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Abstract

Progress in the development of therapeutic interventions to treat or slow the progression of Alzheimer’s disease has been
hampered by lack of efficacy and unforeseen side effects in human clinical trials. This setback highlights the need for new
approaches for pre-clinical testing of possible interventions. Systems modelling is becoming increasingly recognised as a
valuable tool for investigating molecular and cellular mechanisms involved in ageing and age-related diseases. However,
there is still a lack of awareness of modelling approaches in many areas of biomedical research. We previously developed a
stochastic computer model to examine some of the key pathways involved in the aggregation of amyloid-beta (Ab) and the
micro-tubular binding protein tau. Here we show how we extended this model to include the main processes involved in
passive and active immunisation against Ab and then demonstrate the effects of this intervention on soluble Ab, plaques,
phosphorylated tau and tangles. The model predicts that immunisation leads to clearance of plaques but only results in
small reductions in levels of soluble Ab, phosphorylated tau and tangles. The behaviour of this model is supported by
neuropathological observations in Alzheimer patients immunised against Ab. Since, soluble Ab, phosphorylated tau and
tangles more closely correlate with cognitive decline than plaques, our model suggests that immunotherapy against Ab
may not be effective unless it is performed very early in the disease process or combined with other therapies.
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Introduction

Alzheimer’s disease (AD) is characterised by aggregation of Ab
and tau proteins in the brain accompanied by glial cell activation

together with synaptic and neuronal loss (reviewed in [1]). There is

still no effective treatment which targets the underlying neurode-

generation in AD although many interventions are currently being

tested. For example, a phase 11a clinical trial of PBT2, a metal-

protein attenuating compound, has shown preliminary promising

results although longer and larger trials are needed [2]. Based on

the amyloid cascade hypothesis and promising experimental

studies [3], some clinical trials of Ab immunotherapy have shown

hints of slowed deterioration in cognitive function [4,5]. Unfor-

tunately a small proportion of subjects treated with the first Ab
immunotherapy agent (AN1792) [6] developed aseptic meningo-

encephalitis and the trial had to be halted [7] and side effects

remain a problem with agents currently in trials [8]. These side

effects were unexpected and were not predicted by the pre-clinical

animal models, demonstrating that animal models of AD do not

replicate the complexity of the human disease [9]. Despite this

serious drawback, animal models continue to be used extensively

in the search for new therapies. We suggest that there is now a

great need to develop new approaches to investigate possible new

interventions. Mathematical modelling and computer simulation

are relatively new approaches in the medical sciences but their

potential as a useful complementary tool is being increasingly

recognised.

Despite the problems associated with the clinical trials, a wealth

of valuable data has been obtained and detailed analysis has been

carried out. For example, neuropathological studies of patients

with AD who were immunised against Ab have shown that a

reduction in Ab plaques occurs [10–13] and this observation has

subsequently been confirmed in vivo by amyloid imaging [14].

The actual mechanisms of how immunisation clears Ab are not

fully known but seem to involve phagocytosis of Ab by microglia

[12,13,15] and solubilisation of Ab by antibody binding [10,16].

In support of the amyloid hypothesis, immunotherapy-mediated

removal of Ab is accompanied by a reduction in phospho-tau

[17,18] and of a kinase putatively involved in mediating tau

phosphorylation (GSK3b) [19]. The analysis of this data has

provided the motivation to modify our previous dynamical model

of the molecular mechanisms involved in the initiation and

progression of AD [20] by including processes involved in Ab
immunisation.

As the pathways are complex and many of the mechanisms are

not yet fully understood, it is necessary to make assumptions when
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building the model. There is also controversy over different

mechanisms. This means that our assumptions will not be in

accord with everyone’s point of view.

For example, plaques are considered to be neuroprotective or

having detrimental effects. We assume that Ab can be detrimental

by inducing production of reactive oxygen species (ROS), either as

fibrillar (plaque) or soluble Ab [21,22]. Then ROS increase the

production of p53 which leads to increased activity of GSK3b,

increased phosphorylation of tau and hence the formation of

tangles. Ab may also directly enhance p53 production [23]. We

also assume that soluble Ab may inhibit the proteasome which

would have detrimental effects on cells [24]. The formation of

plaques decreases the pool of soluble Ab and so prevents all these

adverse effects, and is included as a neuroprotective role for

plaques in our model.

Mathematical models of Ab aggregation have been previously

developed (e.g. [25,26])and one in particular has been used to test

interventions [27]. However, all these models have focussed only

on Ab and have not considered the role of tau aggregation which

many consider to be more important than Ab in the disease

process [28–31]. The mechanisms which link Ab and tau are still

not fully known although many suggestions have been made [32–

35]. The novelty of our model resides in that it seeks to not only

examine the effect of interventions on Ab but also how antibodies

against Ab can reduce tau pathology. In order to do this, we

include possible players such as GSK3b, p53 and ROS that may

link these two seemingly independent aggregation pathways as

described in our previous mathematical model [20].

Since many of the mechanisms involved in the protein

aggregation process are inherently random, and the numbers of

molecules involved in many of the reactions we consider are small,

it is more appropriate to use stochastic simulation for our models.

However, the disadvantage of stochastic simulation is that it is very

computer intensive and so we also use deterministic simulators for

examining the effects of different parameters in the model. The

models are represented as biochemical networks and are encoded

in the widely used Systems Biology Markup Language (SBML)

[36,37]. This allows the models to be used in many different

software tools and also allows easy modification as new data and

hypotheses emerge. The models are freely available and provide a

useful resource for researchers seeking new approaches in

investigating the molecular mechanisms involved in AD and to

test possible interventions.

Results

AD model and effect of clearance rate of Ab monomers
on plaque and tangle formation

We used the model to mimic a cellular system whereby soluble

Ab is added to cells and the kinetics of its aggregation are followed

over time scales of days. Therefore we parameterised our model

using data from a cellular system [38]and carried out all the

simulations over a 12 day period. In the experimental setting, after

addition of Ab to cells, aggregates form rapidly and are usually

observed within 24 hours and reach maximum levels by about 2

days. In our computer model, the level of Ab is initially zero, then

monomers are produced and if the production rate is greater than

the degradation rate, the monomer levels increase, form dimers

and may start to aggregate as plaques. The rates for Ab
production and clearance are based on experimental data from

a study showing that the Ab production rate was the same in AD

subjects and age-matched controls (1.86e25 molecules s21) but

that the degradation rate was lower in the AD subjects (1.5e-5s21)

compared to control subjects (2.1e-5s21) [39]. This means that the

ratio of Ab production to Ab degradation is about 1.24 and 0.89

for AD and control subjects respectively, so the ratio of production

to degradation is greater than one in the AD subjects which

explains why Ab levels increase over time. The experimental data

was based on measurements in the cerebral spinal fluid rather than

brain. Although this may be a limitation in the model, it is the

relative rates of production and degradation that are important

rather than their absolute rates since Ab only accumulates if

production is greater than degradation. The Ab production and

degradation rates of the AD subjects was used in our model. We

also tried the normal degradation rate to investigate if our model

would predict less occurrence of plaques. However, since we have

accelerated the aggregation process for a cellular system as

opposed to an ageing human brain, we found that we needed a

much higher degradation rate for Ab than that observed in normal

aged brain [39] in order to prevent high levels of plaques forming

under normal conditions (Figure 1). This is due to the stochastic

simulation used and even if the production rate was lower than the

degradation rate, occasional monomers will be present with the

possibility of starting the aggregation process. If we use a

degradation rate high enough, the model predicts that plaques

never form over a 12 day period (Figure 1D). Using the lower

degradation rate for AD, our model predicts a maximum plaque

size of about 75 molecules reached in 6 days (from the time of

formation) (Figure 1A). Figure 1 show the mean 6 one standard

deviation from the mean and it can be seen that there is variation

in the levels of plaques and tangles, but the differences are not

large (see also Figure S1 for plots of six individual stochastic

simulations). It has been shown that there is high variability in the

level of amyloid plaque content in AD patients with plaques even

being undetected by imaging in some patients [40]. However, we

should point out that by definition a patient cannot have AD

without amyloid plaques and so this data may not be valid. The

model presented here suggests that stochastic effects alone cannot

explain the observed variability. However, the speeding up of the

aggregation process, to mimic a cellular system, may have masked

some of the variability as in a previous model of plaque formation

examined over a period of 100 years, there was a very large

variation in the age at which plaques first appeared [41].

Alternatively there may be effects due to other important factors

such as genetic disposition which are currently missing from the

model.

Simulation of passive immunisation for the treatment of
Alzheimer’s disease

For these simulations, the low degradation rate of Ab (i.e. the

AD rate) was used, so that plaques would form by day 4. In order

to examine the effects of immunisation in the low degradation rate

model, we simulated passive immunisation by adding the

antibodies. The exact mechanisms by which antibodies work is

still not clear and so we modelled three possible effects: enhanced

degradation of soluble Ab, enhanced disaggregation of plaques

and activation of microglia to engulf and phagocytose plaques

[15]. We simulated immunisation by using an event structure in

the SBML code, whereby the species ‘‘antiAb’’ representing

antibodies was set to 50 (the initial value being zero) at a specific

time-point after the beginning of the simulation. If immunisation is

simulated at day 4, when levels of plaques are low prior to the

treatment, then the model predicts that levels of plaques are

reduced and that initially there is a reduction in soluble Ab.

