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Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many
Treg subsets have been described, however thymus-derived and peripherally induced
Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical
autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic
hallmark. In contrast, induction of Treg proliferation and enhancement of their function are
central immune evasion mechanisms of infectious pathogens. In accordance, Treg
expansion is compartmentalized to tissues with high viral replication and prolonged in
chronic infections. In friend retrovirus infection, Treg expansion is mainly based on
excessive interleukin-2 production by infected effector T cells. Moreover, pathogens
seem also to enhance Treg functions as shown in human immunodeficiency virus
infection, where Tregs express higher levels of effector molecules such as cytotoxic T-
lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive
capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens
alter Treg functions might aid to find new therapeutic approaches to target central nervous
system autoimmunity. In this review, we summarize the current knowledge of the role of
pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss
the mechanistic implications for future therapies and provide an outlook for new
research directions.
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1 INTRODUCTION

In the context of infections, Tregs mediate beneficial and
detrimental effects on short- and long-term disease outcomes.
Although many Treg subsets have been described, thymus-
derived (tTregs) and peripherally induced Tregs (pTregs)
remain the most important subpopulations (1, 2). Tregs are
generally found to express CD4 and either or both the high-
affinity receptor for interleukin (IL)-2 CD25+ as well as the
forkhead box protein P3 (Foxp3) (3). Their expression of
intrace l lu lar and surface markers , such as CD25,
glucocorticoid-induced tumor necrosis factor receptor (GITR)
and the inhibitory cytotoxic T-lymphocyte-associated protein 4
(CTLA-4) define their phenotype and function (4–6). tTregs
emerge with a CD4+CD25+Foxp3+ phenotype directly from the
thymus. They are specific for self-antigens requiring continuous
antigenic stimulation for their survival and preservation of
self-tolerance, the lack of which may lead to autoimmune
disorders (7–11). pTregs on the other hand adopt a regulatory
function upon expression of Foxp3 and are therefore likely to be
specific to an exogenous antigen (3, 12–16). In the context of
infection, Tregs can ameliorate excessive immune responses by
interaction with and suppression of immune cells. However, Treg
expansion and enhanced Treg function are central mechanisms of
pathogen-related immune evasion. Yet, the contribution of Tregs
to the pathophysiology of pathogen-mediated diseases as well as
the underlying molecular mechanisms remain largely elusive.

In the context of therapeutic interventions, it is important to
consider the Janus-faced functions of Tregs in infections
potentially providing beneficial or detrimental effects
(Figure 1). Defining the mechanisms by which intracellular
pathogens alter Treg function might pave the way toward new
therapeutic approaches not only in the settings of infections, but
also in autoimmune neuroinflammation.

With this review, we intend to give a detailed overview of
molecular mechanisms underlying altered Treg function in
models of acute and chronic infections as well as in
autoimmune neuroinflammation with a focus on multiple
sclerosis (MS) (Table 1). We investigate the impact of
pathogens on immune cell distributions, profiles, and
functionality - particularly Treg functions - in the setting of
neuroinflammation. We discuss how the complex changes in
Tregs lead to altered function and that the underlying
mechanisms could contribute to better understand the
pathophysiology of neuroinflammatory diseases and their
treatments. We further review the interplay of infection with
pathogens and autoimmune processes (Figure 2) and, of
particular interest, the clinical targets that result from these
interactions (Table 2). In addition, we highlight the interplay
between commensal bacteria and the function/plasticity of Tregs.
In doing so, we particularly consider the implications for the
phenotype of autoimmune phenomena. We point out the need
for multi-omic approaches (functional analyses, transcriptomics,
proteomics, and metabolomics) to illuminate the complex
changes in Tregs leading to altered function (Figure 3).

Overall, our review focuses on past, present and future insights
into the role of Tregs in the pathophysiology of pathogen-
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mediated diseases and in autoimmune neuroinflammation. We
discuss established and potential therapeutic strategies in MS
resulting from this new molecular understanding.
2 MANUSCRIPT/SUBSECTIONS

2.1 Janus-Faced Nature: Duality of Tregs
in Pathogen-Mediated Diseases
In the context of pathogen-mediated diseases, Tregs are Janus-
faced (Figure 1): On the one hand, they are the major
determinant of peripheral immune tolerance not only
controlling immune responsiveness to intrinsic antigens and
infective pathogens but also modulating immune capacity (9,
11–13). On the other hand, Tregs dampen favorable pathogen-
directed adaptive immunity counter acting complete pathogen
clearance and giving rise to chronic infections (14, 53, 54). Their
phenotype and functions are, among others, dependent on their
localization and the tissue type (55–62).

2.1.1 One Janus Face: Beneficial Treg Effects in
Infections
Aside from their immunosuppressive capacity forestalling
pathology, Tregs have been shown to facilitate appropriate
e ff ec tor mechanisms . Furthermore , Tregs contro l
immunopathology detrimental to the host body arising from
excessive effector immune responses.

Tregs utilize diverse immunosuppressive mechanisms
depending on their microenvironment: Expression of CD25,
the a-chain of IL-2, leads to consumption of IL-2 inhibiting
activation and proliferation of conventional T cells (Tconv) (63–
65). Interestingly, Chinen et al. showed that IL-2 expression
activates signal transducer and activator of transcription (STAT)
5 further boosting the suppressor function of Tregs (66).
Suppression of Tconv next to macrophages can also be
triggered by cAMP-mediated protein kinase A (PKA)
activation. Here, expression of the ectonucleotidase CD39 by
Tregs leads to hydrolyzation of ATP followed by further
cleavage of AMP to adenosine by CD73 (67–69). Subsequently,
activation of the adenosine receptor A2A causes intracellular
accumulation of cAMP which in turn stimulates PKA and
associated downstream signaling (70–73). Tregs can induce the
death of natural killer cells (NK cells) and other effector cells,
such as B cells, dendritic cells (DCs), CD4+ and CD8+ cells, by
releasing granzyme resulting in perforin-dependent apoptosis of
target cells (74–76). B cells and DCs are regulated by Tregs via
CTLA-4 which binds CD80/CD86 and increases the expression
of indoleamine 2,3-dioxygenase (IDO) (77–79). Consecutively,
binding of CD28 to CD80/CD86 is limited hampering the
crosstalk between Tconv and antigen-presenting cells (APCs).
Also, accumulation of IDO can lead to starvation of Tconv and
cell cycle arrest, amongst others via degradation of the essential
amino acid tryptophan (80, 81). Besides that, T cells can suppress
T cell receptor (TCR)-induced Ca2+, NFAT and NF-kB
downstream signaling (77). The co-inhibitory molecule T cell
immunoreceptor with Ig and immunoreceptor tyrosine-based
October 2021 | Volume 12 | Article 747143
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inhibitory motif domains (TIGIT) suppresses pro-inflammatory
T helper (Th) 1 and Th17 cells, but not Th2 cell responses (82,
83). Tregs can directly induce angiogenesis via vascular
endothelial growth factor or target tissue cells (58). Further
immunosuppressive effects of Tregs, e.g. on monocytes and
macrophages, are mediated via anti-inflammatory cytokines
such as IL-10, IL-35 or tumor growth factor b (TGFb),
cytolysis or metabolic disruption (62, 77, 84).

During acute and chronic (retro-) viral infections, Tregs have
been shown to promote the in- and efflux of pro-inflammatory cells
into lymph nodes (85, 86). Also, they suppress the proliferation and
entry of infected cells (87, 88) and contribute to a memory
formation via antigen persistence (89). In mice, Treg response is
locally defined controlling magnitude and duration of virus-specific
cytotoxic T cell responses (90, 91). For example, in human and
murine cytomegalovirus, vaccinia virus and influenza virus, CD8+ T
cell responses are controlled by Tregs by suppression of the immune
response to immunodominant epitopes (92, 93). In human
immunodeficiency virus (HIV) low Treg frequencies are strongly
associated with increased immune activation, accelerated
atherosclerosis and other morbidities linked to inflammation (94–
103). A negative correlation between the relative amount of Tregs
and inflammation has also been observed for hepatitis C virus
(HCV) in humans and mice (104, 105). Here, Tregs suppress not
only the production of interferon gamma (IFNg) but also the
expansion and activation-induced cell death of HCV-specific T
cells resulting in reduced CD4+ T cell reactivity and mitigation of
T cell-mediated liver disease (105–109).

In bacterial infections, Tregs show a predominant regulatory
function controlling and limiting adaptive and innate immune
responses as shown in different mouse studies (110):
Immunosuppressive functions of Tregs have been already
described for helicobacter hepaticus (111, 112), helicobacter
pylori (H. pylori) (113–115), listeria monocytogenes (116),
pneumocystis carinii (117, 118).

In toxoplasmosis as a prototypical parasitic infection, Treg
depleted mice showed 50-60% mortality during acute
infection (119).

2.1.2 Other Janus Face: Detrimental Treg Effects
in Infections
Immune responses to pathogens can be impaired by an overly
strong suppressive effect of Tregs interfering with early
protective immunity (84): Tregs can inhibit effector T cell
responses thereby promoting chronic inflammation. In turn,
lack of complete eradication of pathogens leads to a reservoir
function of human and murine Tregs acting as carriers for
respective pathogens promoting their expansion in the
environment resulting in spread of infections (120–122).
Accordingly, pathogen clearance during the disease course
correlates with a decrease in the suppressive capacity of Tregs
(123). Vice versa, states of chronic inflammation are often
characterized in humans by resistance to immune regulation
by Tregs (124–126).

In friend retrovirus (FV) (127–130) and herpes simplex virus
(HSV) infection in mice (54, 131, 132), Tregs limit CD8+ effector
Frontiers in Immunology | www.frontiersin.org 3
T cell proliferation and functions resulting in viral persistence.
Treg expansion is mainly based on excessive IL-2 production by
murine, FV-infected effector T cells (90, 91, 133, 134). In HIV,
human Tregs inhibit effector T cell responses thereby promoting
viral chronicity and opportunistic infections acting as a viral
reservoir (Figure 1) (100, 135, 136).

In human and murine mycobacterium tuberculosis (Mtb)
infection, expansion of Mtb-specific Tregs interferes with
priming and migration of T cells to the infected lung resulting
in deficient clearance of Mtb (Figure 1) (137–140). Here, Treg
numbers inversely correlate with local mycobacteria-specific
immunity. Three human studies have shown an increase in T
reg numbers in the blood and at sites of infection during active
disease (140–142). In human hepatitis B virus (HBV), the
expansion of antigen-specific Tregs suggests their contribution
to the liver pathology (143–145). Here, the frequency of Tregs
correlates with viral load.

In murine fungal infections such as Candida albicans, the
absence of Toll-like receptors (TLRs) and Tregs lead to an
increase in immunity to candida via secretion of anti-
inflammatory cytokines and improved leukocyte recruitment to
infection sites (146, 147).

In parasitic infections [e.g., schistosoma in mice (148, 149),
leishmania in humans and mice (150–155), plasmodium, and
helminths (156, 157)], Tregs are reported to favor parasite
expansion and persistence by limiting effector responses,
especially of Th1 and Th2 cells, in an IL-10-dependent manner
and by suppression of antigen-specific T cell proliferation (36,
158). Nevertheless, while Treg frequency correlated with parasite
pathogen load, it also accounted for reduced liver pathology and
improved host survival rates. Also, in murine chronic infections
of the protozoan parasite Toxoplasma gondii, a nonresolving Th1
myositis occurs where Treg ablation during chronic infection
rescues macrophage homeostasis and skeletal muscle fiber
regeneration (159).

2.1.3 Treg/Th17 Ratio in Pathogen-Mediated
Diseases
In general, the balance between Th17 and Tregs is crucial for the
maintenance of immune homeostasis during pathogen-mediated
infections (160–162). By presentation of antigens via major
histocompatibility complex II molecules on APCs and certain
cytokine environments, naïve Th cells are activated and polarized
into either peripherally-induced Tregs or Th17 cells to maintain
homeostasis. Among APCs, macrophages are known to promote
Treg responses, while DCs mainly activate Th17 cell responses
(163). In mice, Th17 differentiation is mainly dependent on the
cytokines IL-6 and TGFb which induce the transcription factor
retinoic acid-related orphan receptor gamma t (RORgt) in a
STAT3-dependent manner (164, 165). In humans, Th17
differentiation mainly depends on IL-23 and IL-1ß (166–168).
Th17 cell differentiation is further stimulated by TGFb, TNF,
IL-6, and IL-21. Maintenance and expansion of Th17 cells is
regulated by IL-23 (168). Differentiation towards the Treg subset
is stimulated via induction of the transcription factor STAT5 by
TGFb and in the absence of IL-6 (169–172). IL-2 and IL-10 also
October 2021 | Volume 12 | Article 747143
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play important roles in the differentiation of Tregs (173). Th17
cells show pro-inflammatory effects during disease progression,
which can result in autoimmunity. Tregs on the other hand,
serve as immunoregulatory cells and maintain self-tolerance.
Frontiers in Immunology | www.frontiersin.org 4
These opposing effects are also represented on cytokine
level: While Th17 cells secrete mainly IL17, IL-21 and IL-22,
Tregs produce IL-10, IL-35 and TGFb (160). Via IL-17 Th17
cells attract other immune cells, such as macrophages and
FIGURE 1 | Janus-faced nature of Tregs. Schematic overview of molecular mechanisms underlying the regulation of immune cells and immune responses by regulatory
T cells (Tregs). Anti-infective functions are mainly mediated by suppression of immune cells (left): Expression of CD25 leads to consumption of interleukin (IL)-2 inhibiting
activation and proliferation of conventional T cells (Tconv). Suppression of Tconv can also be mediated by adenosine production via the ectoenzymes CD39 and CD73.
Besides, Tregs are able to suppress T cell receptor (TCR)-induced Ca2+, NFAT and NF-kB signaling. Dendritic cells (DCs) and B cells are influenced by cytotoxic
T-lymphocyte antigen 4 (CTLA-4) which binds CD80/CD86 and increases the expression of indoleamine 2,3-dioxygenase (IDO) resulting in starvation of Tconv next
to cell cycle arrest and decrease in crosstalk between Tconv and antigen-presenting cells (APCs). Tregs can induce the death of effector cells (B cells, DCs, CD4+

and CD8+ cells) in a granzyme-perforin-dependent manner. The co-inhibitory molecule T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory
motif domains (TIGIT) suppresses T helper (Th) 1 and Th17 cell responses. Tregs can also induce angiogenesis via vascular endothelial growth factor (VEGF) or target
tissue cells directly. Further immunosuppressive effects of Tregs are mediated by cytokines (IL-10, IL-35, TGFb), cytolysis or metabolic disruption. By contrast, Tregs
can support inflammation (right) by a multi-layered feed-forward loop promoting the generation of ‘exTreg’ cells adapting Th-like functions, which in turn stimulate
activation and expansion of autoreactive Th effector cells. Loss of immunosuppressive capacity adapting phenotype and functionality of Th cells is also reported upon
loss of forkhead box protein 3 (Foxp3) in Tregs. Also, Tregs inhibit effector T cell responses thereby promoting chronic inflammation, pathogen spreading and opportunistic
infections acting as pathogen reservoir. APCs, antigen-presenting cells; CTLA-4, cytotoxic T-lymphocyte antigen 4; DCs, dendritic cells; Foxp3, forkhead box protein
3; IDO, indoleamine 2,3-dioxygenase; IL, interleukin; M/M, monocytes and macrophages; TIGIT, T cell immunoreceptor with Ig and immunoreceptor tyrosine-based
inhibitory motif domains; Tconv, conventional T cells; TCR, T cell receptor; TGFb, tumor growth factor b; Tregs, regulatory T cells; VEGF, vascular endothelial
growth factor.
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neutrophils resulting in a state of chronic inflammation. In
contrast, Tregs regulate differentiation and activity of Th17
and other T cells (8, 174). The Treg/Th17 ratio can contribute
to a wide range of immune responses ranging from predominantly
regulatory to stimulatory function. Its balance is crucial for
immune homeostasis.

