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Smoking induces DNA methylation 
changes in Multiple Sclerosis 
patients with exposure-response 
relationship
Francesco Marabita   1, Malin Almgren1, Louise K. Sjöholm1, Lara Kular1, Yun Liu2,3, Tojo 
James1, Nimrod B. Kiss1, Andrew P. Feinberg4, Tomas Olsson1, Ingrid Kockum1,  
Lars Alfredsson5, Tomas J. Ekström1 & Maja Jagodic1

Cigarette smoking is an established environmental risk factor for Multiple Sclerosis (MS), a chronic 
inflammatory and neurodegenerative disease, although a mechanistic basis remains largely unknown. 
We aimed at investigating how smoking affects blood DNA methylation in MS patients, by assaying 
genome-wide DNA methylation and comparing smokers, former smokers and never smokers in two 
Swedish cohorts, differing for known MS risk factors. Smoking affects DNA methylation genome-wide 
significantly, an exposure-response relationship exists and the time since smoking cessation affects 
methylation levels. The results also show that the changes were larger in the cohort bearing the major 
genetic risk factors for MS (female sex and HLA risk haplotypes). Furthermore, CpG sites mapping to 
genes with known genetic or functional role in the disease are differentially methylated by smoking. 
Modeling of the methylation levels for a CpG site in the AHRR gene indicates that MS modifies the 
effect of smoking on methylation changes, by significantly interacting with the effect of smoking load. 
Alongside, we report that the gene expression of AHRR increased in MS patients after smoking. Our 
results suggest that epigenetic modifications may reveal the link between a modifiable risk factor and 
the pathogenetic mechanisms.

Multiple Sclerosis (MS), a leading cause of neurological disability in young adults, is a chronic inflammatory 
disease characterized by autoimmune destruction of myelin sheaths and subsequent neuronal death. Although 
the cause of MS remains unknown, vast epidemiological data establish MS as a complex disease influenced by 
genetic and environmental factors. Genome-wide and custom-designed array association studies have identified 
a large number of genetic variations that predispose to MS1–3. However, while non-MHC loci have a modest effect 
(Odds Ratio, OR < 1.3), only associations with HLA genes yield higher OR, with HLA-DRB1*15:01 exerting 
the strongest influence (OR > 3). The epidemiological data, together with a modest concordance rate of MS in 
monozygotic twins4,5, suggest nonetheless an important role of environmental factors that act at the population 
level. One of the most established environmental risk factors for MS is cigarette smoking. Both active smoking 
and exposure to passive smoke have repeatedly been associated with an increased risk of developing MS, disease 
progression and clinical disability6–9. In contrast to other MS risk factors, smoking increases MS risk regardless of 
the age of exposure, with both duration and intensity of smoking contributing independently to the increased risk 
of MS7,8. Interestingly, the effect of smoking on the risk of MS persists up to five years after smoking cessation and 
is reversed a decade after cessation. However, while it is difficult to associate a heterogeneous compound such as 
cigarette smoke with specific mechanisms of action, it appears that lung irritation due to burned tobacco products 
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alters MS risk, likely causing local oxidative stress and pro-inflammatory response contrary to the systemic nic-
otine use such as snuff7. Notably, there is an important gene-environment interaction between cigarette smoking 
(and passive smoking to a lesser extent) and the established HLA alleles for MS10. Indeed, in Scandinavians who 
are non-smokers, carriage of the major risk allele HLA-DRB1*15:01 and absence of the protective HLA-A2 vari-
ant confer an OR~5, while in smokers this OR increases to ~1410.

Epigenetic mechanisms, such as DNA methylation, integrate both internal and external cues and may lead 
to stable but reversible changes in gene expression. DNA methylation in blood from smokers has been exten-
sively studied and has yielded several well-replicated loci where methylation levels associate with smoking inten-
sity and time from cessation11,12. More recently, DNA methylation has been suggested to play a crucial role in 
gene-smoking interaction in immune diseases such as rheumatoid arthritis13. However, while studies investigat-
ing epigenetic mechanisms in MS exist14–16, our understanding of the contribution of DNA methylation is still 
incomplete, especially when genetic, epigenetic and environmental determinants are incorporated in the study 
design, with the goal of understanding their interaction and how they collectively affect susceptibility to disease17.

Therefore, the aim of this study was to examine the effect of smoking on DNA methylation in blood cells from 
MS patients, in order to better delineate the role of epigenetic changes in relation to one important risk factor and 
disease modifier, and eventually contribute to the understanding of the pathogenetic mechanisms.