However following the disaggregation of plaques, soluble Ab levels

rise again and levels of plaques start to slowly increase (Figure 2B).

The model also predicts a decrease in levels of phospho tau

immediately after immunisation on day 4 and although levels of

Computer Modelling of Alzheimer’s Disease
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Figure 1. Model predictions for levels of Ab and tau under normal and AD conditions (no immunisation). The mean curves from 100
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phospho tau continue to increase with time, this occurs at a much

slower rate than prior to immunisation (green curve, Figure 2B).

The reduction in levels of phospho tau by immunisation agrees

with neuropathological data [10]. If immunisation is delayed until

day 8, then levels of plaques are almost at their maximum prior to

treatment, and so the increase of microglial activation is much

more rapid and there is consequently a rapid clearance of plaques

(Figure 2C). However, plaques are not totally cleared and remain

above basal levels as a result of increased ROS in the system.

There is no significant difference in the kinetics of tau

phosphorylation or aggregation. Repeated interventions at day 0

and day 7 prevent plaques reaching high levels (Figure 2D).

However, there is more activated microglia which may be

detrimental due to their effects on ROS. Therefore the model

suggests that an additional intervention to reduce ROS may be

required if repeated immunisations are carried out. The model

predicts that there is slightly slower kinetics in tau phosphorylation

and aggregation with repeated interventions. We hypothesise that

this is due to decreased activation of p53 and GSK3b via ROS

which we confirmed by examining the level of active pools of p53

and GSK3b in the simulation output (data not shown). The model

predicts some cell to cell variation in the model output as shown by

the shaded areas in Figure 2 which represent one standard

deviation from the mean. For example, the regions representing

the mean6 one standard deviation for soluble Ab after

immunization at Day 4 (Figure 2B) compared to no immunization

(Figure 2F) are very similar. This indicates that for a particular cell,

the levels of soluble Ab could be higher after immunisation than

without immunisation. This stochastic variation may explain the

biological variability in responses to immunotherapy [16] and why

some immunised AD patients show increased soluble Ab
compared to AD controls [42].

Simulation of active Ab immunisation for the treatment
of Alzheimer’s disease

We chose to mimic the action of full length Ab42 (AN1792) for

the active immunisation. We assume that this treatment causes

antibody levels to slowly increase and then remain elevated. We

modelled this by assuming that the species ‘‘antiAb’’ is continually

produced and included a reaction for antiAb production. The

model predicts similar results to repeated passive immunisation

(Figure 2E). The results for no immunisation are also shown

(Figure 2F) for comparison.

Simulation of Ab immunisation for the prevention of
Alzheimer’s disease

In order to examine the effects of the possibility of using Ab
immunisation for the prevention of Alzheimer’s disease, we

simulated the addition of antibodies (simulating passive immuni-

sation) at the start at the simulation (before any plaques had

appeared). To do this we set the initial value of antiAb to equal 50.

The model predicts that immunisation at day 0 dramatically

reduced plaques over a 12 day period but had only a small effect

on levels of soluble Ab (orange curve, Figure 2A). This

intervention also predicts slightly lower levels of phospho-tau

(compare green curves in Figure 2A and 2F) in agreement with

neuropathological data [10]. This prediction is due to less Ab-

induced ROS production and so less activation of p53, which

based on biochemical data demonstrating physical association of

p53 with GSK3b and an increase of GSK3b activity in a p53

concentration-dependent manner [43] may result in a decrease in

GSK3b activity.

Effects of immunisation on GSK3b and phospho-tau
Following Ab immunisation we observed a lower GSK3b and a

lower phospho-tau load in AD immunized patients [10,17,19].

Therefore we examined the model predictions on the levels of

GSK3b and phospho-tau under the different interventions. As we

currently do not include GSK3b turnover in our model (there

being no evidence for the regulation of GSK3b at this level), we

examined the levels of active GSK3b since phosphorylation of tau

is dependent on this pool. The model predicts that interventions

which start at day 0 lead to a delay in the increase in GSK3b
activity (Figure 3A) but by day 12 there is very little difference in

active GSK3b pools compared to later interventions. However, if

the immunisation is repeated at day 7, the level of active GSK3b is

lower throughout the 12 day period. The intervention at day 4 and

day 8 show an immediate decrease in active pools of GSK3b after

the simulated immunisation (green and red curves in Figure 3A).

This is due to levels of plaques being fairly high prior to the

immunisation so that microglia are activated, Ab is cleared and

ROS levels also decline (Figure 2 and 3C). The reduction in active

GSK3b also leads to a reduction in phospho-tau (Figure 3B).

Immunisation simulated at any time-point leads to lower GSK3b
compared with no immunisation (black curve vs. coloured curves -

Figure 3A) but there is no significant difference in active GSK3b
pools by day 12 between the different interventions. However,

according to the model, the reduction in active GSK3b at earlier

time-points is not sufficient to significantly reduce levels of

phospho-tau by day 12.

Parameters/reactions which will affect model predictions
Plots of individual simulations show that the cell to cell

variability in levels of Ab, tau and the kinetics of their aggregation

are fairly small (Figure S1). Therefore we used a deterministic

model to carry out parameter scans in COPASI [44]. We first

checked how the deterministic model compared with the stochastic

model for the different interventions and found that there were

some differences due to the low numbers of Ab molecules (Figure

S2). The best agreement between the models occurred for the

intervention on day 4 and so we used this model for the parameter

scans. We varied each parameter in turn from half to double its

initial value and examined the effect on levels of Ab, tau, activated

micoglia and ROS over a 12 day time course. Out of 73

parameters, 22 had no effect, 11 had very small non-significant

effects and 40 had signficant effects on one or more of the species

examined. The latter parameters are directly involved either in the

aggregation process or in the DNA damage response. The results

are summarized in Table 1 and plots from a selection of the key

parameters are shown in Figures S3 and S4. It can be seen that the

parameters which are directly involved in the DNA damage

response effect Ab, tau, activated microglia and ROS simulta-

neoulsy and always in the same direction (i.e. all levels are

increased or decreased in response to the increase in the parameter

value). This means that the model predicts that an increase (or

decrease) in DNA damage results in an increase (or decrease) in

both Ab and tau aggregation. On the other hand, changes in the

stochastic simulations are plotted for different Ab clearance rates. The shaded regions represent the one standard deviation from the mean. A
kdegAbeta = 1.5e-5 s21), B kdegAbeta = 2.1e-5 s21), C kdegAbeta = 1.0e-4s21, D kdegAbeta = 2.0e-4s21. Key: orange = soluble Ab; blue = Ab plaques;
green = phospho-tau; black = tau tangles; red = activated glia.
doi:10.1371/journal.pone.0073631.g001
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Figure 2. Model predictions for levels of Ab, tau, activated glia under different simulated interventions. The mean curves from 100
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values of parameters which only affect aggregation processes may

affect either Ab and tau aggregation (e.g. production of Ab via

GSK3b, Figure S4B) or only tau aggregation (e.g. tau binding to

microtubules, Figure S3C). We found that there was no parameter

which only affected Ab without affecting tau aggregation. This

suggests that reducing levels of Ab may reduce the formation of

phospho-tau and tangles in support of the amyloid hypothesis

[45,46].

In order to gain more insight we ranked the top 40 parameters

that control the change in the model output. We first ranked them

according to the amount of reduction in the maximum size of

plaques. To do this, we calculated the % change in maximum

plaque size when the parameter value was halved or doubled

compared to the default parameter value. Only 28 parameters

affected plaque size. In 14 cases, increasing the parameter value

reduced plaque size, whereas for the other 14 cases, decreasing the

parameter value reduced plaque size. We ranked the parameters

according to their effect on plaque size in Table 2 where it can be

seen that the parameters involved in Ab production, plaque

growth and plaque disaggregation had the largest effect (see also

Figure S5 for a diagram of the reactions corresponding to the top

28 parameters). Note that kbinGSK3bp53 and krelGSK3bp53 affect Ab
production as we assumed that GSK3b bound to p53 increased

production of Ab. We also ranked the parameters according to

their effect on decreasing levels of soluble Ab, since this species

may also be toxic. We found that each parameter affected plaques

and soluble Ab in the same direction which may be surprising as

for example, we might expect that decreasing plaque size would

lead to an increase in soluble Ab. However, the soluble pool

included monomers and dimers and on closer examination, we

found that levels of dimers did increase when plaques decreased.

However, a reduction in plaque size also reduced levels of ROS

which then led to less Ab production via activatedGSK3b.

Although most of the parameters had similar ranks for plaques and

soluble Ab, (Pearson’s product-moment correlation = 0.493, p-

value = 0.0077, indicating a fairly strong correlation between the

two sets of ranks), there were four notable exceptions. The

parameters for plaque disaggregation and for plaque growth are

ranked 2, 5 and 6 for their effect on plaque size but are ranked 23,

24 and 25 for their effect on soluble Ab. The fourth parameter

kdimer has only a small effect on plaques (ranked 28th) but

decreasing this parameter reduces soluble Ab by nearly 30%

(ranked 4th). This is due to our assumption that monomers are

degraded much more rapidly than dimers (which are only

degraded when bound to antibodies). The parameters correspond-

ing to the addition of antibodies did not affect plaque size in this

analysis as we only looked at maximum plaque size which

occurred before the addition of antibodies.