In recently infected SARS-CoV-2 patients, the number of
Th17 cells was significantly increased compared to healthy
controls causing inflammatory responses due to the production
of pro-inflammatory cytokines (175, 176). In contrast, Treg
numbers were decreased and even further downregulated in
the disease course (177–179). Interestingly, the Treg/Th17 cell
ratio and expression levels of their related cytokines were
significantly higher in deceased patients than during
remission (175).

Likewise, in respiratory syncytial virus infection but also in
pulmonary infections in general, Tregs and Th17 cells have
opposing features determining clinical severity (136, 177, 180,
181): Tregs promote viral clearance by recruiting CD8+ cytotoxic
T cells to the lungs and limiting inefficient or excessive T cell
responses (Th2, CD4+ and CD8+) (182–186). In addition, they
control the innate immune response by neutrophils and NK cells.
In contrast, Th17 cells hamper viral clearance by limiting CD8+

T cell responses and enhance Th2 immune responses resulting in
a more severe clinical picture (187, 188).

In peripheral blood analysis of HBV patients, the Treg/Th17
ratio was decreased with reduced Treg levels and increased Th17
cell numbers (189). The latter correlated with TGFb and IL-21
levels. Interestingly, here, the Treg/Th17 ratio was the best
marker for predicting the stage of HBV-associated liver
cirrhosis (190). In HCV patients, Th17 cells were associated
with early infection and repair processes leading to liver fibrosis.
Here, TGFb and IL-10 suppressed Th17 cells (191).

For Mtb, the balance between Tregs and Th17 cells regulates
encapsulation and control of lung lesions (192). If Tregs become
predominant over Th17, Mtb disseminates more easily and
recruitment of neutrophils to the infection sites gets
delayed (192).

In gastrointestinal infectious diseases, Th17 are predominant
in the acute phase producing the cytokines IL-17A, IL-17F and
IL-22. In contrast, Treg/Th17 ratio increases in the chronic phase
and infection progress because of the suppressive function of
Tregs (193).

2.1.4 Impact of Pathogens on Tregs
Several pathogens impact the immune status exploiting the
regulatory T cell compartment to enhance their replication and
become persistent (95, 194–196). While tTregs are usually
specific for self-antigens requiring continuous antigen
stimulation for their survival (8–11), pTregs are converted in
the periphery and therefore more likely to be influenced by and
specific for a microorganism-derived antigen (13, 14). Induction
of Treg proliferation and enhancement of Treg function might be
central to immune evasion mechanisms of intracellular
pathogens (123, 197). In accordance, Treg expansion is
compartmentalized to tissues with high viral replication (here
Treg frequency often correlates with viral load) and prolonged in
Frontiers in Immunology | www.frontiersin.org 5
chronic infections (19, 25, 90). However, the molecular
mechanisms by which intracellular pathogens alter Treg
functions as well as the origin of these Tregs remain
incompletely understood (for detailed overview see Table 1).

Some pathogens directly contribute to Treg induction. In
humans, for example, hepatocytes infected with HCV or gastric
epithelial cells infected with H. pylori induce Tregs via TGFb
production (Table 1) (17, 34). Upon infection with plasmodium
falciparum there is a burst of IL-2, IL-10 and TGFb associated
with Treg induction and expansion. Here, Tregs were, among
others, induced by TLR9 signaling in mice and expressed high
levels of Foxp3 suppressing inflammatory processes and
immunity-driving mediators of effector T cells (36–39).

Likewise, viral pathogens such as HSV-1, FV and Japanese
encephalitis virus enhance Treg expansion (Table 1). In murine
HSV-1, the viral binding site herpes virus entry mediator is
upregulated (18). For FV infection, there are two possible
mechanisms underlying Treg expansion: IL-2-dependent
stimulation versus IL-2-independent, tumor necrosis factor
(TNF) receptor 2-dependent upregulation (Table 1) (25–27).
In both, Japanese encephalitis virus and Mtb, Treg expansion is a
result of programmed death-1 ligand 1 (PD-L1) induction
(31–33).

Further, pathogens can enhance Treg functions as shown in HIV
infection. Here, upon binding of HIV glycoprotein 120 to the CD4
receptor, Tregs express higher levels of effector molecules such as
CTLA-4, CD39 and cAMP and show increased suppressive capacity
next to prolonged survival rates (Table 1) (19–23). Of note,
expression of Foxp3 by patients with a progressive HIV-1
infection seems to be upregulated by individual T cells due to
antigen stimulation. Moreover, Foxp3 expression in CD4+ T cells
was shown to be a marker of HIV infection and potentially even a
prognostic marker of HIV progression (24). Also, in the context of
COVID-19 disease, an alteration in the expression of Foxp3 could
be detected. More precisely, in patients with a severe disease course,
a downregulation of Foxp3 could be detected in T cells indicating an
impaired Foxp3-mediated feedback on T cell activation as potential
mechanisms underlying disease progression (198). Similarly,
human T cell lymphotropic virus 1 associated gene products are
reported to inhibit Foxp3 gene expression thereby causing Treg
dysfunction (Table 1) (28–30).

Interestingly, women infected with Chlamydia trachomatis
displayed increased expression levels of Foxp3 in vaginal swab
samples following the clearance of infection due to antibiotic
treatment (199). In Candida albicans, prolonged Treg survival
rates were achieved by TLR2 signaling and IL-10 production
(Table 1) (43). Altered Foxp3 expression could also be detected
in the context of parasitic infections: During chronic infection
with Leishmania of the Viannia subgenus, a decreased Foxp3
expression was detected (200). Recruitment of Tregs to infection
sites of Leishmania major was improved by expression of
integrin aEb7 and CC-chemokine receptor 5 (40, 41).
Excitingly, infection with helminth parasites mediated by
parasite-secreted proteins could also induce de novo T cell
Foxp3 expression (201). This, in turn, may be a way through
which parasites can evade the host immune response. Regarding
H. pylori infection, it is worth noting that increased expression of
October 2021 | Volume 12 | Article 747143
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Foxp3 on Tregs was observed in Tregs isolated from infected
children, possibly contributing to an inverse association between
H. pylori infection and allergic disease through changes in Treg
functionality (35).

2.2 Role of Tregs in Multiple Sclerosis
Immune homeostasis and self-tolerance are regulated by the
development, stability and function of Tregs (202). Tregs control
immune capacity thereby influencing bystander immune
responses such as allergies or autoimmune diseases (11, 14).
Tregs prevent the activation and infiltration of T cells into the
central nervous system (CNS) and maintain the homeostasis of
the immune system (203–205). By suppressing CD8+ T effector
cell responses, they limit parenchymal damage during CNS
inflammation (206).

Tregs can contribute to the pathogenesis of autoimmune
diseases by a multi-layered feed-forward loop (Figure 1) (84):
Autoantigens and pro-inflammatory cytokines (IL-1b, IL-6 etc.)
activate effector Th cells which further aggravate self-tissue
damage by the expression of IL-4, IL-6, IL-10, IL-12 and IFNg
(207). Antigens and cytokines from damaged tissue promote the
generation of ‘exTreg’ cells adapting Th-like functions which, in
Frontiers in Immunology | www.frontiersin.org 6
turn, stimulate the activation and expansion of autoreactive Th
effector cells. These effector Th cell-like functions of ‘exTreg’ cells
also directly stimulate pathogenic immune responses in local
tissues and promote the pathogenesis of autoimmune diseases by
participating in a feed-forward loop (Figure 1). Strikingly,
dysfunctional, instable or insufficient Foxp3 expression can
also trigger autoimmunity (15, 208–212): Upon loss of Foxp3,
Tregs lose their immunosuppressive capacity adapting
phenotype and functionality of Th cells (Th1, Th2, Th17), such
as production of IFNg and IL-17 (Figure 1) (213–215).

In contrast, CD4+ HLA-G+ tTregs cells were shown to
ameliorate polyclonal adaptive immune response suppressing
graft-versus-host disease in vivo (216). Likewise, Foxp3+ Tregs
limit muscle destruction by cytotoxic T cells in dermatomyositis,
polymyositis and inclusion body myositis (217).

Treg/Th17 imbalance is associated with autoimmune diseases
such as MS, myasthenia gravis, psoriasis, inflammatory bowel
diseases and rheumatoid arthritis (165, 218–223). Here, Th17
cells are regarded as the main driver of autoimmune
inflammation activating other immune cells and secreting pro-
inflammatory cytokines (224, 225). A decrease of Tregs in
autoimmune and inflammatory diseases is reported to cause
TABLE 1 | Impact of pathogens on Tregs and the underlying molecular mechanisms.

Infection Pathogen (human or
murine)

Molecular mechanisms Impact on Tregs Reference

Viral Hepatitis C virus (human) Production of TGFb. Treg induction. (17)
Herpes simplex virus 1
(murine)

Upregulation of HEVM, a binding site for viral glycoprotein
HSVgD.

Treg expansion. (18)

Human
immunodeficiency virus 1

Binding of gp120 to CD4 receptor of Tregs with
consecutive upregulation of cAMP.
Upregulation of CD39/adenosine axis and functional
markers CTLA-4, TNFR, Foxp3, TGFb, IDO.
Increased expression of homing receptors CD62L and
integrin alpha 4 beta in Tregs.
Upregulation of Foxp3 expression in progressive infection.

Prolonged survival and higher suppressive activity.
Accumulation in lymph nodes and mucosal lymphoid
tissue.

(19–24)

Friend retrovirus (murine) IL-2 dependent: IL-2 production by FV-specific effector
CD4+ T helper cells. Coregulation by B cells.
IL-2 independent: Membrane bound TNFa binds to TNFR2.
TNFR2 is indirectly upregulated upon FV infection.

Treg expansion. (25–27)

Human T-cell
lymphotropic virus 1

HTLV-1 associated gene products inhibit Foxp3 expression. Dysfunction of Tregs. (28–30)

Japanese encephalitis
virus

Induction of PD-L1 on dendritic cells. Treg expansion. (31)

Bacterial Mycobacterium
tuberculosis (human and
mice)

Induction of PD-L1 and CISH on dendritic cells. Treg expansion. (32, 33)

Helicobacter pylori Production of TGFb.
Upregulation of Foxp3 expression in children.

Treg induction. (34, 35)

Parasitic Plasmodium falciparum
(human and murine)

TLR9 signaling.
Burst of IL-2, IL-10 and TGFb. Correlation between parasite
expansion and Treg increase.

Treg induction and expansion. Upregulation of Foxp3
expression.

(36–39)

Leishmania major TGFb enhances expression of integrin aEb7.
Production of ligands for CCR5 by infected APCs.

Recruitment and retention of Tregs to infection site. (40, 41)

Toxoplasma gondii Upregulation of GITR expression in Tregs. Increased pathogen clearance and host resistance by
enhancement of cellular immune responses.

(42)

Fungal Candida albicans TLR2 signaling. Immunosuppression by increased IL-10 production
and prolonged survival of Tregs.

(43)
October 2021 | Volume 12 | Art
APCs, antigen-presenting cells; CCR5, CC-chemokine receptor 5; CISH, cytokine inducible SH2-containing protein; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; Foxp3,
forkhead box protein P3; FV, friend virus; GITR, glucocorticoid-induced tumor necrosis factor receptor; HTLV-1, human T-cell lymphotropic virus 1; HVEM, herpes virus entry mediator;
IDO, indoleamine 2,3-dioxygenase; IL, interleukin; PD-L1, programmed death-1 ligand 1; TGFb, tumor growth factor b; TLR, Toll-like receptor; TNFR, tumor necrosis factor receptor;
Tregs, regulatory T cell.
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disease progression (226). Therapeutic approaches targeting the
described Treg/Th17 axis are promising (227) and mainly aim at
neutralizing Th17-secreted cytokines, reducing Th17 cell counts,
increasing Treg cell levels and regulating transcription factors
such as RORgt, STAT3 and Foxp3 (228–231).

2.2.1 Qualitative Treg Alterations in MS
In MS pathogenesis, T cells acquire an autoreactive phenotype
against CNS autoantigens followed by migration into the CNS
causing inflammatory lesions. Activation of T cells is induced by
molecular mimicry in the periphery or by autoreactive T cells in
the CNS (232). Control mechanisms that should prevent
autoimmunity, such as selection processes during tTreg
development or peripheral suppression by Tregs, are often
circumvented by autoreactive T cells (233, 234).

Tregs acquire a phenotype and expression profile resembling
Th1 cells, thereby contributing to disease progression (235):
Lower expression levels of Foxp3, TGF, CTLA-4 and CD39
were accompanied by an increase in IFN secretion in relapsing-
remitting MS (RRMS) patients (236–238). Myelin-reactive T cells
secreted high levels of IL-17, IFNg and granulocyte-macrophage
colony-stimulating factor compared to healthy controls (239).
Next to an upregulation of markers associated with Th1 identity,
Tregs expressed higher levels of the migration markers CD103
and CD49d enhancing transmigration of ‘exTregs’ into the CNS
(238). High IL-17 levels have also been detected in the
cerebrospinal fluid (CSF) of MS patients during relapse as well
as in chronic lesions (222, 240), suggesting that both, the
upregulation of IL-17 and down-regulation of Treg-mediated
immunity, contribute to MS pathogenesis (241, 242).

Likewise, in experimental autoimmune encephalomyelitis
(EAE), a mouse model of MS, an altered phenotype and
impaired suppressive capacity of Tregs have been associated
with clinical deterioration (235, 243, 244). Transfer of Th1-like
‘exTregs’ even lead to induction of EAE in naïve recipient mice.
Interestingly, Othy et al. (245) showed that Tregs can suppress
Th17 cells by inhibition of intracellular Ca2+ signaling and their
contact to APCs.

Therefore, therapeutic induction of Tregs as well as
modulation of Treg/Th17-related pathways could attenuate the
inflammatory immune response resulting in mitigation of
disease symptoms (246–250). Interestingly, Haas et al. showed
that the immunosuppressive effect of Tregs after alemtuzumab
treatment of MS patients was mainly due to an altered
composition and reactivity of conventional CD4+ cells after
immunodepletion (251).

2.2.2 Quantitative Treg Alterations in MS
Treg frequency and the Treg/Th17 ratio were negatively
correlated with disease severity in MS patients (252, 253). In
RRMS patients, reduced Treg numbers were observed. In EAE,
Treg plasticity was studied in detail showing an increase of
‘exTreg’ counts during the preclinical phase until disease
maximum (212, 254). In line, remission is linked to an
increase in Treg numbers representing a recovery of Treg
identity (254). Interestingly, clinically isolated syndrome often
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preceding the diagnosis of MS was associated with alterations of
the Treg compartment in peripheral blood (255) Here, patients
displayed lower levels of immunosuppressive CD45RA+

Foxp3low Tregs while levels of non-immunosuppressive
CD45RA- Foxp3low Tregs and Th17-like Tregs increased.
These observations suggest that progression to MS might be
preceded by changes to the Treg compartment. A recent study
investigating the mechanisms driving Treg dysfunction reported
an inhibitory effect of circulating exosomes from MS on Tregs
(256). This effect is thought to be mediated by let-7i miRNA
interacting with insulin like growth factor 1 receptor and TGFb
receptor 1 expressed by CD4+ T cells. Thus, miRNA profiles
from MS patients might directly inhibit Treg expansion (256).