Results
The effect of smoking on blood DNA methylation in MS patients.  We evaluated the effect 
of cigarette smoking on DNA methylation using two independent cohorts obtained from a larger EIMS 
(Epidemiological Investigation of Multiple Sclerosis) project, a population-based case–control study of MS in 
Sweden. The “Selected cohort” (S, 50 MS patients, Supplementary Table 1) included only Swedish female sub-
jects selected for being carriers of the HLA-DRB1*15:01 allele (DR15+/+ or DR15+/−) and non-carriers of the 
HLA-A*02 allele (A2−/−). HLA-DRB1*15:01 and HLA-A*02 are the major risk and protective variants for MS, 
respectively, and both significantly interact with smoking10. On the contrary, the “Broad cohort” (B) included 
Swedish subjects without any further selection criteria, which allowed us to include also healthy controls in the 
experimental design. This cohort was not restricted to any sex or genetic risk carriers and included 132 MS 
patients and 135 controls (Supplementary Table 1). CpG methylation from whole blood was profiled genome-
wide using the Illumina HumanMethylation450k BeadChips and, in light of the above differences, the cohorts 
were first analyzed separately to identify Differentially Methylated Positions (DMPs) with a linear model that 
corrected for potential confounding factors. Next, we performed a meta-analysis to further identify robust DMPs 
associated with smoking in MS. The grouping into smoking categories was guided by previous epidemiological 
observations regarding the influence of smoking on the risk of MS. Since it has previously been shown that the 
increased risk for MS associated with smoking remained up to 5 years after smoking cessation7, the samples were 
classified either as W5Y (Within 5 Years), B5Y (5 Years and Beyond) or NS (never-smokers), by considering the 
time of sampling relative to the last smoking event, i.e. <5 years or ≥5 years for W5Y and B5Y, respectively.

With MS cases, five and nine positions exceeded the Bonferroni genome-wide significance threshold 
(1.14 × 10−07) in the S and B cohort, respectively, when comparing W5Y vs. NS (Supplementary Table 2). 
However, after meta-analysis, 28, 7 and 0 positions reached the genome-wide significance threshold for W5Y vs. 
NS, W5Y vs. B5Y and B5Y vs. NS, respectively (Fig. 1a). Selected CpGs were technically validated using bisulfite 
pyrosequencing (Supplementary Figure 1). The analysis of P-P plots (Fig. 1b) showed that the effect appeared 
stronger when comparing W5Y vs. NS, while only a minor effect remained when comparing W5Y vs. B5Y, and 
no significant effect was detected for the contrast B5Y vs. NS. Most importantly, no evidence of systematic bias in 
our analytical approach was observed.

In addition to the models presented above, which accounted for unknown variation using Surrogate Variables 
(SVs), we also performed explicit cell-type-adjustment, by estimating the blood cell type proportions using a 
reference-based method18. We detected no major significant differences in the estimated relative fractions 
between the different smoking categories (Supplementary Figure 2). Moreover, the −log10(Pval) for the SV- and 
cell-type-adjusted models were correlated and the top cohort-specific DMPs were preserved after cell-type adjust-
ment. We therefore selected the SV-adjusted primary models for meta-analysis and concluded that the effect of 
smoking on DNA methylation did not appear to be confounded by difference in cell type compositions between 
smokers and non-smokers. Similarly, the explicit correction for the risk haplotype as binary covariate in the B 
cohort (DR15+ and A2−/−) did not substantially alter the association results in this cohort (Supplementary 
Figure 3).

To further exclude sources of heterogeneity between the cohorts, which would compromise the legitimacy 
of our meta-analysis, we considered the overlap of the ranked DMP lists of the cohort-specific analyses (corre-
spondence at the top19), hypothesizing that DMPs with a similar effect in the two cohorts should be top-ranked in 
both the corresponding primary analyses and therefore suitable for meta-analysis. Indeed, we verified the over-
lap between the two analyzed cohorts, which was substantial for the top-ranked DMPs for W5Y vs. NS, partial 
for W5Y vs. B5Y and not different from random for B5Y vs. NS (Supplementary Figure 4). This indicates that a 
number of DMPs are similarly modulated by the smoking behavior in the two cohorts, with an effect size that is 
attenuated with the increasing time since smoking cessation.

Nevertheless, with a relatively small sample size and under the hypothesis of spatially correlated CpG sites, 
the Bonferroni adjustment appears exceedingly conservative. Hence, we examined the validity of our results by 
comparing our ranked lists with CpG sets obtained from the literature and for which the effect of smoking has 
been extensively validated. We retrieved the set of 62 CpG sites from Gao et al.11, which included only known 
associations reported by at least three studies, and performed enrichment analysis on the probes from this study 
ranked by decreasing significance (Fig. 2). We observed a sizeable enrichment of the known loci at the top of the 
list for the contrast W5Y vs. NS (Enrichment Score = 0.98, P < 10−4), confirming that despite the small sample 
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size, our results are appropriate to detect the effect of smoking on DNA methylation. Therefore, we obtained a 
final list of 58 DMPs (Table 1), considering only the positions having: (i) an FDR < 0.05 in the main comparison 
W5Y vs. NS and (ii) a corresponding change in the beta value scale (Δβ) larger than the 98th percentile of all 
the Δβ values. The majority of the 58 selected DMPs (84%) were found hypomethylated after smoking, with a 
maximum absolute average Δβ of 22% and 12% in the S and B cohort, respectively. Besides the manufacturer’s 
annotation, we also provide an additional mapping to larger gene regulatory domains, centered on the transcrip-
tional start site (TSS) of the surrounding genes (see Methods). Among the identified DMPs, the largest fraction 
corresponded to known sites affected by smoking12, which were replicated in our study (Table 1 and Fig. 3). These 