The effect of parameters on tangle formation and phosphory-

lation of tau are shown in Table 3 and Figure S5. We found that

36 parameters had effects which included all those that had effects

on Ab and in addition 8 parameters that were specific to tau

(kdephosTau, kphosTauGsk3bp53, kbinMTTau, krelMTTau kaggTauP2, kbinAbantiAb,

ksynTau, kdegAntiAb). The two parameters involving antiAb affected tau

and not Ab as maximum levels of Ab occurred before

immunization, whereas our model predicted that tau continued

to increase after this intervention. Increasing the effectiveness of

the treatment had beneficial effects on tau due to the lowering in

ROS (see Figures S3 and S4). It is interesting to note that none of

the parameters that were specific to tau had any effects on Ab level

or its aggregation whereas the reverse was not true. This suggests

that reactions involving tau are downstream of Ab and do not feed

back into the system. The parameters which had most effect on

tangle formation were those that involved phosphorylation of tau

by GSK3b. It may be surprising that the parameters affecting

Mdm2 and p53 ranked so highly but this is because increasing the

binding of Mdm2 to p53 prevents binding of GSK3b to p53 and

lowers the activity of GSK3b. There was very little difference in

the rankings for the parameters that affected tangle formation and

phospho-tau with the top 13 being identical (Pearson’s product-

moment correlation = 0.957, p-value,2.2e-16, indicating a very

strong correlation between the two sets of ranks). Although we

assumed that free pools of unphosphorylated tau could aggregate,

the parameter for aggregation of phosphorylated tau was set to be

10 times higher. Therefore phosphorylation of tau is closely linked

to its aggregation. The other 4 parameters only affected activation

of glia as the maximum plaque size occurred before glia activation.

Increasing the activation rate of glia led to higher levels of

activated glia and a slightly more rapid decline in plaques (data not

shown). However, as plaques decline fairly rapid with the default

parameters, the effect is not significant.

Discussion

We extended our previous model of GSK3 and p53 and their

effects on the aggregation of Ab and tau [33] to include reactions

that describe a simulated immunisation againt Ab. Our approach

is novel as we considered in addition to Ab aggregation, the role of

tau and included other molecular mechanisms which may

contribute to the aggregation process in the ageing brain, and

the effects of Ab intervention. The motivation for extending our

previous model was the observation that immunotherapy can

reduce tau phosphorylation. We wanted to examine whether our

model would also predict this following a simulated immunisation

against Ab. Our modified model included assumptions about the

effects of immunisation on Ab but we did not include any direct

mechanism for the effects on tau. The model includes indirect

interactions between Ab and tau via GSK3b but due to the

complexity of the model, the effects on tau were not obvious prior

to carrying out simulations. Our model predicted reduced tau

phosphorylation after immunisation as observed giving support to

our model assumptions. However, further experimental tests of the

model predictions are required to establish its accuracy. If there is

discrepancy, this will lead to refinement of hypotheses and

modification of the model. This actual process can lead to further

understanding to the underlying mechanisms. Other mechanisms

which may be important and are not currently included in our

model are discussed below.

We chose to mimic the effect of both active immunisation with

full length AB42 (AN1792) and passive immunisation with an

antibody that works by enhancing Ab degradation, plaque

disaggregation and phagocytosis of plaques via activated microg-

lia. There are other newer antibodies such as Solanuzumab which

have different modes of action and so the model would need to be

modified to test these. However, modifications of SBML models

are straight forward to carry out and this could be done in the

stochastic simulations are plotted (six individual runs are shown in Fig. S2). The shaded regions represent the one standard deviation from the mean.
A–D Simulated passive immunisation administered at different time-points: A Day 0; B Day 4; C Day 8; D Repeated immunisation at Day 0 and Day 7. E
Simulated active immunisation. F No immunisation. Key: orange = soluble Ab; blue = Ab plaques; green = phospho-tau; black = tau tangles;
red = activated glia.
doi:10.1371/journal.pone.0073631.g002
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Figure 3. Model predictions for levels of ROS, Gsk3b and phospho-tau under different simulated interventions. The mean curves from
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future. We included the effects of antibodies on soluble Ab and

plaques, the activation of microglia, and the effects of activated

microglia on plaques and levels of ROS. Our model predicted that

immunisation reduces levels of plaques but that pools of soluble Ab

were only reduced by small amounts. The activity of GSK3b and

levels of phospho-tau were both reduced immediately after

immunisation and then remained at fairly constant levels in

accordance with experimental data. This was due to the reduction

100 stochastic simulations are plotted. A Active Gsk3b B Phospho-tau; C ROS. Key: blue = day 0; green = day 4; red = day 8; D orange = repeated
immunisation at Day 0 and Day 7; black = no immunisation.
doi:10.1371/journal.pone.0073631.g003

Table 1. Summary of parameter scans showing the effect of increasing the parameter value by a factor of two on the levels of Ab,
tau, glia and ROS.

Parameter name
DNA damage
response

Aggregation
process Soluble Ab Ab plaques Tau_P2 NFT Activated glia ROS

kactglia1 3 q

kactglia2 3 q

kaggTauP2 3 Q q

kbinAbantiAb 3 Q Q Q Q Q

kbinMTTau 3 Q Q

kdegAbeta 3 Q Q Q Q Q Q

kdegAntiAb 3 q q q q Q

kdephosTau 3 Q Q

kdimerAbeta 3 Q q Q Q q Q

kdisaggAbP1 3 Q Q Q Q Q Q

kgenROSPlaque 3 q q q q q q

kinactglia1 3 Q

kinactglia2 3 Q

kpf 3 Q Q Q Q Q Q

kpg 3 q q q q q q

kpghalf 3 Q Q Q Q Q Q

kphosTauGsk3bp53 3 q q

kprodAbeta2 3 q q q q q q

krelMTTau 3 q q

ksynTau 3 q q

kactATM 3 q q q q q q

kbinGsk3bp53 3 q q q q q q

kbinMdm2p53 3 Q Q Q Q Q Q

kdamROS 3 q q q q q q

kdegMdm2mRNA 3 q q q q q q

kdegp53mRNA 3 Q Q Q Q Q Q

kdephosMdm2 3 Q Q Q Q Q Q

kinactATM 3 Q Q Q Q Q Q

kMdm2Pub 3 q q q q q q

kphosMdm2 3 q q q q q q

krelGsk3bp53 3 Q Q Q Q Q Q

kremROS 3 Q Q Q Q Q Q

krepair 3 Q Q Q Q Q Q

ksynMdm2 3 Q Q Q Q Q Q

ksynMdm2mRNA 3 Q Q Q Q Q Q

ksynMdm2mRNAGsk3bp53 3 Q Q Q Q Q Q

ksynp53 3 q q q q q q

ksynp53mRNA 3 q q q q q q

ksynp53mRNAAbeta 3 q q q q q q

Key: Q 2-fold decrease in parameter value; q2-fold increase in parameter value.
doi:10.1371/journal.pone.0073631.t001
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in ROS levels after clearance of plaques. We used our model to

study the effect of passive and active immunotherapy of established

disease, and the use of immunotherapy as a preventive measure for

Alzheimer’s disease.

We chose to base our model on a cellular system and used a

time period of 12 days for the simulations. The main reason for

this choice is that is not currently feasible to run complex models

over long time periods using stochastic simulation since each

individual simulation would take many hours to complete and

many repeat simulations are required. Experimental cellular

models induce Ab aggregation by either the addition of Ab to

the extracellular fluid [38] or by the addition of rotenone [47]. In

both systems the kinetics of Ab aggregation is similar, with

aggregation being observed by 24 h and maximal aggregation by

2 days. The limitation of using a cellular model, (either

experimentally or in a computer model) is that it may not be

valid to extrapolate findings to human ageing. However, cellular

models do provide valuable information on the potential

underlying molecular mechanisms in the aggregation process

and can aid understanding of how interventions such as

immunisation can ameliorate the process. It would be possible to

adapt the current model to run simulations over longer timescales

to mimic human ageing if we used deterministic simulation and

modified the parameters involved in the aggregation process.

The model contains many parameters and so we carried out

parameter scans to examine which oness affect the levels of soluble

Ab, plaques, phospho tau, tangles, activated glia and ROS.

The parameters which are involved in DNA damage and the

DNA damage response (e.g. kdamROS, kactATM, krepair) had simulta-

neous affects on ROS levels, soluble Ab, plaques, phospho-tau and

tangles. This is due to the cycle of events and the self-amplifying

loop of an increase in GSK3b activity, Ab levels, ROS, p53

activation, further increased activity of GSK3 and hyperpho-

sphorylation of tau (Figure 4) and a detailed figure showing the key

reactions and parameters is included in the supplementary

information (Figure S5). This cycle has previously been described

in detail and showed how both familial and sporadic AD can be

explained by a unified hypothesis due to the fact that the cycle can

start at any point [48]. Breaking the cycle by immunisation will

reduce plaques but without altering other stress within the cell

which may lead to continued activation of p53 and GSK3b and

thus to hyperphosphorylation of tau and accumulation of tangles.