2.3 The Interplay of Infections and
Autoimmunity - Translation in the Setting
of Multiple Sclerosis
It is commonly accepted that the interaction of genetic
susceptibility and the exposure to certain environmental
factors is crucial for the occurrence of autoimmunity. A major
environmental factor contributing to the pathogenesis of
autoimmune diseases and, more specifically, autoimmune
neuroinflammation is pathogen-mediated infection. One of the
underlying mechanisms is so-called molecular mimicry. Here,
due to structural similarity of pathogen-derived peptides with
host molecules, autoreactive B and T cells become cross-
activated leading to an immune response directed against self-
antigens (257). Likewise, epitope spreading is involved in the
interplay of autoimmunity and infections. In this context, a new
infection in an ongoing autoimmune disease leads to tissue
damage with exposure of further self-antigens (258). APC-
mediated presentation of these antigens to autoreactive
lymphocytes then accelerates inflammatory processes (258).
Furthermore, infections can facilitate inflammatory processes
through bystander activation leading to a general immune
response with activation of immune cells such as NK cells or
macrophages and thus release of pro-inflammatory cytokines
(259). This inflammatory milieu induces an antigen-independent
activation of primed B and T lymphocytes at the inflammation
site and thereby enhances autoimmune damage. Lastly,
pathogen-mediated amplification of autoimmune events
involves bacterial or viral superantigens leading to an
extremely potent activation of polyclonal autoreactive T cells
by binding to major histocompatibility complex II (258). These
superantigens lead to a massive proliferation of T lymphocytes
with excessive cytokine production, especially of IL-2 and IFNg,
resulting in an exacerbation of autoimmune processes (258).

The Treg compartment is needed to control immunopathology
throughout life. However, while Tregs are indispensable for
immune regulation, exuberant Treg function might prove
detrimental for host defense. For example, in Mtb as a model
for chronic bacterial infection, Tregs can delay leukocyte
migration from lymph nodes to sites of ongoing infection (107,
260). In line, Treg ablation reduces accumulation of Mtb in lungs
of infected mice (139). These observations underpin the potential
of Tregs to exert detrimental effects in immune-mediated
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diseases. The continuum of dysfunctional Treg action is shared
between infectious conditions, characterized by exuberant
immunosuppression, and autoimmune conditions, characterized
by promotion of immunogenicity (84). Common to Treg
dysfunction is the instability of Foxp3 (213). Foxp3 is pivotal for
Treg homeostasis. However, lineage tracing studies revealed that
Foxp3 is frequently lost under autoimmune conditions (213). Loss
of Foxp3 leads to generation of the so called ‘exTreg’ phenotype
characterized by functions shared with effector Th cells, such as
secretion of pro-inflammatory cytokines e.g. IFN-g and IL-17 (84).
Moreover, continuous IL-2 signaling is needed to prevent loss of
Foxp3 (261). Intriguingly, inflammatory conditions promote loss
of Foxp3 and, therefore, contribute to maintaining autoimmune
states (212). Inflamed tissue constitutes a complex micro-
environment characterized by immune cell infiltration, pro-
inflammatory cytokine secretion and increased (self-)antigen
presentation. Treg instability might therefore contribute to
sustaining inflammatory conditions whereas inflammation
promotes loss of Foxp3 and generation of Tregs more closely
resembling effector Th cells further contributing to pro-
inflammatory stimuli in a feed-forward loop (84). Intriguingly,
Tregs from patients who resolved an HCV infection reacted to a
virus-encoded peptide with substantial human homology while
Tregs from non-infected patients did not (260). Taken together,
the pathogenic potential and lineage instability of Tregs make
them suspects for mediating autoimmunity following
chronic infections.

One of the best studied pathogens involved in MS
pathophysiology is Epstein-Barr virus (EBV). Based on
epidemiological similarities, an association of EBV infection
and MS was suspected early on (262). Further research
subsequently not only proved that virtually all MS patients
exhibit an EBV infection (263), but also that prior infectious
mononucleosis is associated with a 2-3 times higher risk of
developing MS (264). Conversely, this risk is significantly
reduced for individuals with a negative EBV serology (265).
Particularly interesting in this context are data showing that
initially seronegative patients experience seroconversion shortly
before the onset of MS symptoms (266). Even in pre-
symptomatic patients with EBV, a significant increase in anti-
EBV antibodies was found over five years before disease onset
suggesting involvement of EBV in early disease stages (267).
Interestingly, since an association between EBV serology and
early conversion of clinically isolated syndrome into clinically
definite MS has been demonstrated (268), EBV serology also
appears to correlate with disease activity. Consistently, a
correlation between anti-EBV nuclear antigen 1 (EBNA-1)
titers, disease progression, lesion load, brain atrophy, and the
extent of demyelination in MS patients has been demonstrated
(269–271). Further support for an involvement of EBV in MS
pathophysiology derives from histological studies revealing an
accumulation of EBV-infected B- and plasma cells in MS brain
meninges, in cortical as well as in white matter lesions (272–274).

Despite this overwhelming evidence, the molecular
mechan i sms under l y ing the ro l e o f EBV in the
immunopathophysiology of MS are still not properly
understood. However, a number of hypotheses exist involving
Frontiers in Immunology | www.frontiersin.org 8
discussion of both modulation of peripheral and CNS-localized
immune responses. In the periphery, EBV might lead to a cross-
activation of pathogenic T cells via molecular mimicry as
described above (275). This theory is supported by the fact
that EBNA-1-specific T cells react to myelin antigens more
frequently than to other auto-antigens causing a release of pro-
inflammatory IFNg (276). Furthermore, EBV-reactive T cells
were isolated from the CSF of MS patients also recognizing
myelin basic protein (MBP) (277). In addition, a very recent
study found cross-reactivity between EBNA-1 and the recently
identified MS autoantigen called anoctamin 2 further supporting
EBV-induced molecular mimicry (278). Another hypothesis
proposes that EBV infection of peripheral B cells induces the
expression of aB-crystallin. As it is also expressed in
oligodendrocytes, an aB-crystallin-directed T cell response
might ultimately lead to demyelination (279). Furthermore,
there is evidence for EBV infection of B cells leading to a
release of predominantly pro-inflammatory cytokines such as
IL-6 or TNFa and simultaneously impeding immunoregulatory
processes by reducing IL-10 levels (280, 281). Further evidence
derives from recent data providing another pathophysiological
link between EBV infections and MS. Wang et al. reported an
autoreactive CD4+ T cell clone showing cross-reactivity between
HLA-DR-derived self-proteins, EBV antigens, as well as
autoantigens presented by HLA-DR allomorphs DR2a and
DR2b (282). Thus, EBV antigens could be actively involved in
the activity of autoreactive CD4+ T cells. Since HLA-DR15 is one
of the genetic factors most strongly associated with MS, this link
highlights the relevance of EBV infection in the pathogenesis of
MS (282). A theory with regard to the modulation of peripheral
immune processes describes that the invasion of autoreactive T-
and EBV-infected B cells into the CNS is forced by expression
induction of EBV-induced G protein-coupled receptor 2 thereby
fostering the neuroinflammatory response (Figure 2) (275,
283–285).

In the CNS, the accumulation of infected B cells within the
meninges and perivascular cuffs suggests that these B cells may
elicit a CD8+ T cell response, leading to a multiplication of the
inflammatory response via bystander activation (272, 286).
Expression of superantigens by EBV-infected B cells could
further lead to an excessive T cell response (287). Finally, it is
hypothesized that EBV-induced immortalization of infected B
cells and exhaustion-induced defective elimination lead to an
accumulation of EBV-infected autoreactive B cells causing a
permanent exposure to CNS antigens (Figure 2) (288–290).
This exposure might considerably aggravate CNS damage in
the context of autoimmune neuronal inflammation by antigen
expression, autoantibody production, as well as by providing
survival signals to autoreactive T cells.

Besides EBV, human endogenous retroviruses (HERVs) seem
to be significantly involved in MS pathophysiology. These
proviruses which account for circa 8% of the genome originate
from exogenous infection of primate germ line cells millions
of years ago and are today part of the human DNA (291).
While they are functionally inactive under physiological
conditions, pathological triggers such as viral infections can
induce reactivation and thus production of viral proteins (292).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schroeter et al. Crosstalk of Microorganisms and Tregs
First evidence of an involvement in MS dates back more than 30
years when retrovirus transcription was found in the
supernatants of meningeal cell cultures of MS patients (293).
Different HERVs such as HERV-H, HERV-K and HERV-W
were subsequently associated with MS (294, 295). In addition to
an increased HERV-W expression in MS patients (296),
observations of higher antibody reactivity to certain HERV-W
sequences in MS patients (297) and HERV-W upregulation in
MS plaques correlating with disease activity support the
involvement of HERVs in MS (298). There is also clinical
evidence of a relationship of HERVs and MS since patients
expressing high levels of HERV-W show a poorer prognosis in
early disease stages and increased disease progression (299).
Accordingly, HERV-W load also correlates with disease
Frontiers in Immunology | www.frontiersin.org 9
activity and the occurrence of relapses (300). Once more, the
possible underlying mechanisms are diverse. For example,
reactivation of HERV-W proteins leads to an activation of
both innate and adaptive immune responses in MS (301).
Thus, dysregulated expression of HERVs may contribute to
CNS damage such as observed in a severe combined
immunodeficiency mouse model (302). This dysregulated
HERV-W activity is likely to involve binding of its envelope
protein (ENV) to TLR4 and its co-receptor CD14 which triggers
the release of pro-inflammatory cytokines such as TNFa, IL-1b
or IL-6 fostering the autoimmune response (303–305).
Furthermore, HERV-W-derived proteins such as ENV show
cross-reactivity with myelin antigens amplifying the
neuroinflammatory response (306). Aside from immune-
FIGURE 2 | Pathogen-mediated impact on autoimmune neuroinflammation. The mechanisms by which infectious pathogens influence the processes of autoimmune
neuroinflammation are diverse. Both detrimental and beneficial effects are reported. Epstein-Barr virus (EBV), for example, leads to an increase in neuronal damage
via molecular mimicry, demyelination, an increase in pro- and decrease in anti-inflammatory molecules, and an augmented T cell response. Other pathways by which
EBV induces amplification of the neuroinflammatory response include promotion of central nervous system (CNS) infiltration by autoreactive T and B cells next to
bystander activation. Meanwhile, human herpes virus 6 (HHV-6) leads to a detrimental impact via CD8+ T cell-mediated cross-reactivity with myelin peptides and
CD46-induced promotion of T cell proliferation. Furthermore, HHV-6 also triggers the expression of human endogenous retroviruses (HERVs) proteins. These in turn
induce further damage via cross-reactivity with myelin antigens but also through acting as superantigens. Contributing to this is as well, HERVs trigger CD14- as well
as Toll-like receptor (TLR) 4-mediated induction of proinflammatory cytokines. Interestingly, by suppression of oligodendrocyte precusor cells, HERVs also interfere
with neurodegenerative processes. Finally, Chlamydia pneumoniae was shown to aggravate neuroinflammation in an animal model through pathogen dissemination
into the CNS accompanied by an increase of pro-inflammatory Th1 cells. In contrast, a beneficial impact on the neuroinflammatory response was found for H. pylori
and parasites. H. pylori improves the outcome in animal models of MS by reducing the proliferation of Th1 and Th17 cells. Parasites such as helminths attenuate the
neuroinflammatory response by inducing bystander suppression via upregulation of regulatory B and T cells as well as anti-inflammatory cytokines. Bregs, regulatory
B cells; CNS, central nervous system; HERV, human endogenous retrovirus; IFN, interferon; TGFb, tumor growth factor b; Th cell, T helper cell; TLR, Toll-like
receptor; TNFa, tumor necrosis factor a; Tregs, regulatory T cells.
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mediated mechanisms, HERV-W ENV also interferes with
remyelination via the inhibition of oligodendrocyte precursor
cell (OPC) differentiation (307). Moreover, it also induces a pro-
inflammatory activation of myeloid cells which, in turn,
contributes to axonal damage and thus neurodegeneration
even in long-standing MS cases (308). As there is a
monoclonal antibody available that neutralizes HERV-W-
induced detrimental effects, endogenous retroviruses constitute
an attractive target for future MS therapies (Figure 2) (47, 309).

There is an exciting connection between EBV and HERVs.
Exposure of EBV-derived glycoprotein 350 to B cells, monocytes,
macrophages, as well as astrocytes leads to a significant
increase in the expression of HERV-W and syncytin-1 and is
thus also associated with unfavorable processes (310). Similar to
EBV, human herpes virus 6 (HHV-6) infection can trigger the
expression of HERV-W as well as a HERV-related superantigen
(Figure 2) (311, 312). HHV-6 is a neurotropic virus that is
divided into two subtypes, of which subtype A can be found in
oligodendrocytes of MS white matter lesions (313). In addition to
the expression of HHV-6 antigens in MS plaques (314), further
evidence for an involvement of HHV-6 in MS pathogenesis
derives from elevated anti-HHV-6 antibodies in the CSF of MS
patients, especially in patients with an exacerbated disease
indicating HHV-6 as a trigger for disease aggravation (315–
317). Interestingly, in a non-human primate MS-like animal
model, prior infection with HHV-6 resulted in a worse outcome
further supporting a detrimental impact of HHV-6 on MS
(318). One of the HHV-6-mediated mechanisms contributing
to MS pathophysiology involves molecular mimicry since
cross-reactivity between HHV-6 and MBP was shown to
induce cytotoxic T cell-mediated oligodendrocyte death (319).
This idea is further supported by a close sequence homology
between MBP and the HHV-6-derived U24 protein (320).
Furthermore, it is suggested that HHV-6 binding to the CD46
receptor leads to a T cell-mediated autoimmune reaction (321).
Also, increased IL-23 release by DCs and IL-17 production
by T cells with a concomitant decreased secretion of the
immunoregulatory IL-10 provide potential mechanisms of how
also HHV-6 might exacerbate neuroinflammatory processes
(Figure 2) (321).

Apart from viral infections, there is also evidence for the
involvement of bacterial pathogens in MS pathophysiology. A
large meta-analysis, for instance, has shown that MS patients
have a significantly higher incidence of Chlamydia pneumoniae
(C. pneumoniae) DNA and intrathecally synthesized
immunoglobulins in their CSF compared to patients with other
neurological diseases (322). In EAE, systemic infection of mice
with C. pneumoniae led to dissemination of the pathogen into
the CNS accompanied by an aggravation of autoimmune
neuroinflammation through reduced Th1 cell proliferation as
well as IFNg production (Figure 2) (323). Nevertheless, the
available data is still unclear and controversially discussed.

Whereas the pathogens mentioned so far all have a negative
impact on the processes in MS, this is different for H. pylori. In
MS cohorts for example, a reduced prevalence of the pathogen
compared to controls was demonstrated (324). Even more, MS
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patients being seropositive for H. pylori showed reduced
disability scores (325). In EAE, infection with H. pylori
resulted in reduced disease progression, milder proliferation of
autoreactive cells, and lower infiltration of pro-inflammatory
effector Th1 and Th17 cells into the CNS (Figure 2) (326). A
protective role of H. pylori is also assumed in other autoimmune
diseases such as asthma (327) or inflammatory bowel
disease (328).