Figure 1.  Smoking induces DNA methylation changes that are attenuated five years after smoking cessation. 
(a) A circular Manhattan plot is shown for the −log10P-values obtained from the meta-analysis of the S and 
B cohorts, for the comparisons W5Y vs. NS, W5Y vs. B5Y and B5Y vs. NS (outmost to innermost circle). A 
dashed line indicates the genome-wide significant level (Bonferroni, 1.14 × 10−07) and a red dot marks the 58 
DMPs selected as indicated in the main text. (b) P-P plot of the expected vs. observed −log10P-values for the 
comparisons W5Y vs. NS, W5Y vs. B5Y and B5Y vs. NS respectively. The 0.95 confidence interval is indicated 
by a grey shaded area and is calculated under the assumption of the P-values being drawn independently from a 
uniform [0, 1] distribution.
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include, for example, probes mapping to the AHRR-EXOC3 (10 DMPs), ALPPL2-ALPI (5 DMPs), IER3-DDR1 
(4 DMPs), CNTNAP2 (3 DMPs), CDKN1A (2 DMPs), F2RL3 (1 DMP) and RPAP2-GLMN-GFI1 (1 DMP) loci. 
As previous studies were mainly restricted to active smokers, we verified that the changes in methylation are 
consistent with a genuine effect of smoking, when strictly selecting only the active smokers in the W5Y group 
(Supplementary Figure 5). Interestingly, the absolute average Δβ for the 58 DMPs was often larger in the S cohort 
compared to the B cohort (mean |Δβ| ± SEM, 0.061 ± 0.005 and 0.034 ± 0.004, respectively), possibly reflecting 
the different biological characteristics of the two cohorts, such as sex, HLA genotype or smoking load (estimated 
by the Pack-Year variable, PY). Indeed, for the W5Y class, the mean PY ± SEM was 14.66 ± 0.45 and 12.01 ± 0.30, 
for the S and B cohort, respectively.

We next sought to investigate the physio-pathological relevance of the identified DMPs by performing func-
tional annotation and ontology enrichment analysis. To this end, we defined an association rule between CpG 
positions and genes that considered gene regulatory domains (see Methods). Results are presented in Fig. 4. We 
observed relevant enrichment of terms related to metabolism of xenobiotics, including reactive oxygen species 
metabolism, de-phosphorylation and tumorigenesis (Fig. 4a). These terms likely reflect the detoxifying pathways 
activated by the chemicals contained in cigarette smoke, which are well known xenobiotics with carcinogenic 
activity. Interestingly, annotation with human disease ontology revealed enrichment for autoimmune diseases 
among the top categories, as several of the associated genes are linked to autoimmunity (Fig. 4a).

In addition to the above annotation, we performed further functional annotation of the smoking- associ-
ated (W5Y vs. NS) DMPs with respect to localization to CpG islands or regulatory regions reported from the 
ENCODE and NIH Roadmap Epigenomics projects, which include promoter marks, enhancer marks and DNase 
I Hypersensitivity sites (DHSs) from several cell types. The results revealed preferential localization outside CpG 
islands (Fig. 4b) and significant enrichment in regulatory regions of CD34+ hematopoietic stem cells, namely 
enhancers and promoters, identified by H3K4me1 or H3K4me3 histone marks respectively (Fig. 4c). Consistent 
with this observation, there was also a preferential enrichment in regions of accessible chromatin of CD34+ cells, 
as defined by DHSs (Supplementary Figure 6).

Smoking induces DNA methylation and gene expression changes of the AHRR gene.  We next 
aimed to examine the dynamics of smoking-induced alteration on DNA methylation levels and asked whether 
there is an effect of the time since smoking cessation on DNA methylation of the identified DMPs. Figure 5 
shows the results for the top-associated marker of smoking cg05575921 (W5Y vs. NS P = 3.70 × 10−27), which is 
hypomethylated in the smoking group and lies within an intron of the AHRR gene. Notably, the hypomethylation 
is not exclusive for the individuals with certain risk factors (sex and HLA haplotype, data not shown), but the 
level of hypomethylation for the patients in the W5Y group is proportional to the smoking load, calculated as 
PY (Fig. 5, R2