Table 2. Parameters ranked in order of their effect on Ab Plaques.

Rank Parameter name
Direction of
parameter change

% decrease in
maximum plaque
size

Rank for
soluble Ab

Direction of
parameter change

% decrease in
maximum soluble
Ab levels

1 kprodAbeta2 Q 97.91 1 Q 45.81

2 kdisaggAbP1 q 96.77 23 q 10.11

3 kbinGSK3bp53 Q 96.30 2 Q 39.30

4 krelGSK3bp53 q 96.29 3 q 39.29

5 kpghalf q 93.43 24 q 9.42

6 kpg Q 57.24 25 Q 5.61

7 ksynMdm2 q 53.02 5 q 24.96

8 kdegMdm2mRNA Q 51.81 6 Q 24.68

9 kbinMdm2p53 q 50.91 7 q 23.96

10 ksynp53 Q 50.46 8 Q 23.60

11 kdegp53mRNA q 49.94 11 q 23.49

12 kphosMdm2 Q 49.15 9 Q 23.58

13 kdephosMdm2 q 49.09 10 q 23.56

14 kMdm2PUb Q 48.29 12 Q 23.36

15 ksynp53mRNA Q 41.34 13 Q 19.59

16 kactATM Q 39.60 14 Q 17.90

17 kdamROS Q 39.60 15 Q 17.90

18 kinactATM q 38.71 17 q 17.64

19 kdegAbeta q 36.96 16 q 17.66

20 kremROS q 33.78 19 q 16.06

21 ksynMdm2mRNA q 33.09 18 q 16.78

22 kgenROSAbeta Q 33.00 21 Q 11.76

23 kpf q 29.87 27 q 2.54

24 krepair q 24.51 20 q 12.96

25 ksynMdm2mRNAGSK3bp53 q 22.13 22 q 11.44

26 kgenROSPlaque Q 5.03 26 Q 4.39

27 ksynp53mRNAAbeta Q 3.77 28 Q 2.32

28 kdimerAbeta Q 3.10 4 Q 28.69

Key: Q 2-fold decrease in parameter value; q2-fold increase in parameter value.
doi:10.1371/journal.pone.0073631.t002
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Although the exact neurotoxic species of tau has yet to be

conclusively identified [49], there is a general consensus that

abnormal and hyperphosphorylated tau has detrimental effects,

leading to loss of neurons, strongly suggesting that therapies which

just target Ab may not be beneficial. Additional interventions

which reduce cellular stress and/or reduce the activity of GSK3b
are likely to be required in order to slow down disease progression.

Our data with decrease of phospho tau without any changes in

tangles [10,17] and the absence of clinical improvement [11]

support this hypothesis.

We chose to focus on GSK3b and p53 due to the finding that

both proteins are upregulated in AD and the relevance of GSK3b
in AD [50,51]. There are likely to be many other pathways and

proteins involved, but we still lack knowledge of what is actually

important in the disease process. Other kinases are also involved in

tau phosphorylation, such as CDK5, and the effects of phosphor-

ylation on the affinity of tau for microtubules is much more

complex than we have modelled here [52]. However, there is still a

lot to learn about the details and it will be possible to modify our

model as new data emerge. Our model was originally developed to

test hypotheses about the assumed pathways [20] and we believe

Table 3. Parameters ranked in order of their effect on tangles.

Rank Parameter
Direction of
parameter change

% decrease in
maximum NFT level

Rank for effect on
phospho-tau

Direction of
parameter change

% decrease in
maximum phospho-tau
level

1 kbinGSK3bp53 Q 94.40 1 Q 72.26

2 krelGSK3bp53 q 94.40 2 q 72.25

3 kdephosTau q 92.65 3 q 70.60

4 kphosTauGsk3bp53 Q 92.13 4 Q 69.88

5 ksynMdm2 q 80.02 5 q 54.67

6 kdegMdm2mRNA Q 79.89 6 Q 54.67

7 kbinMdm2p53 q 78.66 7 q 53.33

8 kphosMdm2 Q 78.29 8 Q 53.20

9 kdephosMdm2 q 78.26 9 q 53.17

10 kMdm2PUb Q 78.16 10 Q 53.16

11 ksynp53 Q 77.91 11 Q 52.49

12 kdegp53mRNA q 77.84 12 q 52.49

13 ksynp53mRNA Q 72.03 13 Q 46.72

14 kactATM Q 69.75 16 Q 42.23

15 kdamROS Q 69.75 17 Q 42.23

16 kinactATM q 69.58 18 q 41.82

17 kbinMTTau q 68.72 14 q 43.29

18 kremROS q 68.55 20 q 38.84

19 krelMTTau Q 68.45 15 Q 43.04

20 krepair q 66.33 22 q 32.45

21 ksynMdm2mRNA q 65.00 19 q 41.02

22 kgenROSAbeta Q 63.49 24 Q 26.55

23 kprodAbeta2 Q 60.96 21 Q 33.24

24 ksynMdm2mRNAGSK3bp53 q 50.49 23 q 29.01

25 kaggTauP2 Q 47.42 34 Q 3.63

26 kbinAbantiAb q 47.42 35 q 3.63

27 ksynTau Q 28.75 26 Q 11.05

28 kdimerAbeta q 25.41 31 q 7.66

29 kdegAbeta q 23.76 25 q 15.83

30 kdisaggAbP1 q 12.31 28 q 9.06

31 ksynp53mRNAAbeta Q 10.67 33 Q 6.07

32 kpghalf q 10.39 29 q 8.92

33 kgenROSPlaque Q 8.13 27 Q 10.51

34 kpg Q 7.55 30 Q 8.72

35 kdegAntiAb Q 7.41 - Q 0.00

36 kpf q 6.10 32 q 6.77

Key: Q 2-fold decrease in parameter value; q2-fold increase in parameter value.
doi:10.1371/journal.pone.0073631.t003
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that further experiments to examine the role of GSK3b and p53 in

AD would increase our understanding of the processes involved.

We do not claim to have produced a model that encompasses all

aspects of the disease process and as for all simplified models, great

care should be taken when extrapolating data to the clinic.

However, it will be possible to extend the current model to include

additional pathways, as additional experimental and clinical data

emerge, to provide a more complete description. Another aspect of

the model that could be extended is the aggregation process. We

only included one pathway for Ab aggregation and assumed that

the building blocks of plaques are dimers [53] as we wanted to

keep the model as simple as possible, and there is controversy over

the actual mechanisms of aggregation in the brain. For example, it

has been suggested that low molecular mass oligomers extracted

from AD brain may be artefacts induced by the use of detergents

in the extraction process [54]. However, even if dimers are not

detected in the human brain, this does not preclude the possibility

that they are present at a level too low to detect but are important

in the aggregation process. As our model predicts that dimers are

very unstable and either dissociate into monomers or rapidly

aggregate. This means that levels of dimers may always be too low

to be detected. If desired, modelling could be used to test different

hypotheses of the aggregation process by building a set of models

with different schemes for the aggregation mechanism and then

comparing the model predictions.

An interesting extension of the model would be to include the

connection between Ab and synaptic activity. A recent study

suggests that synaptic activity leads to an increase in Ab
production via endocytosis, and that Ab inhibits synaptic activity

[55]. We hypothesise that including this negative feedback loop in

the model would keep both Ab levels and synaptic activity within

the normal range. It has been suggested that low levels of Ab may

have this functional role (reviewed in [56]), however, the negative

feedback loop may be disrupted in AD. For example, an increase

in Ab due to other pathways may lead to formation of Ab
oligomers and/or plaques which may interfere with synaptic

activity. When more information becomes available on the link

between Ab and synaptic activity, it will be possible to examine the

effect of disruption of the feedback loop on Ab secretion and

aggregation.

The disparity between the promising outcomes seen in

preclinical transgenic animal models and the disappointing results

of early phase clinical trials has necessitated additional reflection

on mode of action of Ab immunotherapy and the best strategies

for future clinical trials. Based on cognitive and pathological

measures it has been widely acknowledged that the best mouse

models fall short of fully recapitulating Alzheimer’s disease, but

this conclusion is made inescapable by the outcomes of the

immunotherapy trials carried out to date.

It could be argued that the current ‘‘gold standard’’ for a mouse

model would be the triple transgenic expressing clinically relevant

mutant isoforms of presenilin (M146V), amyloid precursor protein

(the Swedish mutation), and tau (P301L) [57]. Passive immunisa-

tion with Ab-specific antibodies provided clear benefit to triple

transgenic mice at the histological level [58]. Taken in isolation

this finding would not provide justification for a clinical trial (in

this study the antibody was delivered by direct injection into the

hippocampus, obviating issues relating to the blood brain barrier)

but is notable in the current context for its mechanistic insights.

Though the immunotherapy was directed at Ab there was a

reduction in tau pathology at early stages (the extensively

phosphorylated tau of later stages could not be cleared). These

data suggest that the passive Ab immunisation would be

efficacious before the formation of tau tangles, in agreement with

our simulations.