Likewise, strong evidence for a protective role in MS disease
development has been demonstrated for some parasites. First
indications derive from epidemiological investigations, which
showed an inverse relationship between parasites like Trichuris
trichiura and the occurrence of MS (329). In fact, the prevalence
of MS seemed to decrease when the contamination level
exceeded 10% (329). Of note, parasite-infected MS patients
showed a significantly decreased number of relapses, a minor
decline in disability scores, and reduced magnetic resonance
imaging (MRI) disease activity compared to patients without
helminthic infection (144). Parasitic infections exert an anti-
inflammatory effects both on the parasite-specific response and
the inflammatory response directed against other antigens in the
sense of bystander suppression (330). In mice, helminth
infection significantly attenuated both the incidence and
clinical symptoms of EAE (331, 332). This amelioration was
accompanied by a decrease in pro-inflammatory IFNg, TNFa,
IL-17, and IL-12 with a simultaneous increase in the release of
immunoregulatory IL-10 and TGFb (330–332). Also in humans,
helminth infection was associated with induction of
CD4+CD25+Foxp3+ T cells suppressing the inflammatory
response (333). Beyond Tregs, regulatory B cells secreting
IL-10 were detected in greater numbers in helminth-infected
individuals suffering from MS (334). Further, the MBP-specific
immune response was characterized by a decreased release of
pro- next to an enhanced release of anti-inflammatory cytokines
in patients with a parasitic infection (Figure 2) (333).
Interestingly, the protective effects of helminths infection were
shown to be reversed following an anthelmintic treatment
concerning both the clinical as well as radiological MS activity
and the immunosuppressive effects in terms of the Treg activity
(335, 336).

In summary, for many pathogens there is versatile evidence for
modulation of autoimmune processes in the context of
neuroinflammation in MS. Nevertheless, it has not yet been
possible to conclusively define the underlyingmolecular mechanisms.

2.3.1 Therapeutic Targets
The above findings on detrimental but also beneficial effects of
pathogenic infections have led to therapeutic approaches - in some
cases despite continuing doubts about the mechanistic background.

In the case of EBV, attempts have been made to prevent an
acute EBV infection by prophylactic vaccination thereby
reducing the risk for development of MS (274). However, there
is currently no appropriate vaccination available. In general,
antibodies directed against certain EBV proteins expressed
during latency to increase anti-EBV immunity would be a
promising strategy. Once again, however, no study results are
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available to date (274). In contrast, cell-based immunotherapies
appear to be a more promising approach. In particular, the
application of autologous or allogenic T cells targeting EBV-
infected B cells came into focus. A first successful application of
this therapy was already demonstrated in a patient suffering from
secondary progressive MS (337). Subsequently, a study on the
effects of a EBV-specific autologous T cell therapy using in vitro
expanded T lymphocytes interfering with EBNA-1 and latent
membrane proteins 1 and 2A was initiated (Table 2) (45).
Clinical improvement occurred in 7 out of 10 included MS
patients. Of note, this was only a safety trial therefore lacking a
placebo group. Further studies elucidating the impact of
autologous or allogenic T cells attacking EBV-infected B cells
are underway (Table 2).

HERV-targeted therapies, on the other hand, have reached a
more advanced stage. As already pointed out, HERV and HERV-
related proteins such as ENV exert an unfavorable effect on
OPCs and myeloid cells and thus on remyelination and
neurodegeneration (307–309). In view of the persistent lack of
remyelinating therapies (338), it is particularly interesting that
this inhibition can be reversed by the anti-HERV-W IgG4
monoclonal antibody GNbAC1 (temelimab) (309). Besides
promotion of remyelination, GNbAC1 impedes the release of
pro-inflammatory cytokines (339). Application of GNbAC1 led
to favorable effects in numerous early-phase studies (46, 340–
342). Given these pre-clinical results, two phase IIa and IIb trials
were initiated (Table 2) (47). Therapy with 18 mg/kg resulted in
a significant reduction of the number of T1-hypointense lesions
after 48 hours. Moreover, there was a consistent trend of reduced
brain atrophy and a magnetization transfer ratio decrease
indicating a positive impact on remyelination. However,
GNbAC1 failed to achieve the primary endpoint of the study,
i.e. reduction of gadolinium-enhancing lesions (GELs), possibly
because of underdosing. However, the beneficial MRI effects on
neurodegeneration raised hope and led to the initiation of a new
phase II study (Table 2) (47). Another HERV-related approach
is based on the theory that antiretroviral therapies can also
induce inhibition of HERVs in MS (343). In a baseline-versus-
treatment phase IIb study, 20 patients with active RRMS were
treated with the integrase inhibitor raltegravir for 3 months
(Table 2) (48). However, the primary study endpoint reduction
in lesion load or development of new lesions during the
treatment period compared with baseline was not met.

Although to date the evidence regarding C. pneumoniae is
quite sparse, therapy with rifampicin or azithromycin for 6
months were compared with placebo in newly diagnosed
RRMS patients with evidence of C. pneumoniae infection in
the CSF (Table 2) (44). The primary endpoint, reduction of
GELs, was not reached. Only a decrease in brain atrophy was
found under antibiotic therapy. However, given the very small
number of subjects, these results should be interpreted with
great caution.

Recently, there are also first therapeutic approaches that
exploit the protective effects of helminth infection on MS. In a
small phase I study, MRI activity in five treatment-naïve RRMS
patients was compared between baseline and after probiotic
Frontiers in Immunology | www.frontiersin.org 11
treatment with 2500 Trichuris suis ova every two weeks for
three months (Table 2) (49). Under treatment, there was a
reduction of new GELs by 70% compared to baseline with a
return to baseline after two months of follow-up. The reduction
of lesions was also associated with increased serum levels of of
IL-4 and IL-10 in 80% of the participants (336). The follow-up
study including 16 RRMS patients also showed a trend of
reduction of active MRI lesions compared to baseline (344).
Furthermore, there was an increase of Tregs observed during this
trial. A safety study evaluating the effect of orally administered
2500 Trichuris suis eggs in 10 MS patients could not observe
Trichuris suis ova-induced effects on disease progression
(Table 2) (51, 336). In line, in this study there were no
significant alterations detected regarding cytokine expression
and T cell-specific transcriptions factors (336). A 9-month
double-blind, randomized, placebo-controlled study enrolling
71 RRMS patients investigated the effect of transcutaneous
application of hookworm larvae on lesion burden (Table 2)
(50). Of note, treatment with hookworm larvae increased the
proportion of Tregs in the peripheral blood. Furthermore, the
study showed a tendency of reduced new or enlarging lesions as
well as an ameliorated MRI activity in the treatment group.
However, these differences were not significant (50). Given these
inconsistent results together with methodological limitations
such as small sample sizes, further studies are required to
sufficiently address the therapeutic potential of helminth
infections in MS (336).

2.4 Microbiome - the Missing Link
Between Biomolecular Treg Signatures
and Clinical Phenotype?
In recent years, the important role of the gut microbiome has
been recognized in autoimmune diseases and pathogen-induced
immune responses (345, 346). The interplay of the gut
microbiome and the immune system may explain its seemingly
universal impact on a great variety of diseases including
autoimmune diseases, cancer, vascular disease, and even
psychiatric disorders (347–350).

Importantly, a variety of factors modulate the composition of
the microbiome. Hence, the relationship between the host and
the microbiome needs to be understood as a dynamic rather than
static process (351). One of the most influential factors of the
microbiome is the diet, which under unfavorable conditions
induces dysregulation in the form of dysbiosis (351). This
dysbiosis, in turn, contributes to an increased incidence of gut-
distal autoimmune phenomena such as autoimmune arthritis
(352) or type 1 diabetes (353) through alterations in Treg/Th17
balance. In general, the dynamic balance or dysbalance of Tregs
and Th17 is suggested to be a main effector mechanism by which
the gut microbiome influences systemic immunity (354).
Furthermore, antibiotic therapy has an enormous impact on
the microbiome and thus on the function of CD4+ T cells.
For example, antibiotic therapy not only leads to an altered
colonic but also tTreg TCR repertoire (355). Likewise, antibiotic-
treated mice show a significant reduction of Tregs in the colonic
lamina propria (356, 357). Similarly, also germ-free mice
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TABLE 2 | Clinical studies on pathogen-derived targets in multiple sclerosis.

Target Title Therapy Results NCT Reference

Chlamydia
pneumoniae

Antibiotic Treatment Trial Directed
Against Chlamydia Pneumoniae in
Multiple Sclerosis

Rifampicin (300 mg twice daily) vs.
azithromycin (500 mg every other
day) vs.
placebo

No effect on GEL. Reduction in
brain parenchymal fraction loss.

NCT00043264 (44)

EBV Hydroxyurea in Primary
Progressive Multiple Sclerosis

Hydroxyurea (500 mg) vs.
placebo

Terminated (no efficacy in interims
analysis).

NCT01103583 *

Trial to Assess the Safety and
Feasibility of Adoptive Cell Therapy
with Autologous EBV-specific
Cytotoxic T Lymphocytes (CTL) in
Patients With a First Clinical
Episode Highly Suggestive of
Multiple Sclerosis (MS and
EBV-CTL)

EBV-specific autologous cytotoxic T
lymphocytes

Still recruiting. NCT02912897 *

Phase 1/2 Study to Evaluate the
Safety and Efficacy of ATA188 in
Subjects with Progressive Multiple
Sclerosis (EMBOLD)

ATA188 (EBV-directed autologous
cytotoxic T lymphocytes) vs.
placebo

Still recruiting. NCT03283826 *

Tenofovir Alafenamide for
Treatment of Symptoms and
Neuroprotection in Relapsing
Remitting Multiple Sclerosis

Tenofovir Alafenamide Fumarate (25
mg) vs.
placebo

Not yet recruiting. NCT04880577 *

Phase I clinical trial of autologous
Epstein–Barr virus-specific T cell
therapy as treatment of
progressive multiple sclerosis

EBV-specific autologous cytotoxic T
lymphocytes (against EBNA-1 and
LMP1, LMP2A)

Clinical improvement in 7/10
patients.

ACTRN12615000422527# (45)

HERV-W Safety Study of GNbAC1 in
Multiple Sclerosis Patients

GNbAC1 (Temelimab; 2 mg/kg) vs.
GNbAC1 (Temelimab; 6 mg/kg) vs.
placebo

No safety concerns. Decline of
HERV-W transcripts. 9 of 10
patients with stable MRI brain
lesions.

NCT01639300 (46)

Clinical Trial Assessing the HERV-
W Env Antagonist GNbAC1 for
Efficacy in MS

GNbAC1 (Temelimab; 6 mg/kg) vs.
GNbAC1 (Temelimab; 12 mg/kg) vs.
GNbAC1 (Temelimab; 18 mg/kg) vs.
placebo

No reduction of GEL-T1 lesions
after 24 weeks. Reduced new T1-
hypointense lesions with 18 mg/
kg GNbAC1. Consistent trends of
reduced brain atrophy and
magnetization transfer ratio
decrease after 48 and 96 weeks.

NCT03239860 (47)

Assessing the HERV-W Env
ANtagonist GNbAC1 for
Evaluation in an Open Label Long-
term Safety Study in Patients with
Multiple Sclerosis (ANGEL-MS)

GNbAC1 (Temelimab; 6 mg/kg) vs.
GNbAC1 (Temelimab; 12 mg/kg) vs.
GNbAC1 (Temelimab; 18 mg/kg)

NCT02782858 (47)

Clinical Trial Assessing Temelimab
Following Rituximab Treatment in
Patients with Relapsing Forms of
Multiple Sclerosis (ProTEct-MS)

GNbAC1 (Temelimab; 18 mg/kg) vs.
GNbAC1 (Temelimab; 36 mg/kg) vs.
GNbAC1 (Temelimab; 54 mg/kg) vs.
Placebo

Still recruiting. NCT04480307 *

Raltegravir (Isentress) Pilot Study
in Relapsing Multiple Sclerosis
(INSPIRE)

Raltegravir (400 mg twice daily) No effect on lesion load. NCT01767701 (48)

Helminths Helminth-induced
Immunomodulation Therapy (HINT)
in Relapsing-remitting Multiple
Sclerosis (HINT)

Trichuris suis ova (2500 ova) Reduction of new GELs
compared to baseline. Reduced
serum levels of IL-10.

NCT00645749 (49)

Worms for Immune Regulation of
Multiple Sclerosis (WIRMS)

Necator americanus larvae (25 larvae)
vs. placebo

No reduction in MRI lesions.
Increased numbers of Tregs.

NCT01470521 (50)

Trichuris Suis Ova Therapy for
Relapsing Multiple Sclerosis - a
Safety Study (TRIMS A)

Trichuris suis ova (2500 ova) No safety concerns. NCT01006941 (51)

Trichuris Suis Ova (TSO) in
Recurrent Remittent Multiple
Sclerosis and Clinically Isolated
Syndrome (TRIOMS)

Trichuris suis ova (2500 ova) vs.
placebo

Clinical examinations could not be
performed due to low patient
compliance.

NCT01413243 (52)
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exhibited a reduced Treg population (356, 358). However,
restoration of the microbiome caused a strong re-expansion of
Tregs in these mice (358). Importantly, the effects of an altered
microbiome and thus altered Treg/Th17 balance expanded from
the local milieu into the whole body. Consistent with this, it has
been shown that gut-resident T cells traffic between different
organs thereby exerting a systemic effect on the immune system
(359, 360). In addition, a reduction of CD4+ memory T cells
expressing the gut-homing chemokine receptor CC-chemokine 9
was detected in secondary progressive MS patients (361). These
gut tropic CC-chemokine 9+ memory T cells were shown to
exhibit a regulatory phenotype potentially contributing to the
conversion of RRMS to secondary progressive MS (361).

Importantly, with respect to microbiome-mediated effects on
immunoregulatory mechanisms, tTregs and pTregs need to be
distinguished. Unlike tTregs, pTregs exhibit a TCR repertoire
directed against microbiota and dietary antigens (362–364). In
addition to pTregs and tTregs, other Treg populations such as
latency-associated peptide-expressing Tregs, type 1 Tregs,
RORgt-expressing Tregs, or GATA binding protein 3+ Tregs
have been shown to play an essential role in mediating intestinal
and extra-intestinal immune homeostasis (365).