S = 0.35, PS = 0.006; R2
B = 0.50, PB = 1.25 × 10−11). The change at this DMP is considerable (mini-

mum observed β = 0.44 in the W5Y class compared to β = 0.76 in NS) but reversible after smoking cessation, 
and concordantly the average methylation value approaches the value observed in NS as smoke-free time after 
cessation increases. However, the time for restoration toward baseline DNA methylation appears to be influ-
enced by the smoking load, as patients with a larger PY value display lower methylation values than patients with 
smaller PY but in similar smoke-free year range (Fig. 5). We observed similar findings for the majority of the 
other DMPs with genome-wide significant P-values (Supplementary Figures 7 and 8). We also asked if smoking 
induces transcriptional changes in the AHRR gene and indeed we verified that in PBMCs from patients with MS 
(PBMC cohort) the AHRR gene is upregulated in smokers as compared to non-smokers (P = 2.10 × 10−3 W5Y 

Figure 2.  DNA methylation changes are enriched for known sites affected by smoking. A GSEA approach was 
used to demonstrate that enrichment exists for known smoking-affected CpGs. The green line on the top panels 
shows the Enrichment Score. Vertical ticks mark the location of the 62 CpGs from Gao et al.11 within the list 
of the probes ranked by decreasing significance, and the bottom panels show their corresponding normalized 
−log10P-values (for the comparisons W5Y vs. NS, W5Y vs. B5Y and B5Y vs. NS, respectively).



www.nature.com/scientificreports/

5SCIENTIFIC REPOrTS | 7: 14589 | DOI:10.1038/s41598-017-14788-w

CpG ID Chr. Position Direction P-value FDR ΔβS ΔβB Gene mapped TSS distance to TSS Known

cg04885881 chr1 11123118 −− 1.22E-07 0.00177 −0.0403 −0.0397 SRM 3036 Yes

cg25189904 chr1 68299493 −− 4.80E-06 0.0368 −0.0889 −0.065 GNG12 GNG12 342 Yes

cg09935388 chr1 92947588 −− 1.63E-07 0.00222 −0.174 −0.0497 GFI1 RPAP2,GLMN,GFI1 183066, 183054, 
1922 Yes

cg06635952 chr2 70025869 ++ 3.31E-06 0.0279 0.0244 0.0206 ANXA4 ANXA4,GMCL1 56763,30903 Yes

cg26271591 chr2 178125956 −− 9.91E-09 0.000241 −0.0626 −0.0444 NFE2L2 HNRNPA3,NFE2L2 48665,3902 Yes

cg03329539 chr2 233283329 −− 6.40E-09 0.000164 −0.043 −0.0329 ALPPL2,ALPI 11776,37502 Yes

cg06644428 chr2 233284112 −− 1.12E-09 0.0000325 −0.0387 −0.0231 ALPPL2,ALPI 12559,36719 Yes

cg05951221 chr2 233284402 −− 4.53E-19 2.83E-14 −0.113 −0.0643 ALPPL2,ALPI 12849,36429 Yes

cg21566642 chr2 233284661 −− 1.75E-24 3.81E-19 −0.172 −0.102 ALPPL2,ALPI 13108,36170 Yes

cg01940273 chr2 233284934 −− 1.17E-23 1.70E-18 −0.12 −0.0631 ALPPL2,ALPI 13381,35897 Yes

cg21197336 chr3 193587490 −− 5.13E-06 0.0374 −0.0534 −0.0303 OPA1,HES1 276557,266442 Yes

cg04492193 chr4 8135668 ++ 5.65E-06 0.0399 0.0411 0.0211 ABLIM2 AFAP1,ABLIM2 194014,24767 No

cg03991871 chr5 368447 −− 1.21E-07 0.00177 −0.0668 −0.0364 AHRR AHRR,EXOC3-
AS1,EXOC3

64156,74810, 
74824 Yes

cg23916896 chr5 368804 −− 3.16E-09 0.0000864 −0.0798 −0.0344 AHRR AHRR,EXOC3-
AS1,EXOC3

64513,74453, 
74467 Yes

cg01899089 chr5 369969 −− 2.04E-07 0.00262 −0.0441 −0.0231 AHRR AHRR,EXOC3-
AS1,EXOC3

65678,73288, 
73302 Yes

cg05575921 chr5 373378 −− 3.70E-27 1.62E-21 −0.22 −0.122 AHRR AHRR,EXOC3-
AS1,EXOC3

69087,69879, 
69893 Yes

cg26703534 chr5 377358 −− 4.49E-13 2.45E-08 −0.0601 −0.0286 AHRR AHRR,EXOC3-
AS1,EXOC3

73067,65899, 
65913 Yes

cg14817490 chr5 392920 −− 3.49E-10 0.0000117 −0.0616 −0.0392 AHRR AHRR,EXOC3-
AS1,EXOC3

88629,50337, 
50351 Yes

cg17287155 chr5 393347 −− 4.45E-07 0.00512 −0.0097 −0.0173 AHRR AHRR,EXOC3-
AS1,EXOC3