One unavoidable limitation of the best available transgenic

mouse models is that they incorporate mutations associated with

the inherited forms of AD, and may inadequately mimic the more

numerous sporadic forms of the disease (reviewed in [59]). Early

(presymptomatic) intervention in the form of active or passive

immunisation may be plausible in individuals deemed to be at high

risk of AD due to family history and/or genetic testing, but with

the currently associated risks and uncertain benefits, prophylactic

Ab immunisation is inconceivable. The situation may change as

models become available for sporadic AD. A recent report of a

‘‘natural’’ model (age-related changes strongly reminiscent of AD

in the rodent Octodon degus) may be grounds for optimism in this

regard [60].

The great advantage of the computational modelling approach

is the ease with which parameters can be updated and models

adapted as new information becomes available. In its current

form, our model is sensitive to changes in some (but not all)

parameters, and some of these parameters represent druggable

targets for which clinical and experimental data may be

forthcoming. As an example, it has already been demonstrated

that inhibition of GSK3b is neuroprotective in an AD mouse

model [61]. On the other hand, adverse effects of GSK3b
inhibition have also been reported to have neurotoxic effects in

mice models due to induction of apoptosis by nuclear factor of

activated T-cells (NFAT) [62]. Although it will be necessary to

extend our current model to test these effects, computer modelling

could be a powerful tool for examining the possible effects of

potential targets. There is also in vivo evidence for the protective

effects of antioxidants, including the natural plant phenol

resveratrol [63]. It would be relatively straightforward to adapt

the computer model to simulate such interventions, to predict

possible outcomes were such agents used together or in

combination with immunisation strategies, and to incorporate

Figure 4. Cycle of reactions leading to aggregation of Ab and
tau. Immunisation reduces aggregation of both Ab and tau by
breaking the cycle. However stress within the cell may still cause
activation of p53 and GSK3b so that the aggregation process of tau
continues.
doi:10.1371/journal.pone.0073631.g004
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findings from relevant clinical trials as their outcomes are

published.

Conclusions

This paper describes how our mathematical model can simulate

and predict the effects of Ab immunisation in Alzheimer’s disease.

We believe that the model will become increasingly accurate as

new mechanistic details of the relevant pathways become

available, and suggest that the mathematical model will be useful

in testing possible interventions prior to clinical trials.

Methods

Model construction
The model of Proctor & Gray [20] was modified to include

processes involved in Ab immunisation. Before describing how the

model was modified, we give a brief description of this model

which we refer to as the GSK3 model. The GSK3 model was

constructed to investigate the relationship between GSK3b, p53,

Ab and tau. It was built in a modular way and includes

components for DNA damage, p53 regulation, GSK3 activity,

Ab turnover, tau dynamics and the aggregation of Ab and tau. In

the module for p53 regulation we assumed that p53 binds to the

E3 ligase Mdm2 and is then ubiquitinated and targeted for

degradation by the 26S proteasome [64]. Under normal

(unstressed) conditions, both p53 and Mdm2 are kept at low basal

levels. The module for the DNA damage response includes detail

of p53 activation which occurs after DNA damage due to p53

phosphorylation which prevents p53 binding to Mdm2 and so it is

no longer degraded. When p53 levels are elevated it can bind to

GSK3b which increases the activity of both proteins [43,65]. In

the tau module, we assumed that tau is continuously being

phosphorylated (by GSK3b) [66] and dephosphorylated (by PP2)

[67]] to regulate its binding to microtubules. When GSK3b
activity is increased, more tau is phosphorylated and tau may then

start to aggregate. In the Ab turnover module we assumed that Ab
is continually produced and degraded but when GSK3b and p53

bind, the production of Ab is increased which in return increases

the production of p53. Although the precise mechanism of

increased Ab production via GSK3 is still not clear, studies have

shown that GSK3 inhibitors reduce APP processing (reviewed in

[68]). We also assumed that soluble Ab leads to an increase

reactive oxygen species (ROS) [22] which may then lead to further

DNA damage and increased activation of p53. This vicious cycle

of events has been described in a recent publication [48]. The full

details of the GSK3 model are available in an open access journal

[20] and the SBML code is available from the Biomodels database

(BioModels ID:BIOMD0000000286) [69]. The additional species

and reactions for the modified model are shown in Tables 4, 5,

and 6 and the assumptions made are detailed below.

Modelling the immunisation process
The exact mechanism by which Ab immunisation removes Ab

is not clear but it is likely to be several different pathways. Since

existing plaques are reduced after immunisation, it is assumed that

antibodies result in disaggregation of plaques with microglia

phagocytosing Ab. A study involving APP transgenic mice suggests

that there is a two phase mechanism of Ab clearance after

administration of antibodies [70]. The first phase occurs 4–

24 hours after immunisation and is independent of microglial

activation and results in clearance of diffuse Ab deposits. The

second phase, which occurs between 1 and 3 days, involves

clearance of amyloid plaques in association with activation of

microglia.

We modified our previous model by adding a species named

‘‘antiAb’’ to represent the addition of antibodies (i.e. passive

immunisation) and another species named ‘‘Glia’’ to represent

microglia.

To model the addition of antibodies at different time-points, we

assumed that initially antiAb = 0 and used an event structure in the

SBML code so that when the simulation time is equal to the

chosen time of the intervention, antiAb is set to 50. We also

modelled active immunisation and in this case, included a reaction

for antiAb production to ensure that antibodies were continually

produced.

Note that for simplicity we have ignored spatial aspects in this

model at present. The following assumptions were made

concerning the role of glia and antibodies:

N Glia can be in four states: inactive (GliaI), partially active glia

(GliaP1, and GliaP2) which are attracted to plaques but do not

engulf them [71] and active (GliaA) which are activated by

immunotherapy [72]. We included two pools of partially

activated glia in order to provide a longer time lag between

partial and full activation. Initially all glia are inactive (i.e. not

able to phagocytose Ab significantly).

N The presence of plaques is required for partial activation of

glia [71].

N The presence of antibodies is required for full activation of glia

[72].

N Active or partially active glia can be inactivated [73].

N Fully active glia can bind to plaques and degrade them by

phagocytosis [70].

N Active glia bound to plaques can generate ROS [74].

N Antibodies can disaggregate plaques [75].

N Antibodies enhance the degradation of soluble Ab [76].

N Antibodies can be degraded (to mimic diffusion from cell).

The role of glia is still poorly understood and there is

controversy over whether they are neuroprotective or neurotoxic

[77]. From our assumptions we have included both effects of glia.

On the one hand they are able to degrade plaques by phagocytosis

but on the other hand, they increase the ROS production when

bound to plaques.

Kinetics of aggregation
We assume that the aggregation process starts with the

formation of Ab dimers from two monomers but that this reaction

is reversible. We represent monomers and dimers by the species

Abeta and AbDim, respectively in this model. In our previous

GSK3-p53 model, we used the name AggAbeta to represent Ab
dimers but changed this terminology to be consistent with a recent

model of Ab aggregation [41]. Similarly we renamed the reactions

and parameters. There is controversy over the role of dimers and

small oligomers in the aggregation process since there is limited

direct evidence of their existence in AD. Although they are

extracted from AD brain, they may represent artefacts induced by

the peptide’s interaction with detergent [54]. Interestingly, our

model predicts that levels of dimers are always very low (close to

zero) . This is due to the assumptions that either dimers dissociate

into monomers or rapidly initiate the aggregation process.

Many different schemes of the actual aggregation process from

monomers to plaques have been proposed and modelled. The

formation of a new plaque has been shown to be nucleation

dependent leading to a lag phase. In an in vitro system as modelled
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here, the lag phase is relatively short (about 1 day) whereas in a

human brain this would be on timescales many years. Once a

plaque has formed, further growth is governed by first-order

kinetics [78]. Different deposition mechansims have been

proposed including monomers, dimers or preassemble oligomers

[79]. In order to keep the model as simple as possible, we only

included one pathway, and based on fairly recent experimental

data, we assumed that dimers are the building blocks of aggregates

[53]. However, our model could be adapted to add other pathways

if desired.

Our previous model assumed that plaque formation was

irreversible and so once the aggregation process started, the

model predicted that plaques form rapidly and continue to grow.

However, studies show that although plaques do form quickly,

they soon reach a maximum size where no further growth is

observed [80,81]. Since soluble Ab is continually produced, this

observation suggests that plaque growth is not irreversible but that

disaggregation takes place. This means that plaques are dynamic

structures in which Ab is being continually deposited and removed

and when these two processes are in balance, the plaque appears

to be stable. Previous modelling suggests that plaques are porous

and so the disaggregation rate depends on the size of the plaque

[82]. Therefore we use mass action kinetics to model plaque

disaggregation, which means that the rate is proportional to the

size. The rate of plaque growth depends on the level of soluble Ab
and it may be considered that it also depends on plaque size, since

we might assume that large plaques have a greater chance of

sequestering more Ab than small plaques. However with this

assumption the rate of growth would always be greater than the

rate of disaggregation (unless the production of Ab ceased).

Therefore we assume that plaque growth initially increases linearly

with plaque size but then reaches a maximum rate. We use a Hill

Table 4. Additional species for the immunotherapy model. All other species in the model are given in Proctor & Gray [20].