This knowledge on the interplay of microbiome, Tregs and
autoimmunity provides the rationale to investigate possible
microbiome-associated therapeutic strategies such as a
modified diet or use of probiotics to change Treg plasticity and
function in a favorable way to treat autoimmunity. Therefore, the
identification of the involved pathogens and signaling pathways
is essential. One of the underlying mechanisms involves
intestinal epithelial cell- and microbiota-mediated modulation
of DCs leading to an immunoregulatory phenotype through
upregulation of IL-10, TGFb and retinoic acid (365). The
potent induction of colonic Tregs by Clostridium species has
been well studied. Colonization of germ-free mice with a
composition of 46 Clostridium strains resulted in a marked
expansion of Tregs (356). Matrix metalloproteinases induced
by Clostridium were involved in this expansion and promoted
the differentiation and survival of Tregs via TGFb. Furthermore,
Clostridia are known to enhance levels of short-chain fatty acids
(SCFAs) (366) which effectively stimulate Tregs. For example, in
contrast to long-chain fatty acids that promote a Th1 as well as
Th17 response, SCFA administration induces a reduction in the
number of Th1 cells but an increased proliferation of gut Tregs
(367, 368). Accordingly, application of SCFAs led to a
significantly reduced disease progression in EAE and
inflammation in ulcerative colitis (367, 369). Protective effects
on type 1 diabetes in pre-diabetic mice as well as in a model of
collagen-induced arthritis have also been described (368, 370).
Interestingly, the SCFAs-induced effects appear to be mediated
in part by epigenetic modifications via a suppression of histone
deacetylases (371, 372). Despite these protective effects in several
models of autoimmune diseases, SCFA application led to disease
aggravation in an inflammatory model of rheumatoid arthritis
(368). Therefore, a better understanding of the role of SCFAs and
other microbiota metabolites is essential in order to exploit these
findings therapeutically in clinical practice. In line with a
Frontiers in Immunology | www.frontiersin.org 13
significant impact of dysbiosis in the pathophysiology of MS, a
Japanese study observed moderate dysbiosis in the microbiome
of RRMS patients compared to healthy controls (373). Primarily,
this involved a reduction of clostridial species as well as
Bacteroidetes. Interestingly, however, the reduction did not
affect the clostridial species, which is commonly known to
have a protective effect on autoimmune processes by inducing
colonic Tregs. This, in turn, underlines that deeper insights,
especially into the influence of distinct species, are essential for
translational approaches aiming to modulate the microbiome.

Additionally, several studies have demonstrated the relevance
of Bacteroides fragilis, a human symbiont, for the function of
Tregs (374, 375). By binding to TLR2, Bacteroides fragilis-
derived capsular polysaccharide A as well as outer-membrane
vesicles cause an immunosuppressive phenotype in terms of a
significant expansion of IL-10-releasing intestinal Tregs
(376, 377).

There is also evidence for a role of Akkermansia calcoaceticus
and Akkermansia muciniphila in the context of autoimmune
neuroinflammation. These bacteria induce impaired Treg
conversion in peripheral blood mononuclear cells with
concomitant stimulation of Th1 cell differentiation (378).
Interestingly, in MS patients, a considerably increased
occurrence of Acinetobacter and Akkermansia could be found,
which, however, was decreased under MS therapy (351,
378, 379).

Furthermore, there is evidence of a DC-mediated Treg-
promoting effect of Lactobacillus, Streptococcus, and
Bifidobacterium (380, 381). Regarding potential therapeutic
opportunities, application of probiotic mixtures consisting of
these bacteria resulted in an expansion of Tregs (382). Therapy
with Lactobacilli strains was also able to prevent disease
progression in EAE by suppression of autoreactive T cells
(383). In addition to these significant pre-clinical results
derived from EAE, there is also human data underlining the
impact as well as therapeutic potential of probiotic therapeutic
approaches: In a small study including 9 MS patients and 13
healthy controls, probiotic therapy with Lactobacillus,
Bifidobacterium and Streptococcus over two months led to a
modulation of the microbiome as well as of the immune response
(384). Thus, this therapy led to an enhancement of
immunoregulatory processes with a reduction in the number
of inflammatory monocytes as well as the expression of the
costimulatory marker CD80 on monocytes. At the same time,
probiotic therapy led to a decreased expression of the MS risk
alleles HLA.DQA1 and HLA.DPB1 in control patients. However,
no significant effects on peripheral Tregs were observed due to
the intake of the probiotic treatment. On the microbiome level,
several taxa known to be depleted in MS were increased whereas
taxa associated with dysbiosis in MS were reduced (384).

Other interesting players influencing the activity and
phenotype of bowel tropic Tregs are enteric neurons. Very
recent data, for example, show that microbe-responsive Tregs
in the colon lamina propria are localized in close proximity to
nitrergic and peptidergic nerve fibers (385). Enteric neurons, in
turn, prevent differentiation as well as the activity of Tregs
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in vitro by modulating IL-6. These processes, in turn, are
decidedly influenced by microbial signals (385). Recent data
describing a vago-vagal liver-brain-gut neuronal arc that
induces proliferation and maintenance of pTregs further
highlight the relevance of enteric neurons in the context of
gut-tropic Tregs (386). Underlying mechanisms involve hepatic
vagal sensory afferents that sense the gut microenvironment and
on the other hand give input to vagal parasympathetic nerves as
well as enteric neurons. Perturbation of the aforementioned
afferent neurons led to a reduction in the frequency of pTregs.
In vivo, this subsequently led to an increased symptomatology in
animal models of colitis (386).

All these considerations have led to therapeutic approaches,
such as antigen-based oral immunotherapies, which aim to
achieve amelioration of autoimmune diseases via an expansion
of Tregs induced by oral antigen administration (365). However,
further studies on the critically responsible bacteria of the
microbiome as well as the signaling pathways involved are
required for a more widespread translational application.

2.5 Tregs in the Advent of the Era of
Immunometabolomics
The large variety of pathogens, different transmission routes and
complex underlying molecular mechanisms necessitate new
comprehensive diagnostic approaches such as immuno
metabolomics. Several clinical studies addressing autoimmune
inflammatory diseases like systemic lupus erythematosus,
rheumatoid arthritis, Crohn’s disease and colitis ulcerosa,
suggested that disease activity and outcome correlate with
immunometabolic signatures (e.g. metabolite levels) (387–389).
Moreover, Treg levels were found to be inversely correlated with
body weight and body mass index (390). Altered Treg function is
not restricted to adipose tissue but can be retrieved in flow
cytometry analysis from circulating blood cells pointing to
systemic effects (390). Thus, tissue-derived metabolic signals
can exert systemic effects via local modulation of function and
expansion of Tregs (391). This is particularly true for the adipose
tissue. In the visceral adipose tissue of healthy mice, there is a
significant enrichment of Tregs, whose deficiency leads to
systemic consequences such as metabolic inflammation (60, 60,
392). In obese mice, for example, there is a reduction in the
number of Tregs which, in turn, is associated with a decreased
lipid content (60). Interestingly, at least in mice, there seems to
be an inverse relationship between external lipid accumulation
and intrinsic Treg lipid contents. In obese humans, on the other
hand, a slight increase in visceral adipose tissue Tregs could be
detected (393). Therefore, findings from murine experiments
should not be carelessly extrapolated to humans, since
underlying mechanisms may vary between species.

Next to the adipose tissue, liver-resident Tregs could also
exert systemic effects on metabolic inflammation and systemic
metabolism, depending on local metabolism and leading to the
development of steatohepatitis or exacerbation of atherosclerosis
upon deprivation (394, 395). Furthermore, hyperglycemia in
diabetes poses a substantial risk for systemic infections
disrupting lymphoid tissue integrity and affecting leukocyte
Frontiers in Immunology | www.frontiersin.org 14
development, phenotype and activity (396). Obesity and type 2
diabetes mellitus drive immune dysfunction, deteriorate
infections, and increase sepsis mortality (397). Beyond the
direct permissive effects of hyperglycemia on bacterial survival,
our knowledge about molecular mechanism of immune
deviation in obesity and diabetes remains fragmentary. T cells
support coordinated immune responses with their metabolic
flexibility (Figure 3) (398–401). Development, activation,
function and maintenance of T cells are linked to their
metabolic household and, depending on the phase, are
associated with an altered metabolic state (399, 402–410).

Basal metabolism of Tregs is characterized by fatty acid
oxidation (FAO), metabolism of acetyl CoA, and subsequently
tricarboxylic acid cycle activity and oxidative phosphorylation
(OXPHOS) (391). In contrast, during the induction of Tregs,
there is a switch to a more glycolytic metabolism. This switch is
characterized by a displacement of the glycolytic enzyme enolase-
1 from the Foxp3 locus allowing the transcription of Foxp3 (411).
Inhibition of glycolysis, e.g. using 2-deoxy-D-glucose, results in
impeded Treg development due to lack of displacement of
enolase-1 and ongoing Foxp3 inhibition (411). In contrast,
multiple metabolic pathways are relevant for both homeostasis
and proliferation of Tregs. Thus, Tregs show a constitutive
activity of mechanistic target of rapamycin (mTOR), which, just
like glucose transporter 1, showed an increased expression in
proliferating Tregs (412). Interestingly, Procaccini et al.
demonstrated that freshly extracted human Tregs show a very
high level of glycolysis (413). Furthermore, Li et al. could show
that both naturally occurring and tumor-derived Tregs cells
exhibit significantly enhanced glucose metabolism as well as
increased expression of glycolysis-associated genes further
highlighting the role of glycolysis in this state (414). Besides
glycolysis, oxidative metabolism has been shown to be critically
involved in Treg homeostasis and expansion. Treg proliferation
and survival, for instance, influence the function of liver kinase B
1, which, in turn, is an essential inducer of these pathways (415,
416). Further evidence for an involvement of mitochondrial
metabolomic pathways derives from a study demonstrating an
impaired Treg fitness due to an ablation of the mitochondrial
complex III (417). Last, AMP activated protein kinase (AMPK)-
dependent FAO is not only crucial for Treg generation, but also
for their proliferation (Figure 3) (418–420). While the
metabolism of Tregs during homeostasis and proliferation is
characterized by a balance of glycolysis and OXPHOS, a
predominance of OXPHOS seems to be essential for the
suppressive activity of Tregs. Thus, Tregs deficient for proteins
that are crucial for mitochondrial metabolism, show significantly
reduced suppressive functions and impaired allograft survival
(421). Conversely, increased expression of genes that are
important to OXPHOS leads to improved Treg suppressive
function (421). Further support for a critical role of OXPHOS
in the function of Tregs derives from the finding that liver kinase
B 1, an enzyme involved in OXPHOS, is essential for the
suppressive capacity of Tregs (417). Consequently, deficiency of
liver kinase B 1 in mice was associated with a fatal, early-onset
autoimmune disease (415). Moreover, also mTOR appears to be
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involved in the immunoregulatory activity of Tregs via induction
of OXPHOS (422). Thus, for example, the suppressive activity of
Tregs is associated with increased mTOR signaling. Furthermore,
inhibition of mTOR reduced Treg-mediated suppression of T cell
proliferation, while deficiency of mTOR in mice triggered
autoimmune phenomena (422). In addition, the adequate
immunosuppressive function of Tregs may also be associated
with both enhanced FAO and fatty acid synthesis (423, 424). For
example, stimulation of Tregs leads to increased FAO (418). On
the other hand, inhibition of the mevalonate pathway, i.e. fatty
acid synthesis, causes a restriction of the suppressive capacity of
Tregs (425, 426). In contrast to OXPHOS, FAO, and fatty acid
synthesis, enhancement of glycolysis could possibly even induce
an impairment of the suppressive capacity of Tregs. For example,
Treg-specific deficiency of phosphatase and tensin homolog
(PTEN) in mice leads to spontaneous lupus-like disease
accompanied by a reduction in the suppressive function of
Tregs (427). Of note, increased glycolytic activity was detected
in these Tregs, which in turn resulted in insufficient resolution of
inflammatory activity EAE and subsequently to augmented
disease progression (427). Further evidence for glycolysis-
associated insufficiency of immunosuppressive activities derives
from Tregs with an enhanced expression of glucose transporter 1,
which showed an increased extent of glycolysis but impaired
suppression (412). In human Tregs, however, maintenance of
glycolytic activity was required for optimal suppressive properties
of Tregs further highlighting the need for differential evaluation
of immunometabolic processes in human and murine Tregs
(411, 428).

In contrast, during migration of Tregs, there appears to be a
shift towards glycolytic pathways. For example, hypoxia-
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inducible factor 1 a (HIF-1a)-deficient Tregs, which exhibit
low levels of both glycolysis and enhanced OXPHOS, show
increased suppressive properties but impaired migration (429).
In mice, this subsequently led to reduced tumor growth and
increased survival, likely due to enhanced anti-tumor immunity
(429). Consistent with a prominent role of glycolytic processes
during migration, stimuli such as CD28 triggering migration of
Tregs induced an increased uptake of glucose and markedly
enhanced glycolysis (430). Underlying mechanisms involve a
PI3K-mTORC2-mediated pathway leading to an enhanced
expression of glucokinase. In turn, Tregs deficient for this
pathway showed diminished migration but preserved
suppressive function. Consistently, Tregs from individuals with
a mutation leading to enhanced glucokinase activity showed
enhanced migration (430). In summary, a complex interplay and
balance of different metabolic pathways underlie the different
functional stages of Tregs activity.

Treg dysfunctionality is suggested to be the link between
dysmetabolism or dysimmune reactions and pathogens. In fact,
hyperglycemia suppressed HIF-1a effects on Tregs in aspergillus
fumigatus infection (431). Together with defective NLRP3/IL-1b
signal pathway, this led to a more widespread disbalance of Th1/
Th2 ratio and Th17 cells (431). The HIF-1a-dependent glycolytic
pathway stimulates Th17 differentiation and limits Treg
development by promoting the function of RORgt (432, 433).

Targeting immunometabolism as an anti-inflammatory strategy
has become an established method in clinical therapies (250, 434,
435). Recently, Palma et al. (436) reported on caloric restriction in
mice promoting elimination of Mtb. By means of a multi-omic
approach they defined changes in glycolysis next to reduction in
fatty acid metabolism and mTOR activity as crucial effects of
FIGURE 3 | Main metabolic pathways and metabolic plasticity of Tregs. (1) Phosphatase and tensin homolog (PTEN) enhances regulatory T cell (Treg) differentiation
as well as the suppressive activity of Tregs. (2) Cholesterol biosynthesis is required for suppressive functionality of Tregs and increases Treg frequency. (3) Fatty axid
oxidation (FAO) is important for Treg generation, proliferation, as well as the suppressive activity. (4) Tricarboxylic acid cycle (TCA): TCA promotes the suppressive
activity of Tregs. (5) Oxidative Phosphorylation (OXPHOS) is not only important for survival of Tregs but also for the suppressive capacity as well as the homeostasis
of Tregs. (6) Glycolysis promotes suppressive function, the migration, and the homeostasis of Tregs. FAO, fatty acid oxidation; OXPHOS, oxidative phosphorylation;
PTEN, Phosphatase and tensin homolog; TCA, Tricarboxylic acid cycle; Tregs, regulatory T cells.
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metabolic reprogramming in this condition (436). In addition to
anti-inflammatory therapy, these findings on the metabolic
properties of Tregs could also be used in tumor therapy to
improve anti-tumor immunity via metabolic interventions. Thus,
several aspects of the tumor microenvironment offer an advantage
to Tregs, especially in comparison to Th1 or Th17 cells. For
example, despite hypoxia, glucose shortness and acidosis, Tregs
can compete with other T cells by increased expression of glucose
transporters, enhanced glycolytic metabolism, and resistance to
lactate-induced acidosis (391).

In the future, omic approaches might enable us to appreciate the
complex interplay of immunorelevant pathological conditions and
respective Treg functions. To this end, we hypothesize that the
metabolic state is capable of reprograming immune responses, with
Tregs in a key position, and Treg/Th17 ratio as a valuable judge for
T cell function from blood-derived T cell analysis (437). Netea et al.
(147) described the chance of so-called ‘innate immune training’:
Metabolic shifts can cause epigenetic reprogramming in activated
immune cells resulting in an innate immune memory resembling
the adaptive immune system.