89056,49910, 
49924 Yes

cg25648203 chr5 395444 −− 2.64E-08 0.000502 −0.0523 −0.0276 AHRR AHRR,EXOC3-
AS1,EXOC3

91153,47813, 
47827 Yes

cg21161138 chr5 399360 −− 3.46E-20 3.02E-15 −0.0742 −0.0508 AHRR AHRR,EXOC3-
AS1,EXOC3

95069,43897, 
43911 Yes

cg24090911 chr5 400732 −− 2.79E-08 0.000508 −0.0424 −0.0327 AHRR AHRR,EXOC3-
AS1,EXOC3

96441,42525, 
42539 Yes

cg14580211 chr5 150161299 −− 2.22E-07 0.00269 −0.0779 −0.0197 SMIM3 SMIM3,IRGM 3791,64784 Yes

cg06126421 chr6 30720080 −− 1.09E-19 7.96E-15 −0.144 −0.0726 IER3,DDR1 7748,131779 Yes

cg14753356 chr6 30720108 −− 9.43E-12 3.75E-07 −0.091 −0.0311 IER3,DDR1 7776,131751 Yes

cg24859433 chr6 30720203 −− 2.12E-07 0.00265 −0.0305 −0.0218 IER3,DDR1 7871,131656 Yes

cg15342087 chr6 30720209 −− 2.01E-10 0.00000731 −0.0335 −0.0223 IER3,DDR1 7877,131650 Yes

cg21091547 chr6 36645500 −− 1.89E-08 0.000375 −0.0517 −0.028 CDKN1A CDKN1A 985 Yes

cg15474579 chr6 36645812 −− 1.27E-07 0.00179 −0.0572 −0.0196 CDKN1A CDKN1A 673 Yes

cg10691866 chr7 65817282 −− 4.31E-06 0.0342 −0.0287 −0.0204 TPST1 TPST1,KCTD7, 
RABGEF1

147096,388359, 
388436 Yes

cg21322436 chr7 145812842 −− 1.40E-12 6.80E-08 −0.0551 −0.0282 CNTNAP2 CNTNAP2 609 Yes

cg18804920 chr7 146572638 ++ 7.42E-06 0.0463 0.0325 0.0132 CNTNAP2 Yes

cg11207515 chr7 146904205 ++ 4.51E-06 0.0352 0.0633 0.0313 CNTNAP2 Yes

cg04172771 chr8 50892702 −− 1.40E-06 0.0142 −0.0334 −0.0171 SNTG1 SNTG1 68469 No

cg24838345 chr8 125737353 −− 2.61E-07 0.00308 −0.0264 −0.0205 MTSS1 TATDN1,NDUFB9, 
MTSS1

186027, 
186009,3316 Yes

cg12075928 chr8 141801307 −− 1.17E-08 0.000269 −0.0352 −0.0522 PTK2 AGO2,PTK2 155588, 209949 Yes

cg26361535 chr8 144576604 −− 8.61E-08 0.00136 −0.029 −0.0236 ZC3H3 MAFA,ZC3H3 64027,47018 Yes

cg03450842 chr10 80834947 −− 6.27E-06 0.0428 −0.029 −0.0236 ZMIZ1 ZMIZ1,PPIF 6155,272285 Yes

cg16611234 chr11 58870075 −− 8.48E-07 0.00923 −0.0569 −0.0178 FAM111B 4633 Yes

cg19254163 chr11 60623782 −− 2.32E-06 0.0211 −0.0218 −0.019 PTGDR2 PTGDR2 337 Yes

cg11660018 chr11 86510915 −− 1.45E-06 0.0144 −0.0471 −0.0236 PRSS23 PRSS23 365 Yes

cg23771366 chr11 86510998 −− 6.41E-08 0.00108 −0.0408 −0.0242 PRSS23 PRSS23 282 Yes

cg14462402 chr11 120678447 −− 7.10E-06 0.045 −0.078 −0.0179 GRIK4 GRIK4,TBCEL 295979,216381 Yes

cg07986378 chr12 11898284 −− 4.00E-06 0.0324 −0.0819 −0.0377 ETV6 ETV6,BCL2L14 95496,325587 Yes

cg20059012 chr12 53613154 −− 1.39E-06 0.0142 −0.0398 −0.0316 RARG ITGB7,RARG 12062,12881 Yes

cg27252467 chr13 19585665 ++ 2.70E-06 0.0236 0.052 0.0213 LOC348021 TUBA3C 170326 No

cg20303561 chr14 91881497 −− 2.58E-06 0.023 −0.0169 −0.0359 CCDC88C GPR68,CCDC88C 161227,2623 Yes

cg05284742 chr14 93552128 −− 8.65E-07 0.00923 −0.0337 −0.0158 ITPK1 CHGA,ITPK1 162703,30019 Yes

Continued
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vs. NS, Fig. 5) and the average fold change increased when we considered as smokers only those individuals 
that reported smoking within the previous 12 months from the time of sampling (P = 3.76 × 10−5 CS vs. NS, 
Supplementary Figure 9). We also observed a positive exposure-response effect between PY and AHRR expres-
sion (Fig. 5, R2 = 0.33, P = 5.33 × 10−5). Among the genes listed in Table 1 and linked to the DMPs, only AHRR 
showed both significant differential expression and exposure-response relationship in PBMCs.