Species id Description Initial value

GliaI Inactive glia 100

GliaP1, GliaP2 Glia associated with plaques but not able to phagocytose 0

GliaA Active glia which can phagocytose 0

antiAb Antibody against amyloid-beta 0

AbP_GliaA Abeta plaque bound to active glia 0

Abeta_antiAb Abeta monomer bound to antibody 0

AbDim_antiAb Abeta dimer bound to antibody 0

AbDim Abeta dimer (replaces species AggAbeta) 0

AbP Abeta plaques (replaces species AbetaPlaque) 0

doi:10.1371/journal.pone.0073631.t004

Table 5. Additional reactions for the immunotherapy model. All other reactions in the model are given in Proctor & Gray [20].

Reaction id Reactants Products Kinetic rate law

Glia ActivationStep1 GliaI, AbP GliaP1, AbP kactglia1*GliaI*AbP

Glia ActivationStep2 GliaP1, AbP GliaP2, AbP kactglia1*GliaP1*AbP

Glia ActivationStep2 GliaP2, antiAb GliaA, antiAb kactglia2*GliaP2*antiAb

GliaInactivationStep1 GliaA GliaP2 kinactglia1*GliaA

GliaInactivationStep2 GliaP2 GliaP1 kinactglia2*GliaP2

GliaInactivationStep3 GliaP1 GliaI kinactglia2*GliaP1

AbetaPlaqueBindingToGlia GliaA, AbP AbP_GliaA kbinAbetaGlia*GliaA*AbP

AbetaPlaqueReleaseFromGlia AbP_GliaA GliaA, AbP krelAbetaGlia*AbP_GliaA

PlaqueClearanceByGlia AbP_GliaA GliaA kdegAbetaGlia*AbP_GliaA

ROSgenerationByGlia AbP_GliaA AbP_GliaA, ROS kgenROSGlia*AbP_GliaA

ROSgenerationByPlaques AbP AbP, ROS kgenROSplaque * AbP

AntiAbRemoval antiAb Sink kdegAntiAb*antiAb

AntiAbBindingToAbeta Abeta,antiAb Abeta_antiAb kbinAbantiAb*Abeta*antiAb

AntiAbBindingToAbetaDimers AbDim,antiAb AbDim_antiAb kbinAbantiAb*AbDim*antiAb

AbetaDegradationViaAntiAb Abeta_antiAb antiAb kdegAbetaAntiAb*Abeta_antiAb

AbetaDimerDegradViaAntiAb AbDim_antiAb antiAb kdegAbetaAntiAb*AbDim_antiAb

PlaqueDisaggregation AbP Abeta kdisaggAbeta1*AbP

PlaqueDisaggregationViaAntiAb AbP, antiAb Abeta,antiAb kdisaggAbeta2*AbP*antiAb

AbetaDedimerisation AbDim Abeta kdedimer * AbDim

doi:10.1371/journal.pone.0073631.t005
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function to model this as in our previous model of Ab aggregation

(see Figure 10 of [41]). The chosen parameters for plaque growth

and plaque disaggregation resulted in a maximum plaque size of

75. In reality, plaques are much larger but it was necessary to use

relatively low numbers for all the molecules in our model, so that

we could carry out simulations within reasonable time-frames. We

also speeded up the aggregation process to mimic an experimental

cellular system. If we modelled the process over much longer time

periods to represent the ageing process, then the aggregation

process would be slower and larger plaques would form. Since we

examined all the parameters to see which ones had most effect on

plaque size, it would be straight-forward to modify parameter

values in order to obtain larger plaques if desired (see Results

section and Table 2). We also included a reaction for ROS

generation via plaques, in addition to our previous modelled

reactions for ROS generation via soluble Ab, since recent data

shows that ROS can be produced by Ab in all aggregation states

[21].

Ab turnover
We assume that Ab is continually produced and degraded and

that normally Ab levels are kept at low basal levels. We also

assume that if p53 activity is increased via its interaction with

GSK3b, then production of Ab is increased [83]. However, more

importantly, it has been observed that Ab degradation is impaired

in AD [39]. We previously modelled turnover and aggregation

kinetics of Ab and found that we needed to assume that the rate of

Ab degradation declines with age in persons which develop AD

[41]. This is a reasonable assumption, since it has also been shown

that neprilysin, a major Ab-degrading enzyme declines with age

[84,85]. Therefore we also assume a lower rate of Ab degradation

in AD.

The maximum size of plaque is mainly determined by the

amount of soluble Ab and so parameters which have greatest affect

on plaque size include Ab production and clearance rates. We

used the rates from an experimental study which looked at levels of

Ab in the cerebrospinal fluid (CSF) [39]. They found that the rate

of Ab production (1.86e25 molecules s21) was the same in AD

subjects and age-matched normal controls but that the degrada-

tion rate was lower in AD patients (1.5e25 s21 in AD compared to

2.125 s21 for controls). It should be noted that both the production

and degradation rate of Ab is likely to be higher in neurons than in

the CSF but it is the ratio of production/degradation which is

more important in determining levels of soluble Ab rather than the

individual rates. We assumed that this ratio is the same in neurons

as the CSF and so do not believe that even if we had data for

actual rates in neurons that it would not make any qualitative

differences to the model predictions. Therefore we used the AD

degradation rate from this study and then adjusted the parameters

for aggregation so that plaques start to form by about 2 days and

reach a maximum size by about day 10. This was to allow the

model to be simulated in a reasonable amount of time. However,

this meant that plaques still formed even with the observed mean

degradation rate in the normal controls. We found that we needed

to set the normal degradation rate an order of magnitude higher

than the AD rate. We previously built an individual module of Ab
turnover and aggregation in which we used the rates from the data

for both normal and AD cases as we were able to run this model

over a time scale of 100 years. However, in this model, we needed

to assume that the degradation rate declines with age in the AD

patients, (a more reasonable assumption than a constant lower

degradation rate since birth). In the current model, in which we

speed up the aggregation process over a time scale of days, we

assume a constant degradation rate for AD, since ageing effects are

not modelled here.

Parameter scans
We carried out all the parameter scans using COPASI [86]and

anaylsed the results in the R statistical package. Note that all

parameters scans were carried out with slightly different values to

three of the parameters (kgenROSAbeta = 2e-5, kgenROSGlia = 1e-5,

kgenROSPlaque = 1e-5) which resulted in slightly lower levels of AbP,

Table 6. Values for additional parameters in the immunotherapy model. All other parameters in the model are given in Proctor &
Gray [20].

Parameter Value Comment

kactglia1 6.0e-7 molecule21s21 Partial activation of microglia increases linearly with plaque levels.

kactglia2 6.0e-7 molecule21s21 Full activation of microglia takes about 1–2 days after addition of antibodies

kbinAbantiAb 1.0e-6 molecule21s21 Soluble Ab binds to antibodies within a few hours after their addition.

kbinAbPGlia 1.0e-5 molecule21s21 Fully activated pool of microglia bind to plaques within 15–30 minutes

kdedimerAbeta 1.0e-6 s21 Rate of disassociation of dimers to monomers is assumed to be low so that aggregation will start within one to
two days.

kdegAbetaAntiAb 1.5e-4 s21 We assumed that antibodies increase Ab degradation rate by an order of magnitude.

kdegAbPGlia 5.0e-3 s21 Plaques associated with fully activated microglia are rapidly degraded via phagocytosis.

kdegAntiAb 2.75e-6 s21 Half-life of antibodies <3 days.

kdisaggAbP1 2.0e-4 s21 Rate chosen to give a maximum plaque size of about 80.

kdisaggAbP2 1.0e-6 molecule21s21 Antibodies disaggregate plaques at lower rate than normal.

kgenROSGlia 2.0e-5 s21 Microglia generate ROS at slightly lower rate as Ab.

kgenROSPlaque 2.0e-5 s21 Plaques generate ROS at same rate as glia.

kinactglia1 5.0e-6 s21 Inactivation occurs with a half-life of about 4 days.

kinactglia2 5.0e-6 s21 Inactivation occurs with a half-life of about 4 days.

krelAbPGlia 5.0e-5 s21 The release of Ab from microglia without phagocytosis has lower probability than degradation of Ab via
activated microglia.

doi:10.1371/journal.pone.0073631.t006
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NFT, Abeta,Tau_P2, Glia_A and ROS than those shown in

Figures S3 and S4. However, we made our comparisons to the

maximum values of the species with these default parameters so

that the ranking and percentage changes are not affected.

Details of model code and simulation
The model was encoded in the Systems Biology Markup

Language(SBML) [36], a computer-readable format for network

models using the SBML shorthand tool [87]. SBML is a modelling

standard that allows models to be easily modified or extended. The

code is publicly available from the Biomodels database (Biomodels

ID: MODEL1212030000) [69] and is available as a supplemen-

tary file (Code S1). Simulations were carried out using the

Gillespie algorithm [88] which is a method for doing exact

stochastic simulation. Simulation data was plotted in R using the

ggplot2 package [89].

Supporting Information

Figure S1 Individual plots for model with low Ab
degradation rate and no immunisation. Six runs from

100 simulations are plotted. Key: orange = soluble Ab; blue = Ab
plaques; green = phospho-tau; black = tau tangles; red = activated

glia.