Strikingly, Arpaia et al. (438) showed that several metabolites
produced by commensal bacteria, such as butyrate, short fatty acid
and propionate (PA), represent a missing link between microbiota
and the immune system promoting generation of pTregs.
Interestingly, PA in particular led to a substantial increase in
differentiation and proliferation of murine and human Tregs as
well as a reduction in the differentiation of Th17 cells (367).
Consistently, PA-treated mice showed an ameliorated EAE
disease course accompanied by an increase in Treg frequency and
IL-10 levels compared to controls. Of note, even application of
Tregs derived frommice pre-treated with PA attenuated the clinical
symptoms of EAE (367). In addition to these findings obtained
from EAE, clinical data from MS patients also pointed in this
direction. Not only decreased PA serum and feces levels were found
in all disease entities of MS, especially after the first relapse (439).
Rather, the add-on administration of PA in MS patients led to a
reversal of the Treg/Th17 imbalance, i.e. to an induction of Tregs
and a reduction of pro-inflammatory Th1 and Th17 cells.
Furthermore, these patients even showed a lower annual relapse
rate, a reduced disability progression, and a minor brain atrophy. In
line, the microbiome of these patients also showed an upregulation
of Treg-inducing genes following PA treatment. These findings
indicate a large potential benefit of PA therapy (439).
3 DISCUSSION

In conclusion, microorganisms and immune responses to
pathogens are closely interrelated: Programming of the immune
system determines the effectiveness of pathogen elimination or their
persistence, respectively. Vice versa, pathogens can affect immune
responses. Specifically, the balance between T cell subpopulations, in
particular the Treg/Th17 ratio, influences the defense against
pathogens. In this context, Tregs exhibit a Janus-faced nature:
Pronounced Treg activation correlates with a restricted and
tissue-protective immune response but can result in pathogen
persistence. In contrast, impaired Treg activity, together with Th1
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and Th17 responses, can effectively eliminate pathogens but can also
result in substantial collateral tissue damage. Consistent with this,
mechanisms potentially reprogramming and modulating Treg
responses, and their pathogenic conversion are currently intensely
investigated. The pathogen itself can impact frequency and function
of Tregs by a variety of mechanisms. It can alter immune responses
to escape immune activation or even infiltrate immune cells using
them as Trojan horses to infect the environment. Metabolic
conditions like hyperglycemia or diabetes correlating with high fat
diet in animal experiments can reprogram those immune responses
by a variety of complex mechanisms not yet fully understood and in
urgent need for further investigation. In this context, certain
commensal microbiota alter the immune balance, especially the
Treg/Th17 ratio.

There is substantial evidence that the interplay of pathogenic
infections and immune processes are crucial in the pathogenesis
of autoimmune disorders. Several pathogens were shown to
be critically involved in MS immunopathophysiology by
modulating the immune response. The best evidence is
available for host-detrimental effects of EBV and HERVs
which seem to fuel neuroinflammation. These effects are
induced by different mechanisms such as bystander activation,
molecular mimicry, superantigen-induced promotion of the T
cell response, and epitope spreading. However, apart from these
deleterious effects, protective effects have been demonstrated for
numerous parasites, especially helminths, and also H. pylori.
Such insights into the interplay of infection and MS have
subsequently led to numerous translational approaches aimed
at inhibiting deleterious and promoting favorable interactions. In
addition to cell-based immunotherapies targeting EBV-infected
B cells, the application of the monoclonal antibody GNbAC1
inhibiting HERV-W ENV seems particularly promising.
Interestingly, GNbAC1 not only leads to a suppression of pro-
inflammatory signaling pathways but also to possible critically
desired neuroregenerative effects. The underlying mechanisms
probably include improved OPC differentiation and a
neutralization of pro-inflammatory myeloid cells. Accordingly,
results of the ongoing phase IIb ProTect-MS study are awaited
with great interest.

Further therapeutic opportunities might be provided by a
closer understanding of the interaction of the intestinal
microbiome with Tregs thereby influencing the Treg/Th17
balance. Dysregulation of this balance or of the microbiome in
the sense of dysbiosis promotes the occurrence of autoimmune
diseases. Furthermore, the composition of the microbiome seems
to have enormous effects on the phenotype of Tregs. However,
these effects are not only local, but lead to a systemic modulation
of the immune response with both potentially unfavorable and
favorable consequences. Nevertheless, deeper insights into this
interplay are necessary to develop therapeutic strategies to take
advantage of this knowledge. Possible candidates for this are
Clostridium species or Bacteroides fragilis, which provide
favorable immune modulatory properties with regard to
autoimmunity by promoting regulatory capacities of Tregs.

Impacting both innate and adaptive immune responses, future
research should identify the most relevant pathogen species as well
as define molecular mechanisms and substrates underlying
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reprogramming of the immune balance. Such new insights could be
used to therapeutically induce or modify Tregs to treat autoimmune
diseases and immune responses in general. Hence, multi-omic
approaches may unravel the interplay between microorganism-
modulated Treg function and autoimmune neuroinflammation.
Understanding the underlying molecular mechanisms could
further contribute to the development of targeted therapies.
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Olson D, et al. Comprehensive Analysis of Frequency and Phenotype of T
Regulatory Cells in HIV Infection: CD39 Expression of FoxP3+ T Regulatory
Cells Correlates With Progressive Disease. J Virol (2011) 85:1287–97.
doi: 10.1128/JVI.01758-10

20. Nikolova M, Carriere M, Jenabian M-A, Limou S, Younas M, Kök A, et al.
CD39/adenosine Pathway Is Involved in AIDS Progression. PloS Pathog
(2011) 7:e1002110. doi: 10.1371/journal.ppat.1002110

21. Becker C, Taube C, Bopp T, Becker C, Michel K, Kubach J, et al. Protection
From Graft-Versus-Host Disease by HIV-1 Envelope Protein Gp120-
Mediated Activation of Human CD4+CD25+ Regulatory T Cells. Blood
(2009) 114:1263–9. doi: 10.1182/blood-2009-02-206730

22. Ji J, Cloyd MW. HIV-1 Binding to CD4 on CD4+CD25+ Regulatory T Cells
Enhances Their Suppressive Function and Induces Them to Home to, and
Accumulate in, Peripheral and Mucosal Lymphoid Tissues: An Additional
Mechanism of Immunosuppression. Int Immunol (2009) 21:283–94.
doi: 10.1093/intimm/dxn146

23. Nilsson J, Boasso A, Velilla PA, Zhang R, Vaccari M, Franchini G, et al. HIV-
1-Driven Regulatory T-Cell Accumulation in Lymphoid Tissues Is
Associated With Disease Progression in HIV/AIDS. Blood (2006)
108:3808–17. doi: 10.1182/blood-2006-05-021576

24. Suchard MS, Mayne E, Green VA, Shalekoff S, Donninger SL, Stevens WS,
et al. FOXP3 Expression Is Upregulated in CD4T Cells in Progressive HIV-1
Infection and Is a Marker of Disease Severity. PloS One (2010) 5:e11762.
doi: 10.1371/journal.pone.0011762

25. Joedicke JJ, Dietze KK, Zelinskyy G, Dittmer U. The Phenotype and
Activation Status of Regulatory T Cells During Friend Retrovirus
Infection. Virol Sin (2014) 29:48–60. doi: 10.1007/s12250-014-3396-z

26. Moore TC, Gonzaga LM, Mather JM, Messer RJ, Hasenkrug KJ. B Cell
Requirement for Robust Regulatory T Cell Responses to Friend Retrovirus
Infection. mBio (2017) 8:e01122–17. doi: 10.1128/mBio.01122-17

27. Myers L, Joedicke JJ, Carmody AB, Messer RJ, Kassiotis G, Dudley JP, et al.
IL-2-Independent and TNF-a-Dependent Expansion of Vb5+ Natural
Regulatory T Cells During Retrovirus Infection. J Immunol (2013)
190:5485–95. doi: 10.4049/jimmunol.1202951

28. Yamano Y, Takenouchi N, Li H-C, Tomaru U, Yao K, Grant CW, et al.
Virus-Induced Dysfunction of CD4+CD25+ T Cells in Patients With
HTLV-I-Associated Neuroimmunological Disease. J Clin Invest (2005)
115:1361–8. doi: 10.1172/JCI23913

29. Walsh PT, Benoit BM, Wysocka M, Dalton NM, Turka LA, Rook AH. A
Role for Regulatory T Cells in Cutaneous T-Cell Lymphoma; Induction of a
CD4 + CD25 + Foxp3+ T-Cell Phenotype Associated With HTLV-1
Infection. J Invest Dermatol (2006) 126:690–2. doi: 10.1038/sj.jid.5700121

30. Oh U, Grant C, Griffith C, Fugo K, Takenouchi N, Jacobson S. Reduced
Foxp3 Protein Expression Is Associated With Inflammatory Disease During
Human T Lymphotropic Virus Type 1 Infection. J Infect Dis (2006)
193:1557–66. doi: 10.1086/503874

31. Gupta N, Hegde P, Lecerf M, Nain M, Kaur M, Kalia M, et al. Japanese
Encephalitis Virus Expands Regulatory T Cells by Increasing the Expression
of PD-L1 on Dendritic Cells: Immunity to Infection. Eur J Immunol (2014)
44:1363–74. doi: 10.1002/eji.201343701

32. Periasamy S, Dhiman R, Barnes PF, Paidipally P, Tvinnereim A, Bandaru A,
et al. Programmed Death 1 and Cytokine Inducible SH2-Containing Protein
October 2021 | Volume 12 | Article 747143

https://doi.org/10.1002/eji.201847935
https://doi.org/10.1038/ni.2554
https://doi.org/10.1038/nature05543
https://doi.org/10.1111/j.1600-065X.2011.01018.x
https://doi.org/10.1073/pnas.2334901100
https://doi.org/10.1084/jem.192.2.303
https://doi.org/10.1126/science.1191996
https://doi.org/10.1038/ni.3004
https://doi.org/10.1016/j.immuni.2014.10.012
https://doi.org/10.1016/j.immuni.2015.10.011
https://doi.org/10.1038/nri1032
https://doi.org/10.1016/B978-0-12-387827-4.00003-6
https://doi.org/10.1016/B978-0-12-387827-4.00003-6
https://doi.org/10.1155/2016/1720827
https://doi.org/10.1038/ni904
https://doi.org/10.1038/ni1437
https://doi.org/10.1371/journal.pone.0012154
https://doi.org/10.1016/j.micinf.2014.06.005
https://doi.org/10.1128/JVI.01758-10
https://doi.org/10.1371/journal.ppat.1002110
https://doi.org/10.1182/blood-2009-02-206730
https://doi.org/10.1093/intimm/dxn146
https://doi.org/10.1182/blood-2006-05-021576
https://doi.org/10.1371/journal.pone.0011762
https://doi.org/10.1007/s12250-014-3396-z
https://doi.org/10.1128/mBio.01122-17
https://doi.org/10.4049/jimmunol.1202951
https://doi.org/10.1172/JCI23913
https://doi.org/10.1038/sj.jid.5700121
https://doi.org/10.1086/503874
https://doi.org/10.1002/eji.201343701
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schroeter et al. Crosstalk of Microorganisms and Tregs
Dependent Expansion of Regulatory T Cells Upon Stimulation With
Mycobacterium Tuberculosis. J Infect Dis (2011) 203:1256–63.
doi: 10.1093/infdis/jir011

33. Trinath J, Maddur MS, Kaveri SV, Balaji KN, Bayry J. Mycobacterium
Tuberculosis Promotes Regulatory T-Cell Expansion via Induction of
Programmed Death-1 Ligand 1 (PD-L1, CD274) on Dendritic Cells.
J Infect Dis (2012) 205:694–6. doi: 10.1093/infdis/jir820

34. Beswick EJ, Pinchuk IV, Earley RB, Schmitt DA, Reyes VE. Role of Gastric
Epithelial Cell-Derived Transforming Growth Factor Beta in Reduced CD4+ T
Cell Proliferation and Development of Regulatory T Cells During Helicobacter
Pylori Infection. Infect Immun (2011) 79:2737–45. doi: 10.1128/IAI.01146-10

35. León MA, Palma C, Hernández C, Sandoval M, Cofre C, Perez-Mateluna G,
et al. Helicobacter Pylori Pediatric Infection Changes FcϵRI Expression in
Dendritic Cells and Treg Profile In Vivo and In Vitro.Microbes Infect (2019)
21:449–55. doi: 10.1016/j.micinf.2019.05.001

36. Belkaid Y, Blank RB, Suffia I. Natural Regulatory T Cells and Parasites: A
Common Quest for Host Homeostasis. Immunol Rev (2006) 212:287–300.
doi: 10.1111/j.0105-2896.2006.00409.x

37. Hisaeda H, Tetsutani K, Imai T, Moriya C, Tu L, Hamano S, et al. Malaria
Parasites Require TLR9 Signaling for Immune Evasion by Activating
Regulatory T Cells. J Immunol (2008) 180:2496–503. doi: 10.4049/
jimmunol.180.4.2496

38. Hisaeda H, Maekawa Y, Iwakawa D, Okada H, Himeno K, Kishihara K, et al.
Escape of Malaria Parasites From Host Immunity Requires CD4+ CD25+
Regulatory T Cells. Nat Med (2004) 10:29–30. doi: 10.1038/nm975

39. Scholzen A, Mittag D, Rogerson SJ, Cooke BM, Plebanski M. Plasmodium
Falciparum-Mediated Induction of Human CD25Foxp3 CD4 T Cells Is
Independent of Direct TCR Stimulation and Requires IL-2, IL-10 and
TGFbeta. PloS Pathog (2009) 5:e1000543. doi: 10.1371/journal.ppat.1000543

40. Suffia I, Reckling SK, Salay G, Belkaid Y. A Role for CD103 in the Retention
of CD4+CD25+ Treg and Control of Leishmania Major Infection.
J Immunol (2005) 174:5444–55. doi: 10.4049/jimmunol.174.9.5444

41. Yurchenko E, Tritt M, Hay V, Shevach EM, Belkaid Y, Piccirillo CA. CCR5-
Dependent Homing of Naturally Occurring CD4+ Regulatory T Cells to
Sites of Leishmania Major Infection Favors Pathogen Persistence. J Exp Med
(2006) 203:2451–60. doi: 10.1084/jem.20060956

42. Costa FRC, Mota CM, Santiago FM, Silva MV, Ferreira MD, Fonseca DM, et al.
GITR Activation Positively Regulates Immune Responses Against Toxoplasma
Gondii. PloS One (2016) 11:e0152622. doi: 10.1371/journal.pone.0152622

43. Netea MG, Sutmuller R, Hermann C, van der Graaf CAA, van der Meer
JWM, van Krieken JH, et al. Toll-Like Receptor 2 Suppresses Immunity
Against Candida Albicans Through Induction of IL-10 and Regulatory T
Cells. J Immunol (2004) 172:3712–8. doi: 10.4049/jimmunol.172.6.3712

44. Sriram S, Yao SY, Stratton C, Moses H, Narayana PA, Wolinsky JS. Pilot
Study to Examine the Effect of Antibiotic Therapy on MRI Outcomes in
RRMS. J Neurol Sci (2005) 234:87–91. doi: 10.1016/j.jns.2005.03.042

45. Pender MP, Csurhes PA, Smith C, Douglas NL, Neller MA, Matthews KK,
et al. Epstein-Barr Virus-Specific T Cell Therapy for Progressive Multiple
Sclerosis. JCI Insight (2018) 3:124714. doi: 10.1172/jci.insight.124714