At the discovery phase with the cohort-specific and meta-analysis results, we used an association model on 
the M-values, therefore the calculated effect size is not directly interpretable. Thus, we fitted a beta regression 
model with variable dispersion in order to precisely model the effect of smoking for the MS patients in the larger 
B cohort at the cg05575921 site (see Methods and Table 2). As expected, the PY effect was highly significant 
(P < 2 × 10−16), and the smoking group W5Y remained significant after correcting for PY (P = 0.008). When we 
predicted the methylation levels for MS patients in the W5Y category with PY = 15, we obtained a β = 0.67, corre-
sponding to a Δβ = −18% as compared to NS. In conclusion, smoking affects DNA methylation in patients with 
MS at specific genome-wide significant CpGs in an exposure-dependent manner. The effect - mostly hypomethyl-
ation - is more pronounced in MS patients that are smokers or ceased smoking less than 5 years prior to the time 
of sampling, while methylation levels are restored to the levels of non-smokers in MS patients who quit smoking 
five years or more prior to the time of sampling, but with dynamics influenced by the smoking load. Specifically, 
we observed demethylation of the AHRR gene and increased expression after smoking.

Is there any differential effect of smoking between MS patients and healthy controls?  Next, 
we asked whether the disease-related processes could alter the effect of smoking. Since the DMPs could lie within 
regulatory elements of genes that are located at a considerable distance, we considered mapping to regulatory 
domains (see Methods) to explore the relevance of the reported DMPs with MS. Thus, we verified that several of 
the DMPs listed in Table 1 map to the regulatory domains of genetic risk loci for MS or genes involved in MS or its 
animal model, i.e. Experimental Autoimmune Encephalomyelitis (EAE). Examples of a direct involvement either 
in autoimmunity, or MS susceptibility and pathogenesis, include GFI120,21, ZMIZ12,22 and NFE2L223. Moreover, 
CNTNAP224 and DDR125 are involved in demyelination/remyelination processes and could be indirectly linked 
to MS, while AHRR26, ITGB727, PPIF28 and GPR6829 have been studied in the context of EAE. Ultimately, 12 out 
of the 58 reported DMPs lie within an LD block containing at least one SNP considered as an MS risk according 
to the GWAS catalog. Although this enrichment is not significant as compared to a random expectation (data not 
shown), we hypothesized that the chronic inflammatory nature of the MS disease could potentially influence the 
DNA methylation changes observed in blood.

Thus, we analyzed genome-wide DNA methylation in a matched cohort of healthy controls stratified for the 
corresponding NS, B5Y and W5Y categories. Since the strict selection criteria of the S cohort did not allow inclu-
sion of healthy control group with adequate size, the results presented in this section were obtained exclusively 
from the B cohort. In order to address the general cohort integrity, we first assessed the enrichment for known 
smoking associated CpGs (Supplementary Figure 10), confirming that the effect on DNA methylation is also 
detectable in the healthy control group, although with limitation intrinsically given by the sample size. We mod-
eled the methylation level of the aforementioned top marker cg05575921 by including smoking load (PY), disease 
group (HC/MS) and smoking category as predictive variables, using beta regression with variable dispersion (see 
Methods). We found that the smoking group W5Y remained significant (P = 2.24 × 10−6), and that the smoking 
load was highly significant (P = 1.17 × 10−8) as well as its interaction with the disease group (P = 3.86 × 10−7). 
Age, sex and therapy in the 3 months prior to sampling were not significant and therefore were excluded from 
the final model. Similar conclusions might be drawn for other DMPs of the AHRR gene (Supplementary Table 2). 
We present evidence that, while the disease status does not affect DNA methylation, the presence of the disease 
might exacerbate the effect of the smoking load, by enhancing the extent of hypomethylation (Table 2 and Fig. 6). 
The variability is also affected, as we find that the dispersion is significantly increased in the smoking categories 
as compared with NS (Table 2 and Fig. 5). For example, when the methylation levels were predicted using this 