(TIF)

Figure S2 Model predictions for levels of Ab, tau,
activated glia under different simulated interventions
using a deterministic model. A–D Simulated passive

immunisation administered at different time-points: A Day 0; B

Day 4; C Day 8; D Repeated immunisation at Day 0 and Day 7. E

Simulated active immunisation. F No immunisation. Key:

orange = soluble Ab; blue = Ab plaques; green = phospho-tau;

black = tau tangles; red = activated glia.

(TIF)

Figure S3 Varying model parameters, part 1. Effect of

varying a selection of model parameters from half to double its

initial value. The thickness of the line is scaled to the parameter

value with thicker lines representing higher values. A kactglia2; B

kbinAbetaGlia; C kbinMTTau; D kdegAbeta; E kdegAntiAb; F kdephosTau; G

kgenROSPlaque; H kpf. Key: orange = soluble Ab; blue = Ab plaques;

green = phospho-tau; black = tau tangles; red = activated glia,

purple = ROS.

(TIF)

Figure S4 Varying model parameters, part 2. Effect of

varying a selection of model parameters from half to double its

initial value. The thickness of the line is scaled to the parameter

value with thicker lines representing higher values. A kpg; B

kprodAbeta2; C kactATM; D kbinGsk3bp53; E kbinMdm2p53; F kdamROS; G

kremROS; H krepair; . Key: orange = soluble Ab; blue = Ab plaques;

green = phospho-tau; black = tau tangles; red = activated glia,

purple = ROS.

(TIF)

Figure S5 Key components of the model network.
Network diagram of the key components in the model network

showing the reactions involving the most sensitive parameters. The

labels on the reaction arrows starting with ‘P’ or ‘T’ indicate the

rank of the parameter with respect to its effect on the maximum

level of plaques and tangles respectively.

(TIF)

Code S1 SBML code. This file contains the SBML code for the

model in which passive immunisation was mimicked at day 4 after

the start of the simulation.

(XML)

Author Contributions

Conceived and designed the experiments: CJP DAG DB JARN. Performed

the experiments: CJP. Analyzed the data: CJP. Wrote the paper: CJP DB

DAG JARN.

References

1. Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in

Alzheimer’s disease. Hum Mol Genet 19: R12–R20.

2. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, et al. (2008) Safety,

efficacy, and biomarker findings of PBT2 in targeting Ab as a modifying therapy

for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-

controlled trial. Lancet Neurol 7: 779–786.

3. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, et al. (1999)

Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in

the PDAPP mouse. Nature 400: 173–177.

4. Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, et al. (2009) A phase 2

multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer

disease. Neurology 73: 2061–2070.

5. Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, et al. (2003) Antibodies

against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:

547–554.

6. Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, et al. (2005)

Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in

patients with AD. Neurology 64: 94–101.

7. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, et al. (2003)

Subacute meningoencephalitis in a subset of patients with AD after Abeta42

immunization. Neurology 61: 46–54.

8. Sperling RA, Jack CR, Jr., Black SE, Frosch MP, Greenberg SM, et al. (2011)

Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials:

recommendations from the Alzheimer’s Association Research Roundtable

Workgroup. Alzheimers Dement 7: 367–385.

9. Jucker M (2010) The benefits and limitations of animal models for translational

research in neurodegenerative diseases. Nat Med 16: 1210–1214.

10. Boche D, Denham N, Holmes C, Nicoll JA (2010) Neuropathology after active

Abeta42 immunotherapy: implications for Alzheimer’s disease pathogenesis.

Acta Neuropathol (Berl) 120: 369–384.

11. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, et al. (2008) Long-

term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a

randomised, placebo-controlled phase I trial. Lancet 372: 216–223.

12. Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, et al. (2006) Abeta species

removal after Abeta42 immunization. J Neuropathol Exp Neurol 65: 1040–

1048.

13. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, et al. (2003)

Neuropathology of human Alzheimer disease after immunization with amyloid-

beta peptide: a case report. Nat Med 9: 448–452.

14. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, et al. (2010) 11C-PiB

PET assessment of change in fibrillar amyloid-beta load in patients with

Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind,

placebo-controlled, ascending-dose study. Lancet Neurol 9: 363–372.

15. Zotova E, Holmes C, Johnston D, Neal JW, Nicoll JA, et al. (2011) Microglial

alterations in human Alzheimer’s disease following Abeta42 immunisation.

Neuropathol Appl Neurobiol.

16. Maarouf C, Daugs I, Kokjohn T, Kalback W, Patton RL, et al. (2010) The

biochemical aftermath of anti-amyloid immunotherapy. Mol Neurodegener

5: 39.

17. Boche D, Donald J, Love S, Harris S, Neal JW, et al. (2010) Reduction of

aggregated Tau in neuronal processes but not in the cell bodies after Abeta42

immunisation in Alzheimer’s disease. Acta Neuropathol (Berl) 120: 13–20.

18. Serrano-Pozo A, William CM, Ferrer I, Uro-Coste E, Delisle M-B, et al. (2010)

Beneficial effect of human anti-amyloid-beta active immunization on neurite

morphology and tau pathology. Brain 133: 1312–1327.

19. Baker AM, Holmes C, Love S, Nicoll JAR, Boche D (2011) Lower glycogen

synthase kinase-3beta load in Alzheimer’s disease after Abeta42 immunization.

Neuropathol Appl Neurobiol 37: 22–42.

20. Proctor C, Gray D (2010) GSK3 and p53 - is there a link in Alzheimer’s disease?

Mol Neurodegener 5: 7.

21. Giovanna C, Cecchi C, Pensalfini A, Bonini S, Ferrari-Toninelli G, et al. (2010)

Generation of reactive oxygen species by beta amyloid fibrils and oligomers

involves different intra/extracellular pathways. Amino Acids 38: 1101–1106.

22. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, et al. (2004) ABAD

directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science

304: 448–452.

Computer Modelling of Alzheimer’s Disease

PLOS ONE | www.plosone.org 15 September 2013 | Volume 8 | Issue 9 | e73631



23. Ohyagi Y, Asahara H, Chui D-H, Tsuruta Y, Sakae N, et al. (2004) Intracellular

Abeta42 activates p53 promoter: a pathway to neurodegeneration in

Alzheimer’s disease. FASEB J: 04-2637fje.

24. Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM (2008) Ab
inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol

Aging 29: 1607–1618.

25. Kim JR, Muresan A, Lee KYC, Murphy RM (2004) Urea modulation of beta-

amyloid fibril growth: Experimental studies and kinetic models. Protein Sci 13:

2888–2898.

26. Pallitto MM, Murphy RM (2001) A mathematical model of the kinetics of beta-

amyloid fibril growth from the denatured state. Biophys J 81: 1805–1822.

27. Craft DL, Wein LM, Selkoe DJ (2002) A mathematical model of the impact of

novel Treatments on the Abeta burden in the Alzheimers brain, CSF and

plasma. Bull Math Biol 64: 1011–1031.

28. Morris JC, McKeel DW, Jr., Storandt M, Rubin EH, Price JL, et al. (1991) Very

mild Alzheimer’s disease: informant-based clinical, psychometric, and pathologic

distinction from normal aging. Neurology 41: 469–478.

29. Nagy Z, Esiri MM, Jobst KA, Morris JH, King EM, et al. (1995) Relative roles of

plaques and tangles in the dementia of Alzheimer’s disease: correlations using

three sets of neuropathological criteria. Dementia 6: 21–31.

30. Nelson PT, Abner EL, Schmitt FA, Kryscio RJ, Jicha GA, et al. (2009) Brains

with medial temporal lobe neurofibrillary tangles but no neuritic amyloid

plaques are a diagnostic dilemma but may have pathogenetic aspects distinct

from Alzheimer disease. J Neuropathol Exp Neurol 68: 774–784.

31. Wilcock GK, Esiri MM (1982) Plaques, tangles and dementia. A quantitative

study. J Neurol Sci 56: 343–356.

32. Small SA, Duff K (2008) Linking Abeta and tau in late-onset Alzheimer’s

disease: a dual pathway hypothesis. Neuron 60: 534–542.

33. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, et al. (2010) Dendritic

function of tau mediates amyloid-b toxicity in Alzheimer’s disease mouse

models. Cell 142: 387–397.

34. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is

essential to beta-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99:

6364–6369.

35. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, et al. (2007)

Reducing endogenous tau ameliorates amyloid beta-induced deficits in an

Alzheimer’s disease mouse model. Science 316: 750–754.

36. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, et al. (2003) The systems

biology markup language (SBML): a medium for representation and exchange of

biochemical network models. Bioinformatics 19: 524–531.

37. The Systems Biology Markup Language www.sbml.org. Accessed 2013 Aug 1

38. Hu X, Crick SL, Bu G, Frieden C, Pappu RV, et al. (2009) Amyloid seeds

formed by cellular uptake, concentration, and aggregation of the amyloid-beta

peptide. Proc Natl Acad Sci U S A 106: 20324–20329.

39. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, et al. (2010)

Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:

1774.

40. Alzheimer Research Forum http://www.alzforum.org/new/detail.

asp?id = 3268. Accessed 2013 Aug 1

41. Proctor CJ, Pienaar IS, Elson JL, Kirkwood TB (2012) Aggregation, impaired

degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s

disease: a stochastic modelling approach. Mol Neurodegener 7: 32.