46. Derfuss T, Curtin F, Guebelin C, Bridel C, Rasenack M, Matthey A, et al. A
Phase IIa Randomised Clinical Study of GNbAC1, a Humanised Monoclonal
Antibody Against the Envelope Protein of Multiple Sclerosis-Associated
Endogenous Retrovirus in Multiple Sclerosis Patients. Mult Scler (2015)
21:885–93. doi: 10.1177/1352458514554052

47. Hartung H-P, Derfuss T, Cree BA, Sormani MP, Selmaj K, Stutters J, et al.
Efficacy and Safety of Temelimab in Multiple Sclerosis: Results of a
Randomized Phase 2b and Extension Study. Mult Scler (2021)
13524585211024996. doi: 10.1177/13524585211024997

48. Gold J, Marta M, Meier UC, Christensen T, Miller D, Altmann D, et al. A
Phase II Baseline Versus Treatment Study to Determine the Efficacy of
Raltegravir (Isentress) in Preventing Progression of Relapsing Remitting
Multiple Sclerosis as Determined by Gadolinium-Enhanced MRI: The
INSPIRE Study. Mult Scler Relat Disord (2018) 24:123–8. doi: 10.1016/
j.msard.2018.06.002

49. Fleming JO, Isaak A, Lee JE, Luzzio CC, CarrithersMD, Cook TD, et al. Probiotic
Helminth Administration in Relapsing-Remitting Multiple Sclerosis: A Phase 1
Study. Mult Scler (2011) 17:743–54. doi: 10.1177/1352458511398054
Frontiers in Immunology | www.frontiersin.org 18
50. Tanasescu R, Tench CR, Constantinescu CS, Telford G, Singh S, Frakich N,
et al. Hookworm Treatment for Relapsing Multiple Sclerosis: A Randomized
Double-Blinded Placebo-Controlled Trial. JAMA Neurol (2020) 77:1089–98.
doi: 10.1001/jamaneurol.2020.1118

51. Voldsgaard A, Bager P, Garde E, Åkeson P, Leffers AM, Madsen CG, et al.
Trichuris Suis Ova Therapy in Relapsing Multiple Sclerosis Is Safe But
Without Signals of Beneficial Effect. Mult Scler (2015) 21:1723–9.
doi: 10.1177/1352458514568173

52. Yordanova IA, Ebner F, Schulz AR, Steinfelder S, Rosche B, Bolze A, et al.
The Worm-Specific Immune Response in Multiple Sclerosis Patients
Receiving Controlled Trichuris Suis Ova Immunotherapy. Life (Basel)
(2021) 11:101. doi: 10.3390/life11020101

53. Kim JM, Rasmussen JP, Rudensky AY. Regulatory T Cells Prevent
Catastrophic Autoimmunity Throughout the Lifespan of Mice. Nat
Immunol (2007) 8:191–7. doi: 10.1038/ni1428

54. Belkaid Y, Tarbell K. Regulatory T Cells in the Control of Host-
Microorganism Interactions (*). Annu Rev Immunol (2009) 27:551–89.
doi: 10.1146/annurev.immunol.021908.132723

55. Xia M, Hu S, Fu Y, Jin W, Yi Q, Matsui Y, et al. CCR10 Regulates Balanced
Maintenance and Function of Resident Regulatory and Effector T Cells to
Promote Immune Homeostasis in the Skin. J Allergy Clin Immunol (2014)
134:634–44.e10. doi: 10.1016/j.jaci.2014.03.010

56. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean,
But Not Obese, Fat Is Enriched for a Unique Population of Regulatory T
Cells That Affect Metabolic Parameters. Nat Med (2009) 15:930–9.
doi: 10.1038/nm.2002

57. Burzyn D, Benoist C, Mathis D. Regulatory T Cells in Nonlymphoid Tissues.
Nat Immunol (2013) 14:1007–13. doi: 10.1038/ni.2683

58. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L-P, et al.
Tumour Hypoxia Promotes Tolerance and Angiogenesis via CCL28 and
Treg Cells. Nature (2011) 475:226–30. doi: 10.1038/nature10169

59. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, et al.
Tumour-Infiltrating Regulatory T Cells Stimulate Mammary Cancer
Metastasis Through RANKL–RANK Signalling. Nature (2011) 470:548–53.
doi: 10.1038/nature09707

60. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, et al. PPAR-g Is a
Major Driver of the Accumulation and Phenotype of Adipose Tissue Treg
Cells. Nature (2012) 486:549–53. doi: 10.1038/nature11132

61. Sharma A, Rudra D. Emerging Functions of Regulatory T Cells in Tissue
Homeostasis. Front Immunol (2018) 9:883. doi: 10.3389/fimmu.2018.00883

62. Lei H, Schmidt-Bleek K, Dienelt A, Reinke P, Volk H-D. Regulatory T Cell-
Mediated Anti-Inflammatory Effects Promote Successful Tissue Repair in
Both Indirect and Direct Manners. Front Pharmacol (2015) 6:184.
doi: 10.3389/fphar.2015.00184

63. Ghelani A, Bates D, Conner K, Wu M-Z, Lu J, Hu Y-L, et al. Defining the
Threshold IL-2 Signal Required for Induction of Selective Treg Cell
Responses Using Engineered IL-2 Muteins. Front Immunol (2020)
11:1106. doi: 10.3389/fimmu.2020.01106

64. de la Rosa M, Rutz S, Dorninger H, Scheffold A. Interleukin-2 Is Essential for
CD4+CD25+ Regulatory T Cell Function. Eur J Immunol (2004) 34:2480–8.
doi: 10.1002/eji.200425274

65. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4 + CD25 High

Regulatory Cells in Human Peripheral Blood. J Immunol (2001) 167:1245–
53. doi: 10.4049/jimmunol.167.3.1245

66. Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, et al. An
Essential Role for the IL-2 Receptor in Treg Cell Function. Nat Immunol
(2016) 17:1322–33. doi: 10.1038/ni.3540

67. Zhang HY, Yan KX, Huang Q, Ma Y, Fang X, Han L. Target Tissue Ectoenzyme
CD39/CD73-Expressing Foxp3 + Regulatory T Cells in Patients With Psoriasis.
Clin Exp Dermatol (2015) 40:182–91. doi: 10.1111/ced.12497

68. Schuler PJ, Saze Z, Hong C-S, Muller L, Gillespie DG, Cheng D, et al. Human
CD4 + CD39 + Regulatory T Cells Produce Adenosine Upon Co-Expression
of Surface CD73 or Contact With CD73 + Exosomes or CD73 + Cells: CD73
Co-Expression in Human CD39 + T Reg. Clin Exp Immunol (2014) 177:531–
43. doi: 10.1111/cei.12354

69. Bopp T, Becker C, Klein M, Klein-Heßling S, Palmetshofer A, Serfling E,
et al. Cyclic Adenosine Monophosphate Is a Key Component of Regulatory
October 2021 | Volume 12 | Article 747143

https://doi.org/10.1093/infdis/jir011
https://doi.org/10.1093/infdis/jir820
https://doi.org/10.1128/IAI.01146-10
https://doi.org/10.1016/j.micinf.2019.05.001
https://doi.org/10.1111/j.0105-2896.2006.00409.x
https://doi.org/10.4049/jimmunol.180.4.2496
https://doi.org/10.4049/jimmunol.180.4.2496
https://doi.org/10.1038/nm975
https://doi.org/10.1371/journal.ppat.1000543
https://doi.org/10.4049/jimmunol.174.9.5444
https://doi.org/10.1084/jem.20060956
https://doi.org/10.1371/journal.pone.0152622
https://doi.org/10.4049/jimmunol.172.6.3712
https://doi.org/10.1016/j.jns.2005.03.042
https://doi.org/10.1172/jci.insight.124714
https://doi.org/10.1177/1352458514554052
https://doi.org/10.1177/13524585211024997
https://doi.org/10.1016/j.msard.2018.06.002
https://doi.org/10.1016/j.msard.2018.06.002
https://doi.org/10.1177/1352458511398054
https://doi.org/10.1001/jamaneurol.2020.1118
https://doi.org/10.1177/1352458514568173
https://doi.org/10.3390/life11020101
https://doi.org/10.1038/ni1428
https://doi.org/10.1146/annurev.immunol.021908.132723
https://doi.org/10.1016/j.jaci.2014.03.010
https://doi.org/10.1038/nm.2002
https://doi.org/10.1038/ni.2683
https://doi.org/10.1038/nature10169
https://doi.org/10.1038/nature09707
https://doi.org/10.1038/nature11132
https://doi.org/10.3389/fimmu.2018.00883
https://doi.org/10.3389/fphar.2015.00184
https://doi.org/10.3389/fimmu.2020.01106
https://doi.org/10.1002/eji.200425274
https://doi.org/10.4049/jimmunol.167.3.1245
https://doi.org/10.1038/ni.3540
https://doi.org/10.1111/ced.12497
https://doi.org/10.1111/cei.12354
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schroeter et al. Crosstalk of Microorganisms and Tregs
T Cell–Mediated Suppression. J Exp Med (2007) 204:1303–10. doi: 10.1084/
jem.20062129

70. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al.
Adenosine Generation Catalyzed by CD39 and CD73 Expressed on
Regulatory T Cells Mediates Immune Suppression. J Exp Med (2007)
204:1257–65. doi: 10.1084/jem.20062512

71. Rueda CM, Jackson CM, Chougnet CA. Regulatory T-Cell-Mediated
Suppression of Conventional T-Cells and Dendritic Cells by Different
cAMP Intracellular Pathways. Front Immunol (2016) 7:216. doi: 10.3389/
fimmu.2016.00216

72. Klein M, Bopp T. Cyclic AMP Represents a Crucial Component of Treg Cell-
Mediated Immune Regulation. Front Immunol (2016) 7:315. doi: 10.3389/
fimmu.2016.00315

73. Su W, Chen X, Zhu W, Yu J, Li W, Li Y, et al. The cAMP–Adenosine
Feedback Loop Maintains the Suppressive Function of Regulatory T Cells.
J Immunol (2019) 203:1436–46. doi: 10.4049/jimmunol.1801306

74. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, et al.
Granzyme B and Perforin Are Important for Regulatory T Cell-Mediated
Suppression of Tumor Clearance. Immunity (2007) 27:635–46. doi: 10.1016/
j.immuni.2007.08.014

75. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ.
Human T Regulatory Cells Can Use the Perforin Pathway to Cause
Autologous Target Cell Death. Immunity (2004) 21:589–601. doi: 10.1016/
j.immuni.2004.09.002

76. Gondek DC, DeVries V, Nowak EC, Lu L-F, Bennett KA, Scott ZA, et al.
Transplantation Survival Is Maintained by Granzyme B + Regulatory Cells
and Adaptive Regulatory T Cells. J Immunol (2008) 181:4752–60.
doi: 10.4049/jimmunol.181.7.4752

77. Schmidt A, Oberle N, Krammer PH. Molecular Mechanisms of Treg-
Mediated T Cell Suppression. Front Immun (2012) 3:51. doi: 10.3389/
fimmu.2012.00051

78. Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F. Cytotoxic T
Lymphocyte Antigen-4-Dependent Down-Modulation of Costimulatory
Molecules on Dendritic Cells in CD4+ CD25+ Regulatory T-Cell-
Mediated Suppression. Immunology (2006) 118:240–9. doi: 10.1111/j.1365-
2567.2006.02362.x

79. Lippens C, Duraes FV, Dubrot J, Brighouse D, Lacroix M, Irla M, et al. IDO-
Orchestrated Crosstalk Between pDCs and Tregs Inhibits Autoimmunity.
J Autoimmun (2016) 75:39–49. doi: 10.1016/j.jaut.2016.07.004

80. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, et al.
Modulation of Tryptophan Catabolism by Human Leukemic Cells Results
in the Conversion of CD25- Into CD25+ T Regulatory Cells. Blood (2007)
109:2871–7. doi: 10.1182/blood-2006-07-036863

81. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al.
Modulation of Tryptophan Catabolism by Regulatory T Cells. Nat Immunol
(2003) 4:1206–12. doi: 10.1038/ni1003

82. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, et al. Treg Cells
Expressing the Coinhibitory Molecule TIGIT Selectively Inhibit
Proinflammatory Th1 and Th17 Cell Responses. Immunity (2014) 40:569–
81. doi: 10.1016/j.immuni.2014.02.012

83. Kurtulus S, Sakuishi K, Ngiow S-F, Joller N, Tan DJ, TengMWL, et al. TIGIT
Predominantly Regulates the Immune Response via Regulatory T Cells.
J Clin Invest (2015) 125:4053–62. doi: 10.1172/JCI81187

84. Guo J, Zhou X. Regulatory T Cells Turn Pathogenic. Cell Mol Immunol
(2015) 12:525–32. doi: 10.1038/cmi.2015.12

85. Kassiotis G, O’Garra A. Immunology. Immunity Benefits From a Little
Suppression. Science (2008) 320:1168–9. doi: 10.1126/science.1159090

86. Lund JM, Hsing L, Pham TT, Rudensky AY. Coordination of Early
Protective Immunity to Viral Infection by Regulatory T Cells. Science
(2008) 320:1220–4. doi: 10.1126/science.1155209

87. Moreno-FernandezME, Rueda CM, Rusie LK, Chougnet CA. Regulatory T Cells
Control HIV Replication in Activated T Cells Through a cAMP-Dependent
Mechanism. Blood (2011) 117:5372–80. doi: 10.1182/blood-2010-12-323162

88. Haase AT. Perils at Mucosal Front Lines for HIV and SIV and Their Hosts.
Nat Rev Immunol (2005) 5:783–92. doi: 10.1038/nri1706

89. Graham JB, Da Costa A, Lund JM. Regulatory T Cells Shape the Resident
Memory T Cell Response to Virus Infection in the Tissues. J Immunol (2014)
192:683–90. doi: 10.4049/jimmunol.1202153
Frontiers in Immunology | www.frontiersin.org 19
90. Zelinskyy G, Dietze KK, Hüsecken YP, Schimmer S, Nair S, Werner T, et al.
The Regulatory T-Cell Response During Acute Retroviral Infection Is
Locally Defined and Controls the Magnitude and Duration of the Virus-
Specific Cytotoxic T-Cell Response. Blood (2009) 114:3199–207.
doi: 10.1182/blood-2009-03-208736

91. Iwashiro M, Messer RJ, Peterson KE, Stromnes IM, Sugie T, Hasenkrug KJ.
Immunosuppression by CD4+ Regulatory T Cells Induced by Chronic
Retroviral Infection. Proc Natl Acad Sci (2001) 98:9226–30. doi: 10.1073/
pnas.151174198

92. Haeryfar SMM, DiPaolo RJ, Tscharke DC, Bennink JR, Yewdell JW.
Regulatory T Cells Suppress CD8+ T Cell Responses Induced by Direct
Priming and Cross-Priming and Moderate Immunodominance Disparities.
J Immunol (2005) 174:3344–51. doi: 10.4049/jimmunol.174.6.3344

93. Aandahl EM, Michaëlsson J, Moretto WJ, Hecht FM, Nixon DF. Human
CD4+ CD25+ Regulatory T Cells Control T-Cell Responses to Human
Immunodeficiency Virus and Cytomegalovirus Antigens. J Virol (2004)
78:2454–9. doi: 10.1128/jvi.78.5.2454-2459.2004