CpG ID Chr. Position Direction P-value FDR ΔβS ΔβB Gene mapped TSS distance to TSS Known

cg23161492 chr15 90357202 −− 8.27E-10 0.0000258 −0.0677 −0.0283 ANPEP ANPEP 891 Yes

cg03873392 chr16 10801987 ++ 6.81E-06 0.045 0.0414 0.0255 TEKT5,NUBP1 13184,35713 No

cg19572487 chr17 38476024 −− 1.68E-12 7.33E-08 −0.0507 −0.0519 RARA RARA,GJD3 10578,44042 Yes

cg07251887 chr17 73641809 −− 5.61E-06 0.0399 −0.0489 −0.0171 SMIM6; 
RECQL5 SMIM6 706 Yes

cg03636183 chr19 17000585 −− 5.75E-23 6.28E-18 −0.11 −0.0686 F2RL3 F2RL3 914 Yes

cg25602603 chr19 22320744 ++ 3.48E-06 0.0287 0.0429 0.0261 ZNF257,ZNF676 85453,59008 No

cg03364381 chr21 43099460 ++ 7.08E-06 0.045 0.062 0.0356 LINC00111 TMPRSS2,RIPK4 219467,87805 No

cg01127300 chr22 38614796 −− 3.03E-06 0.0259 −0.0356 −0.0243 MAFF,TMEM184B 16907,54243 Yes

cg10293293 chrX 23761105 ++ 6.98E-06 0.045 0.0594 −0.008 ACOT9 ACOT9 284 No

cg24123432 chrX 105412256 −− 6.12E-06 0.0425 −0.0252 −0.0268 SERPINA7 130870 No

Table 1.  Summary of the 58 DMPs detected in blood of MS patients between W5Y vs. NS. The CpG site is 
marked as known if present in reference12; Δβ: average methylation difference between W5Y and NS; TSS: 
transcription start site.
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model, for an individual in the W5Y group smoking 15 PY, the predicted DNA methylation at the cg05575921 
locus was 0.67 for MS cases, and 0.74 for controls. Figure 6 shows the fitted effect of PY for cases and controls, and 
graphically shows how the smoking load statistically interacts with the disease.

Discussion
In this study we selected two separate cohorts from the EIMS project, whose main goal is to contribute to an 
increased understanding of the factors causing MS, with a focus on environmental/life-style and genetic fac-
tors and their interaction. We performed cohort-specific and meta-analysis studies, in order to assess the effect 
of smoking, in the context of a chronic inflammatory disease. The rationale behind this study is based on the 
consistent body of evidence involving smoking in MS pathogenesis. Firstly, epidemiological studies have estab-
lished a strong association between smoking and increased susceptibility risk, disease progression and clinical 
disability6. A gene-smoking interaction has also been observed, as the effect of the major determinant of genetic 
risk, HLA genotype, has been shown to be modified by smoking10. Secondly, from a mechanistic point of view, 

Figure 3.  Genomic localization of selected DMPs. For six selected DMPs, the panels show: the meta-analysis 
P-value, the effect size (Δβ) for the S and B cohorts, the location of all 450k probes, the CpG islands and the 
corresponding genes in the region. The plots are centered on the most significant DMPs and extended ± 15000 bp.



www.nature.com/scientificreports/

8SCIENTIFIC REPOrTS | 7: 14589 | DOI:10.1038/s41598-017-14788-w

smoking is known to induce lung tissue inflammation and promote pro-inflammatory pathways30, processes that 
have been implicated in the development of neuroinflammatory responses in the central nervous system6,31. In 
this context, epigenetic processes (DNA methylation) are likely to contribute to the response to environmental 
exposures (smoking), by mediating or altering the impact of the external trigger on the gene expression networks 
and cellular function during neuroinflammation. Finally, it has been extensively demonstrated that blood DNA 
methylation is affected by cigarette smoke and that an exposure-response relationships of smoking load and time 
since cessation could further explain DNA methylation levels11,12.

Motivated by the above considerations, we aimed at analyzing the impact of smoking on DNA methyl-
ation in blood from MS patients. With respect to the smoking phenotype, we stratified the samples with an 
epidemiologically-educated criterion, stating that an increased risk for MS exists for individuals that ceased 
smoking in a period less than five years7. Moreover, a large-scale meta-analysis of the effect of smoking12 recently 
confirmed that the DNA methylation levels of many of the smoking-related DMPs returned to the basal levels 
within five years of smoking cessation. Accordingly, in our study we observed an exposure-response effect and a 
restoration to the levels of non-smokers for the top associated DMPs. Despite the five-year window as a reason-
able cut-off in our study, we found individual sources of variability and importantly we observed that the time 

Figure 4.  Functional annotation of DMPs. (a) GREAT analysis was performed to retrieve functional categories 
associated with DMPs. Up to top 10 categories per ontology group are shown (FDR < 0.05, fold-enrichment 
≥2 and at least two gene hits), for the following groups: Gene Ontology Molecular Function (GO-MF), Gene 
Ontology Biological Process (GO-BP), Mouse phenotype and Disease Ontology. (b) For the annotation with 
respect to CpG islands, the relative fraction of positions located within each feature type is calculated for DMPs 
(red bars) and the entire 450k array (blue bar). (c) The enrichment −log10P-values for all H3 histone marks of 
the blood cell types from NIH Roadmap Epigenomics data was obtained with eFORGE, with default setting. 
Dots are colored according to the FDR and significant modifications are labeled. Abbreviations: CB, cord blood; 
HSC, Hematopoietic Stem Cells; S, single donor.
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for the reversal of the methylation levels could be influenced by the extent of smoking. Therefore, a more precise 
and accurate individualized assessment should be performed on larger cohorts of patients or in a longitudinal 
scenario to address this issue.

