which, in turn, could also indicate if

none of the profiles adequately represents the given patient. This

could then reveal a rare patient case or a patient belonging to

an additional profile that has not yet been defined. Generally,

patients would always be allocated to a profile based on all

measures that are contained in the classification model (i.e.,

audiogram, ACALOS, age, GOESA) and no single feature would

determine the classification. For instance, the analyzed dataset

contains mainly elderly hearing impaired patients and younger

normal hearing patients. Children and younger individuals may,

however, also experience hearing deficits. A classification based

solely on the feature age would lead to amisclassification into the

normal hearing profile 1. The generated classification model, in

contrast, would also consider information from the audiogram,

ACALOS, and GOESA and in that way avoid misclassification

into the normal hearing profile 1.

It can be argued that predictive performance would have

been improved by including all measures in the classification

models. However, we aimed at providing classification models

that can be readily used with measures available across clinics in

Germany, such that no additional testing is required and time

constraints of physicians are met. Consequently, we decided on

a reduced set of measures and aimed at predicting profiles with

widely available measures. In future, it may be of interest to

provide classification models for all combinations of measures,

such that if, e.g., bone-conduction thresholds or more specific

psychoacoustic tests are also available in clinical settings, they

can be used to increase predictive performance with regard to,

e.g., the “binaural” and “central noise” factor (52) involved in

characterizing the individual hearing problem.

One limitation of the present classification is the number

of patients contained in each profile. For further validation

larger and more balanced data sets that also contain more severe

patients are required, which can also be assumed to lead to

improvements in the predictive performance. An increase in

the size of the training set will support the training of the

classifier, whereas an increase in the test set will improve the

certainty of the predictions. Currently, test performance may

have been artificially high for some profiles due to the small

sample size in the test set. However, further reducing the training

size would also not be desirable, as it would increase the bias of

the classificationmodels. Thus, further evaluations on additional

data sets containing further patients are required.

Properties of the profiling approach and
comparison to existing approaches

The current data-driven approach toward generating

auditory profiles to characterize patient groups is not aimed at

being contradictory with hitherto available profiling approaches

but aims at providing a more detailed account of existing patient

groups and offers several advantages.

First, its flexibility in the definition of profiles derived via

purely data-driven clustering allows extending and refining

the profiles, if in further data sets more extreme patient

representations are contained. More specifically, it can be

assumed that applying the profiling approach to additional

data sets containing both similar and more extreme patient

presentations will result in a set of auditory profiles that show

overlap to herein proposed profiles, but also contain additional

profiles. The new set of profiles could then be used to update
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the current set of auditory profiles. As a result, the total

number of auditory profiles is not fixed and instead remains

flexible to include further profiles. Likewise, the presented

profiling pipeline can be applied to additional data sets with

varying measures. In case of differing measures across data

sets, measures not used for clustering purposes could serve as

descriptive features and allow for inference, if these features

occur more frequently in certain profiles. The flexibility in terms

of derived profiles and contained measures could, in future, aid

in comparing patients across data sets. Appropriate means to

combine profiles generated on different data sets, however, need

to be defined. For this purpose, a profile similarity index based

on, e.g., overlapping densities (59) could provide a cut-off score

on when to combine or extend profiles.

Second, profiles are not tailored toward a certain outcome

such as diagnostics or hearing aid fitting. This may, in part,

explain the rather large number of generated profiles, since

profiles may differ with respect to measurement ranges but not

with respect to audiological findings, diagnoses, or treatment

recommendations. By tailoring our analyses toward certain

outcomes, we could have possibly reduced the number of

generated profiles. Our aim, however, was to generate as many

profiles as plausibly contained within the data set such that

all differences between patient groups can be caught. More

specifically, by using Bisgaard standard audiograms also as a

feature for clustering, patients were already separated into 10

distinct audiogram ranges. Combining 10 separate audiogram

ranges with different loudness curves and SRT ranges already

leads to a larger amount of profiles, if these patterns across

measures and patients (i.e., profiles) occur frequently and are

well-distinguishable from other profiles. At the same time,

the flexibility of the profiles by their definition directly on

measurement ranges allows reducing the number of profiles if

only certain outcomes are of interest. For instance, if, in future,

profiles are connected to diagnostic information from further

data sets, profiles leading to a distinction with respect to a

diagnosis could be separated or merged. Similarly, if profiles

are used for hearing aid fitting, only those profiles leading

to separable groups with respect to aided parameters could

be retained.

Third, all patients can be grouped into auditory profiles.

In contrast, in Dubno et al. (16), around 80% of audiogram

shapes were categorized as non-exemplar and could not be

matched into one of the phenotypes, whereas in Sanchez-Lopez

et al. (18), an “uncategorizable” category in addition to the four

profiles exists.