94. Hunt PW, Landay AL, Sinclair E, Martinson JA, Hatano H, Emu B, et al. A
Low T Regulatory Cell Response May Contribute to Both Viral Control and
Generalized Immune Activation in HIV Controllers. PloS One (2011) 6:
e15924. doi: 10.1371/journal.pone.0015924

95. Hasenkrug KJ, Chougnet CA, Dittmer U. Regulatory T Cells in Retroviral
Infections. PloS Pathog (2018) 14:e1006776. doi: 10.1371/journal.ppat.1006776

96. Eggena MP, Barugahare B, Jones N, Okello M, Mutalya S, Kityo C, et al.
Depletion of Regulatory T Cells in HIV Infection Is Associated With
Immune Activation. J Immunol (2005) 174:4407–14. doi: 10.4049/
jimmunol.174.7.4407

97. Oswald-Richter K, Grill SM, Leelawong M, Unutmaz D. HIV Infection of
Primary Human T Cells Is Determined by Tunable Thresholds of T Cell
Activation. Eur J Immunol (2004) 34:1705–14. doi: 10.1002/eji.200424892

98. Chase AJ, Yang H-C, Zhang H, Blankson JN, Siliciano RF. Preservation of
FoxP3+ Regulatory T Cells in the Peripheral Blood of Human Immunodeficiency
Virus Type 1-Infected Elite Suppressors Correlates With Low CD4+ T-Cell
Activation. J Virol (2008) 82:8307–15. doi: 10.1128/JVI.00520-08

99. Andersson J, Boasso A, Nilsson J, Zhang R, Shire NJ, Lindback S, et al. The
Prevalence of Regulatory T Cells in Lymphoid Tissue Is Correlated With
Viral Load in HIV-Infected Patients. J Immunol (2005) 174:3143–7.
doi: 10.4049/jimmunol.174.6.3143

100. Kinter AL, Hennessey M, Bell A, Kern S, Lin Y, Daucher M, et al. CD25(+)CD4
(+) Regulatory T Cells From the Peripheral Blood of Asymptomatic HIV-
Infected Individuals Regulate CD4(+) and CD8(+) HIV-Specific T Cell
Immune Responses In Vitro and Are Associated With Favorable Clinical
Markers of Disease Status. J Exp Med (2004) 200:331–43. doi: 10.1084/
jem.20032069

101. Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, Levy Y.
Human Immunodeficiency Virus–Driven Expansion of CD4+CD25+ Regulatory
T Cells, Which Suppress HIV-Specific CD4 T-Cell Responses in HIV-Infected
Patients. Blood (2004) 104:3249–56. doi: 10.1182/blood-2004-01-0365

102. Andersson J, Boasso A, Nilsson J, Zhang R, Shire NJ, Lindback S, et al.
Cutting Edge: The Prevalence of Regulatory T Cells in Lymphoid Tissue Is
Correlated With Viral Load in HIV-Infected Patients. J Immunol (2005)
174:3143–7. doi: 10.4049/jimmunol.174.6.3143

103. Oswald-Richter K, Grill SM, Shariat N, Leelawong M, Sundrud MS, Haas
DW, et al. HIV Infection of Naturally Occurring and Genetically
Reprogrammed Human Regulatory T-Cells. PloS Biol (2004) 2:e198.
doi: 10.1371/journal.pbio.0020198

104. Bolacchi F, Sinistro A, Ciaprini C, Demin F, Capozzi M, Carducci FC, et al.
Increased Hepatitis C Virus (HCV)-Specific CD4+CD25+ Regulatory T
Lymphocytes and Reduced HCV-Specific CD4+ T Cell Response in HCV-
Infected Patients With Normal Versus Abnormal Alanine Aminotransferase
Levels. Clin Exp Immunol (2006) 144:188–96. doi: 10.1111/j.1365-
2249.2006.03048.x

105. Sugimoto K, Ikeda F, Stadanlick J, Nunes FA, Alter HJ, Chang K-M.
Suppression of HCV-Specific T Cells Without Differential Hierarchy
Demonstrated Ex Vivo in Persistent HCV Infection. Hepatology (2003)
38:1437–48. doi: 10.1016/j.hep.2003.09.026

106. Boettler T, Spangenberg HC, Neumann-Haefelin C, Panther E, Urbani S,
Ferrari C, et al. T Cells With a CD4+CD25+ Regulatory Phenotype Suppress
October 2021 | Volume 12 | Article 747143

https://doi.org/10.1084/jem.20062129
https://doi.org/10.1084/jem.20062129
https://doi.org/10.1084/jem.20062512
https://doi.org/10.3389/fimmu.2016.00216
https://doi.org/10.3389/fimmu.2016.00216
https://doi.org/10.3389/fimmu.2016.00315
https://doi.org/10.3389/fimmu.2016.00315
https://doi.org/10.4049/jimmunol.1801306
https://doi.org/10.1016/j.immuni.2007.08.014
https://doi.org/10.1016/j.immuni.2007.08.014
https://doi.org/10.1016/j.immuni.2004.09.002
https://doi.org/10.1016/j.immuni.2004.09.002
https://doi.org/10.4049/jimmunol.181.7.4752
https://doi.org/10.3389/fimmu.2012.00051
https://doi.org/10.3389/fimmu.2012.00051
https://doi.org/10.1111/j.1365-2567.2006.02362.x
https://doi.org/10.1111/j.1365-2567.2006.02362.x
https://doi.org/10.1016/j.jaut.2016.07.004
https://doi.org/10.1182/blood-2006-07-036863
https://doi.org/10.1038/ni1003
https://doi.org/10.1016/j.immuni.2014.02.012
https://doi.org/10.1172/JCI81187
https://doi.org/10.1038/cmi.2015.12
https://doi.org/10.1126/science.1159090
https://doi.org/10.1126/science.1155209
https://doi.org/10.1182/blood-2010-12-323162
https://doi.org/10.1038/nri1706
https://doi.org/10.4049/jimmunol.1202153
https://doi.org/10.1182/blood-2009-03-208736
https://doi.org/10.1073/pnas.151174198
https://doi.org/10.1073/pnas.151174198
https://doi.org/10.4049/jimmunol.174.6.3344
https://doi.org/10.1128/jvi.78.5.2454-2459.2004
https://doi.org/10.1371/journal.pone.0015924
https://doi.org/10.1371/journal.ppat.1006776
https://doi.org/10.4049/jimmunol.174.7.4407
https://doi.org/10.4049/jimmunol.174.7.4407
https://doi.org/10.1002/eji.200424892
https://doi.org/10.1128/JVI.00520-08
https://doi.org/10.4049/jimmunol.174.6.3143
https://doi.org/10.1084/jem.20032069
https://doi.org/10.1084/jem.20032069
https://doi.org/10.1182/blood-2004-01-0365
https://doi.org/10.4049/jimmunol.174.6.3143
https://doi.org/10.1371/journal.pbio.0020198
https://doi.org/10.1111/j.1365-2249.2006.03048.x
https://doi.org/10.1111/j.1365-2249.2006.03048.x
https://doi.org/10.1016/j.hep.2003.09.026
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schroeter et al. Crosstalk of Microorganisms and Tregs
In Vitro Proliferation of Virus-Specific CD8+ T Cells During Chronic
Hepatitis C Virus Infection. J Virol (2005) 79:7860–7. doi: 10.1128/
JVI.79.12.7860-7867.2005

107. Li S, Jones KL, Woollard DJ, Dromey J, Paukovics G, Plebanski M, et al.
Defining Target Antigens for CD25+ FOXP3 + IFN-Gamma- Regulatory T
Cells in Chronic Hepatitis C Virus Infection. Immunol Cell Biol (2007)
85:197–204. doi: 10.1038/sj.icb.7100020

108. Boyer O, Saadoun D, Abriol J, Dodille M, Piette J-C, Cacoub P, et al. CD4+
CD25+ Regulatory T-Cell Deficiency in Patients With Hepatitis C-Mixed
Cryoglobulinemia Vasculitis. Blood (2004) 103:3428–30. doi: 10.1182/blood-
2003-07-2598

109. Cabrera R, Tu Z, Xu Y, Firpi RJ, Rosen HR, Liu C, et al. An
Immunomodulatory Role for CD4(+)CD25(+) Regulatory T Lymphocytes
in Hepatitis C Virus Infection. Hepatology (2004) 40:1062–71. doi: 10.1002/
hep.20454

110. Belkaid Y, Rouse BT. Natural Regulatory T Cells in Infectious Disease. Nat
Immunol (2005) 6:353–60. doi: 10.1038/ni1181

111. Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+
CD25+ TR Cells Suppress Innate Immune Pathology Through Cytokine-
Dependent Mechanisms. J Exp Med (2003) 197:111–9. doi: 10.1084/
jem.20021345

112. Kullberg MC, Jankovic D, Gorelick PL, Caspar P, Letterio JJ, Cheever AW,
et al. Bacteria-Triggered CD4+ T Regulatory Cells Suppress Helicobacter
Hepaticus–Induced Colitis. J Exp Med (2002) 196:505–15. doi: 10.1084/
jem.20020556

113. Kaparakis M, Laurie KL, Wijburg O, Pedersen J, Pearse M, van Driel IR, et al.
CD4+ CD25+ Regulatory T Cells Modulate the T-Cell and Antibody
Responses in Helicobacter-Infected BALB/c Mice. Infect Immun (2006)
74:3519–29. doi: 10.1128/IAI.01314-05

114. Raghavan S, Suri-Payer E, Holmgren J. Antigen-Specific In Vitro
Suppression of Murine Helicobacter Pylori-Reactive Immunopathological
T Cells by CD4+CD25+ Regulatory T Cells. Scand J Immunol (2004) 60:82–
8. doi: 10.1111/j.0300-9475.2004.01447.x

115. Lundgren A, Suri-Payer E, Enarsson K, Svennerholm A-M, Lundin BS.
Helicobacter Pylori - Specific CD4 + CD25 High Regulatory T Cells Suppress
Memory T-Cell Responses toH . Pylori in Infected Individuals. Infect Immun
(2003) 71:1755–62. doi: 10.1128/IAI.71.4.1755-1762.2003

116. Kursar M, Bonhagen K, Fensterle J, Köhler A, Hurwitz R, Kamradt T, et al.
Regulatory CD4+CD25+ T Cells Restrict Memory CD8+ T Cell Responses.
J Exp Med (2002) 196:1585–92. doi: 10.1084/jem.20011347

117. McKinley L, Logar AJ, McAllister F, Zheng M, Steele C, Kolls JK. Regulatory
T Cells Dampen Pulmonary Inflammation and Lung Injury in an Animal
Model of Pneumocystis Pneumonia. J Immunol (2006) 177:6215–26.
doi: 10.4049/jimmunol.177.9.6215

118. Hori S, Carvalho TL, Demengeot J. CD25+CD4+ Regulatory T Cells Suppress
CD4+ T Cell-Mediated Pulmonary Hyperinflammation Driven by Pneumocystis
Carinii in Immunodeficient Mice. Eur J Immunol (2002) 32:1282–91.
doi: 10.1002/1521-4141(200205)32:5<1282::AID-IMMU1282>3.0.CO;2-
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257. Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia
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268. Lünemann JD, Tintoré M, Messmer B, Strowig T, Rovira A, Perkal H, et al.
Elevated Epstein-Barr Virus-Encoded Nuclear Antigen-1 Immune
Responses Predict Conversion to Multiple Sclerosis. Ann Neurol (2010)
67:159–69. doi: 10.1002/ana.21886

269. Farrell RA, Antony D, Wall GR, Clark DA, Fisniku L, Swanton J, et al.
Humoral Immune Response to EBV in Multiple Sclerosis Is Associated With
Disease Activity on MRI. Neurology (2009) 73:32–8. doi: 10.1212/
WNL.0b013e3181aa29fe

270. Zivadinov R, Cerza N, Hagemeier J, Carl E, Badgett D, Ramasamy DP, et al.
Humoral Response to EBV Is Associated With Cortical Atrophy and Lesion
Burden in Patients With MS. Neurol Neuroimmunol Neuroinflamm (2016) 3:
e190. doi: 10.1212/NXI.0000000000000190

271. Jakimovski D, Ramanathan M, Weinstock-Guttman B, Bergsland N,
Ramasamay DP, Carl E, et al. Higher EBV Response Is Associated With
More Severe Gray Matter and Lesion Pathology in Relapsing Multiple
Sclerosis Patients: A Case-Controlled Magnetization Transfer Ratio Study.
Mult Scler (2020) 26:322–32. doi: 10.1177/1352458519828667

272. Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P,
et al. Dysregulated Epstein-Barr Virus Infection in the Multiple Sclerosis
Brain. J Exp Med (2007) 204:2899–912. doi: 10.1084/jem.20071030

273. Magliozzi R, Serafini B, Rosicarelli B, Chiappetta G, Veroni C, Reynolds R,
et al. B-Cell Enrichment and Epstein-Barr Virus Infection in Inflammatory
Cortical Lesions in Secondary Progressive Multiple Sclerosis. J Neuropathol
Exp Neurol (2013) 72:29–41. doi: 10.1097/NEN.0b013e31827bfc62

274. Hassani A, Corboy JR, Al-Salam S, Khan G. Epstein-Barr Virus Is Present in
the Brain of Most Cases of Multiple Sclerosis andMay Engage More Than Just
B Cells. PloS One (2018) 13:e0192109. doi: 10.1371/journal.pone.0192109

275. Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung H-P, Maniar T, et al.
Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging
Frontiers in Immunology | www.frontiersin.org 24
Immunotherapies. Trends Mol Med (2020) 26:296–310. doi: 10.1016/
j.molmed.2019.11.003
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GLOSSARY

AMPK AMP activated protein kinase
APCs antigen-presenting cells
C. pneumoniae Chlamydia pneumoniae
CNS central nervous system
CSF cerebrospinal fluid
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
DCs dendritic cells
EAE experimental autoimmune encephalomyelitis
EBNA-1 EBV nuclear antigen 1
EBV Epstein-barr virus
FAO fatty axid oxidation
Foxp3 forkhead box protein P3
FV friend retrovirus
GEL gadolinium-enhancing lesion
GITR glucocorticoid-induced tumor necrosis factor receptor
H. pylori Helicobacter pylori
HBV hepatitis B virus
HCV hepatitis C virus
HERV human endogenous retrovirus
HHV-6 human herpes virus 6
HIF-1a hypoxia-inducible factor 1 a
HIV human immunodeficiency virus
HSV herpes simplex virus
IDO indoleamine 2,3-dioxygenase
IFNg interferon g
IL interleukin
MBP myelin basic protein
MRI magnetic resonance imaging
MS multiple sclerosis
Mtb mycobacterium tuberculosis
mTOR mechanistic target of rapamycin
NK cells natural killer cells
OPC oligodendrocyte precursor cell
OXPHOS oxidative phosphorylation
PA propionate
PD-L1 programmed death-1 ligand 1
PKA protein kinase A
PTEN phosphatase and tensin homolog
pTregs peripherally induced regulatory T cells
RORgt retinoic acid-related orphan receptor gamma t
RRMS relapsing-remitting MS
SCFAs short-chain fatty acids
STAT signal transducer and activator of transcription
Tconv conventional T cells
TCR T cell receptor
TGFb tumor growth factor b
Th T helper
TIGIT T cell immunoreceptor with Ig and and immunoreceptor

tyrosine-based inhibitory motif domains
TLR Toll-like receptor
TNF tumor necrosis factor
Tregs regulatory T cells
tTregs thymus-dervived regulatory T cells
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