42. Patton RL, Kalback WM, Esh CL, Kokjohn TA, Van Vickle GD, et al. (2006)

Amyloid-beta peptide remnants in AN-1792-immunized Alzheimer’s disease

patients: a biochemical analysis. Am J Pathol 169: 1048–1063.

43. Watcharasit P, Bijur GN, Zmijewski JW, Song L, Zmijewska A, et al. (2002)

Direct, activating interaction between glycogen synthase kinase-3beta and p53

after DNA damage. Proc Natl Acad Sci USA 99: 7951–7955.

44. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, et al. (2006) COPASI–a COmplex

PAthway SImulator. Bioinformatics 22: 3067–3074.

45. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology

of Alzheimer’s disease. Trends Pharmacol Sci 12: 383–388.

46. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:

487–498.

47. Chaves RS, Melo TQ, Martins SA, Ferrari MF (2010) Protein aggregation

containing beta-amyloid, alpha-synuclein and hyperphosphorylated tau in

cultured cells of hippocampus, substantia nigra and locus coeruleus after

rotenone exposure. BMC Neurosci 11: 144.

48. Proctor CJ, Gray DA (2012) A unifying hypothesis for familial and sporadic

Alzheimer’s disease. Int J Alzheimers Dis 2012.

49. Gendron T, Petrucelli L (2009) The role of tau in neurodegeneration. Mol

Neurodegener 4: 13.

50. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s

disease. J Neurochem 104: 1433–1439.

51. Hooper C, Meimaridou E, Tavassoli M, Melino G, Lovestone S, et al. (2007)

p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in

HEK293a cells. Neurosci Lett 418: 34–37.

52. Dolan PJ, Johnson GV (2010) The role of tau kinases in Alzheimer’s disease.

Curr Opin Drug Discov Devel 13: 595–603.

53. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, et al. (2008)

Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair

synaptic plasticity and memory. Nat Med 14: 837–842.

54. Hepler RW, Grimm KM, Nahas DD, Breese R, Dodson EC, et al. (2006)
Solution State Characterization of Amyloid b-Derived Diffusible Ligands.

Biochemistry (Mosc) 45: 15157–15167.

55. Cirrito JR, Kang J-E, Lee J, Stewart FR, Verges DK, et al. (2008) Endocytosis is

required for synaptic activity-dependent release of amyloid-b in vivo. Neuron 58:
42–51.

56. Parihar MS, Brewer GJ (2010) Amyloid-beta as a modulator of synaptic

plasticity. J Alzheimer’s Dis 22: 741–763.

57. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, et al. (2003) Triple-
transgenic model of Alzheimer’s disease with plaques and tangles: intracellular

Abeta and synaptic dysfunction. Neuron 39: 409–421.

58. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta
immunotherapy leads to clearance of early, but not late, hyperphosphorylated

tau aggregates via the proteasome. Neuron 43: 321–332.

59. Bales KR (2012) The value and limitations of transgenic mouse models used in
drug discovery for Alzheimer’s disease: an update. Expert Opin Drug Discov 7:

281–297.

60. Ardiles AO, Tapia-Rojas CC, Mandal M, Alexandre F, Kirkwood A, et al.
(2012) Postsynaptic dysfunction is associated with spatial and object recognition

memory loss in a natural model of Alzheimer’s disease. Proc Natl Acad Sci U S A
109: 13835–13840.

61. Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, et al. (2007)

Neuroprotective effects of regulators of the glycogen synthase kinase-3beta

signaling pathway in a transgenic model of Alzheimer’s disease are associated
with reduced amyloid precursor protein phosphorylation. J Neurosci 27: 1981–

1991.

62. Gomez-Sintes R, Lucas JJ (2010) NFAT/Fas signaling mediates the neuronal
apoptosis and motor side effects of GSK-3 inhibition in a mouse model of

lithium therapy. J Clin Invest 120: 2432–2445.

63. Huang TC, Lu KT, Wo YY, Wu YJ, Yang YL (2011) Resveratrol protects rats
from Abeta-induced neurotoxicity by the reduction of iNOS expression and lipid

peroxidation. PLoS ONE 6: e29102.

64. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid
degradation of p53. Nature 387: 296–299.

65. Watcharasit P, Bijur GN, Song L, Zhu J, Chen X, et al. (2003) Glycogen

synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53.
J Biol Chem 278: 48872–48879.

66. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, et al. (1999)

Lithium protects cultured neurons against beta-amyloid-induced neurodegener-
ation. FEBS Lett 453: 260–264.

67. Gong CX, Grundke-Iqbal I, Iqbal K (1994) Dephosphorylation of Alzheimer’s

disease abnormally phosphorylated tau by protein phosphatase-2A. Neurosci-

ence 61: 765–772.

68. Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3):

inflammation, diseases, and therapeutics. Neurochem Res 32: 577–595.

69. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, et al. (2006)
BioModels Database: a free, centralized database of curated, published,

quantitative kinetic models of biochemical and cellular systems. Nucleic Acids

Res 34: D689–691.

70. Wilcock DM, DiCarlo G, Henderson D, Jackson J, Clarke K, et al. (2003)
Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposi-

tion by mechanisms both independent of and associated with microglial
activation. J Neurosci 23: 3745–3751.

71. Perlmutter LS, Barron E, Chui HC (1990) Morphologic association between

microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci Lett 119:
32–36.

72. Bard F, Cannon C, Barbour R, Burke RL, Games D, et al. (2000) Peripherally

administered antibodies against amyloid beta-peptide enter the central nervous
system and reduce pathology in a mouse model of Alzheimer disease. Nat Med

6: 916–919.

73. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of
microglia. Physiol Rev 91: 461–553.

74. McDonald DR, Brunden KR, Landreth GE (1997) Amyloid fibrils activate

tyrosine kinase-dependent signaling and superoxide production in microglia.

J Neurosci 17: 2284–2294.

75. Solomon B, Koppel R, Frankel D, Hanan-Aharon E (1997) Disaggregation of

Alzheimer b-amyloid by site-directed mAb. Proceedings of the National

Academy of Sciences 94: 4109–4112.

76. Dodel RC, Hampel H, Du Y (2003) Immunotherapy for Alzheimer’s disease.
Lancet Neurol 2: 215–220.

77. Boche D, Perry VH, Nicoll JAR (2013) Review: Activation patterns of microglia

and their identification in the human brain. Neuropathol Appl Neurobiol
39: 3–18.

78. Esler WP, Stimson ER, Ghilardi JR, Vinters HV, Lee JP, et al. (1996) In vitro

growth of Alzheimer’s disease b-amyloid plaques displays first-order kinetics.
Biochemistry (Mosc) 35: 749–757.

79. Tseng BP, Esler WP, Clish CB, Stimson ER, Ghilardi JR, et al. (1999)

Deposition of monomeric, not oligomeric, Ab mediates growth of Alzheimer’s
disease amyloid plaques in human brain preparations. Biochemistry (Mosc) 38:

10424–10431.

80. Hyman BT, Marzloff K, Arriagada PV (1993) The lack of accumulation of senile
plaques or amyloid burden in Alzheimer’s disease suggests a dynamic balance

between amyloid deposition and resolution. J Neuropathol Exp Neurol 52: 594–

600.

Computer Modelling of Alzheimer’s Disease

PLOS ONE | www.plosone.org 16 September 2013 | Volume 8 | Issue 9 | e73631



81. Maggio JE, Stimson ER, Ghilardi JR, Allen CJ, Dahl CE, et al. (1992)

Reversible in vitro growth of Alzheimer disease beta-amyloid plaques by
deposition of labeled amyloid peptide. Proc Natl Acad Sci U S A 89: 5462–5466.

82. Cruz L, Urbanc B, Buldyrev SV, Christie R, Gómez-Isla T, et al. (1997)

Aggregation and disaggregation of senile plaques in Alzheimer disease. Proc
Natl Acad Sci U S A 94: 7612–7616.

83. Tang X, Milyavsky M, Goldfinger N, Rotter V (2007) Amyloid-[beta] precursor-
like protein APLP1 is a novel p53 transcriptional target gene that augments

neuroblastoma cell death upon genotoxic stress. Oncogene 26: 7302–7312.

84. Sato K, Tanabe C, Yonemura Y, Watahiki H, Zhao Y, et al. (2012) Localization
of mature neprilysin in lipid rafts. J Neurosci Res 90: 870–877.

85. Miners JS, Barua N, Kehoe PG, Gill S, Love S (2011) Abeta-degrading enzymes:

potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 70:
944–959.

86. Hoops S, Sahle S, Gauges R, Lee C, Pahle Jr, et al. (2006) COPASI - a

COmplex PAthway SImulator. Bioinformatics 22: 3067–3074.
87. Wilkinson DJ (2006) Stochastic Modelling for Systems Biology: Chapman &

Hall/CRC Press.
88. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions.

J Phys Chem 31: 2340–2361.

89. Wickham H (2009) ggplot2: elegant graphics for data analysis. : Springer New
York.

Computer Modelling of Alzheimer’s Disease

PLOS ONE | www.plosone.org 17 September 2013 | Volume 8 | Issue 9 | e73631