A fourth advantage of the flexibility of our auditory profiles

pertains to its ability to provide complementary knowledge

compared to other profiling approaches, which allows analyzing

the same data sets from different perspectives and potentially

learning more about the inherent patterns. To exemplify, the

profiling approach by Sanchez-Lopez et al. (18) is applicable to

different audiological data sets as well and also comprises the two

steps of profile generation and classification. Both approaches

are data-driven; however, the approach by (18) is based on the

hypothesis of two distortion types which limits the number

of profiles to four. In contrast, our approach is purely data-

driven, that is, the obtained number of profiles directly depends

on the available combinations of measurement ranges in the

respective data set, in order to detect all existing differences

between patients. Each of our profiles (estimated by model-

based clustering) characterizes the group of included patients in

terms of underlying measurement data, while the profiles of (18)

are characterized by one respective extreme prototypical patient

(due to archetypal analysis) and all other patients classified into

a respective profile show less extreme results on the variables

identified by principal component analysis. The profiles of

(18) are interpretable due to the hypothesis of two distortion

types and the variables related to each distortion type; however,

the obtained interpretation depends on the available measures

in the dataset. That means that it needs to be ensured to

employ an appropriate database, as was achieved in Sanchez-

Lopez et al. (18) with the BEAR test battery (7), following the

findings of (17) where the choice of data led to different, not

completely plausible interpretations based on the two different

analyzed datasets. In contrast, our profiling approach does not

include explicit interpretability of every profile yet, but instead,

interpretability needs to be added as an additional step. This can

be done by relating the profiles to the literature as discussed

above, or by including expert knowledge to label the different

profiles. In addition, the type of interpretability required for

different outcome measures considered in future analyses may

be different, and can then be chosen appropriately.

For associating the profiles obtained by the two approaches,

in a first step, the distributions of patient data grouped to

profiles can be manually compared, for instance regarding

audiogram and SRT ranges in Figure 6 of (18) and in our

Figure 3. However, this comparison is limited as only a small

subset of measures is common in the BEAR test battery and

our dataset, as well as due to methodological differences as

discussed above. Instead, it would be interesting to apply the

two profiling approaches to the respective other datasets. As

we have GOESA and ACALOS available to characterize speech

intelligibility and loudness perception, it would be interesting if

the profiling approach of (18) also estimates speech intelligibility

and loudness as the two distortion dimensions based on our

data. Vice versa, the application of our approach to the BEAR

test battery would generate a certain number of profiles, which

could be compared to the profiles obtained in this study (and

thereby to a comparison and potential combination of datasets),

as well as reveal measurement combinations leading to sub-

classes of the four auditory profiles of (18).

Limitations of the profiling approach

Despite the advantages of our purely data-driven profiling

approach, certain limitations persist. At the current stage,

Frontiers inNeurology 14 frontiersin.org

https://doi.org/10.3389/fneur.2022.959582
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Saak et al. 10.3389/fneur.2022.959582

the profiling approach can detect plausible patient subgroups

in data sets. This property generalizes also to further data

sets containing different sets of measures and a different

patient population. A restriction in the application of the

current profiling pipeline to additional databases is the current

requirement for continuous or at least ordinal features. Relevant

audiological measures may, however, also be categorical with

no inherent ordering. Thus, to also incorporate these measures,

the current pipeline would need to be adjusted to also allow for

categorical features.

The ability to detect differences in patient groups also

depends on the sample size, the contained measures, as well

as the presence of distinctive patient groups within the data

set. If sample sizes are small, a smaller number of patient

groups may be detected in the data sets, which in turn,

would be defined by broader ranges across measures. At the

same time, this could result in an increase in profiles, each

containing only a few patients. This, however, would indicate

that the underlying data set is not suitable for the herein

proposed profiling approach, as nearly no similarities between

patients could be detected. In such a case, it would not

be certain whether a profile corresponds to a patient group

that could also be identified in larger datasets, or whether

it corresponds to outliers in the analyzed data set. Likewise,

if only a few measures are contained in new data sets, not

all existent distinctions between patients may be detected.

Instead, only distinctions regarding the included measures

would be available. Combining profiles generated on further

data sets with the current profiles may, thus, prove difficult.

An estimate of profile “conciseness” could tackle this challenge.

This estimate could refer to the average similarity of patients

within a profile regarding relevant measures. The similarity

between patients with broader profiles will be smaller than

the similarity between profiles with smaller ranges across

audiological measures. As a result, the conciseness estimate

could indicate if the generated profiles on the new data set

only result in a coarse grouping of patients. It could then be

analyzed, whether the coarse grouping could be explained by

a mixture of already available auditory profiles. This would,

however, require an overlap between audiological measures

across the profiles. If the profiling pipeline is applied to a

data set with low overlap regarding measures, the generated

profiles would have to be interpreted separately from the current

set of profiles, until a relation between measures has been

established. This could either occur via available knowledge or

by analyzing a data set that contains an overlap between the

measures of interest. Regardless, newly generated profiles on

further data sets would first need to be analyzed in terms of

general audiological plausibility.

At the same time, the relevance of the distinctions between

patient groups, in general, and for clinical practice needs further

evaluation. This could either comprise asking experts to rate

the plausibility and clinical applicability of the distinctions

between the profiles or incorporating expert knowledge from

other approaches toward patient characterization. The Common

Audiological Functional Parameters (CAFPAs) by Buhl et al.

(21), for instance, provide an expert-based concept of describing

patient characteristics; and in Saak et al. (20), regression

models were built to predict CAFPAs based on features that

are also available for the current auditory profiles. Hence, the

predicted CAFPAs would be available as additional descriptive

information for the profiles generated in this study, and a

consistency check to previous CAFPA classification (60) could

be obtained by analyzing the same data set from different

perspectives (i.e., analysis tools). In that way, both approaches

provide complementary insights, and both contribute to future

combined analysis of different audiological databases. As

a result, physicians’ trust toward applications (e.g., clinical

decision-support systems) using the auditory profiles could be

enhanced, which has shown to be a relevant factor in the

adoption of such systems in clinical routine (61). Additionally, it

can be assumed that the inclusion of more severe patient cases,

e.g., with indications for a cochlear implant, could enhance the

current profiles toward more extreme profile representations.

Currently, profiles can be mostly assigned to mild to moderate

hearing loss. With the inclusion of further data sets, containing

a higher prevalence of severe patient cases, this aspect could

be addressed.

Application and outlook

The herein proposed profiling approach serves as a starting

point for uncovering patient groups and patient presentations

across audiological measures for the increasingly available

amount of larger data sets. Consequently, the proposed profiling

approach needs to be applied to additional data sets, which

include more severe and diverse patient populations, as well

as additional audiological measures to cover further important

factors of hearing loss (e.g., binaural and central components).

The set of auditory profiles would need to be updated after the

inclusion of every further data set by either merging similar

generated profiles or adding new profiles. In that way, it would

conclude in a final set of auditory profiles, if generated profiles

converge. This means that generated profiles on new datasets are

already contained in the set of defined auditory profiles and no

new information is added, thus, resulting in a final set of auditory

profiles describing the audiological patient population.

If the generated auditory profiles describe the audiological

patient population, they could be used in a variety of applications

due to their flexibility. The profiles could efficiently summarize

patient information for a clinical decision-support system.

Likewise, they could also support mobile assessments of patients,

in e.g., a “virtual hearing clinic.” If patients are tested on the

measures used for the classification models (or appropriate

mobile implementations of those measures, ensuring that
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measurements near the hearing threshold are feasible in realistic

environments) they could be classified into a profile. In a

clinical decision-support system, physicians could then be

provided with statistical insights into patients’ hearing statuses,

whereas in virtual hearing clinic patients themselves could

receive information regarding their hearing statuses. To also

provide diagnostic decision-support as well as aided benefit

predictions, however, data from additional data sets containing

these measures need to be incorporated into the current profiles.

A metric allowing for the combination or separation of profiles,

if new profiles are generated on additional data sets, hence, needs

to be defined.

After the final set of auditory profiles has been defined, it

would also be of interest to define a minimum set of tests that

allow for adequate classification of patients into the profiles

across data sets. This could highlight the audiological measures

that are most relevant across all profiles. Likewise, the profiles

could contribute to the selection of the next to-be-performed

measures for characterizing the patients. If classification models

are available for all measurement combinations, measures

leading to the best discriminatory performance across profiles

could be selected next. This, in turn, could reduce the testing

time of the patients, as well as support the derivation of test

batteries covering all relevant aspects of hearing deficits, as in

(5, 6), by highlighting the most important measures.

Conclusion

The proposed data-driven profiling approach resulted in

13 distinct and plausible auditory profiles and allows for

efficiently characterizing patients based on the interrelations

of audiological measures. All patients are characterized and

patient groups with certain characteristics, such as asymmetry,

are not excluded. Due to the profiles’ flexibility by being defined

on the contained patients’ measurement ranges, profiles could

be added or refined, given insights derived from applying the

profiling approach to additional data sets. The profiles concur

with other profiling approaches but are able to detect differences

in patient groups regarding measurement ranges in more detail

than hitherto available approaches.

New patients can be adequately classified into the auditory

profiles for 12 of the 13 auditory profiles. For 10 profiles, both

high precision and sensitivity were achieved (>0.75), and for

two profiles, low to medium sensitivity and high precision were

achieved, and for one profile no classification could be achieved

due to the profiles’ small sample size. Since the classification

model was based on a reduced set of measures often available in

clinical practice in Germany (GOESA, ACALOS, air-conduction

audiogram, and age), clinicians could use the auditory profiles

even without performing a complete audiological test battery,

if a quick classification with less clinical detail is required.

Likewise, all measures required for classifying patients into the

auditory profiles are potentially available also on mobile devices,

facilitating mobile assessments of the patient.

The proposed profiling approach depends on the underlying

data set in terms of the number of profiles or the covered range

of patients. Its properties such as flexibility, not being tailored

toward a specific outcome, or ability to handle incomplete

patient data, however, generalize to other data sets including

additional measures. Appropriate means to combine profiles

generated across data sets need to be defined.

Future research should extend the profiling toward

integrating different data sets with more severe and diverse

patient cases. In addition, binaural measures should be included,

as well as aided data to investigate hearing device benefits with

the profiles.
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