A limitation of this study is the relatively small sample size, which likely increases the number of false nega-
tives and results in narrow generalization. On the other hand, we controlled the number of false positives by using 
both an FDR and an effect size condition, resulting in identification of DMPs, which genuinely overlapped with 
previous reports11,12. While it is tempting to speculate that the novel sites (see Table 1) could be specific for the 
MS context, caution should be taken when interpreting the results, as other unknown sources of variability could 
influence the reported differences. Nevertheless, our study highlights that a differential effect of the smoking 
load on DNA methylation is observed in patients as compared to healthy controls, an observation that deserves 
further studies, as we lack a complete understanding of the molecular events that mediate the risk of developing 
MS conferred by cigarette smoking. Although it is demonstrated that environmental and lifestyle factors interact 
with immune response genes6, it has not been fully revealed how the autoimmune reaction is fine-tuned by the 

Figure 5.  The effect of smoking is proportional to the smoking load and decrease as time since smoking 
cessation increase. DNA methylation is shown for the cg05575921 site, separately for the S and B cohorts. 
Methylation levels (β values) are shown in relation to the NS, B5Y and W5Y smoking categories (left panels), the 
time since smoking cessation (middle panels), and the Pack-Years (PY) in the W5Y group only (right panels). 
AHRR gene expression levels are shown for the PBMC cohort as normalized counts, in relation to the NS, B5Y 
and W5Y smoking categories and the Pack-Years in the W5Y group. Grey dots correspond to individuals in the 
W5Y group that were actively smoking at the date of sampling in the PBMC cohort.
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presence of those risk factors in a mechanistic way. Therefore, further support is needed for the generalization of 
the findings, especially to rule out, in larger cohorts, that the effect is not inherently biased by the fact that smok-
ing might be more common among MS patients than healthy controls (higher PY).

Another aspect that would require further investigation is the fact that we generally observed larger effect 
sizes (ΔM value) in the smaller cohort (S), albeit with greater standard error, corresponding to larger average 
difference in methylation (Δβ), as compared to the larger cohort (B). If we exclude merely technical and sys-
tematic reasons (quality of the arrays, different facilities, systematic biases in the phenotyping etc.), it is worth 
speculating whether this observation can be linked to the “risk” characteristics of the samples in the S cohort, 
which included only women carrying the MS- and smoking-interacting HLA-DRB1*15:01 risk genotype and 
lacking the protective HLA-A2 genotype. Although the major cell types did not appear to be markedly affected, it 
cannot be excluded that the different biological characteristics of the two cohorts, including for example inflam-
mation, are linked to different proportions of certain subsets of cells, which in turn would influence the detected 
methylation signal. As an example in support of this possibility, we observed that a region in the gene body of 
GFI1 containing a significant DMP is more demethylated in smokers of the S cohort, compared to the B cohort. 
GFI1 is a transcriptional repressor that regulates the differentiation of several hematopoietic cell types32 and its 
downregulation is crucial for T helper (Th) 17 differentiation21. Differences in expression/methylation of this gene 
are therefore likely among subpopulations of blood cells and they could be responsible for the observed hetero-
geneity. Alternatively, a simpler explanation would be that the higher smoking load in the S cohort contributes to 
a stronger average Δβ difference, or that the exposure to passive smoking of some non-smokers in the B cohort 
constitutes a confounding factor. All the above considerations highlight the importance of controlling for relevant 
covariates in the experimental design and at the analysis phases, to account for possible sources of additional vari-
ation. Indeed, the average effect size in differential methylation is modest, with only a few of the 58 CpGs showing 
average difference >10%, although the spread of the individual methylation levels in smokers is high. This might 
conceivably reflect both the exposure-response relationship and other biological sources of variation.

The AhR pathway is involved in the metabolism of xenobiotics and it is activated by environmental pollutants, 
including dioxins contained in cigarette smoke33. Furthermore, the AhR pathway exerts environmental control 
on the immune response, in particular in neuroinflammation34,35, and it is known as a regulator of the Th17 and 
regulatory T cell subsets36,37. Further relevance as a therapeutic target for immunological diseases is shown by 
the recent finding that Laquinimod, a drug being evaluated for the treatment of MS, activates the AhR pathway 
and upregulates CYP1A1 and AHRR26. The AHRR gene, one of the top demethylated loci after smoking in our 
investigation as well as previous studies, is activated by the AhR/ARNT heterodimer and its activity inhibits AhR 
function in a negative feedback regulation that involves a competition with AhR for heterodimerizing with ARNT 
and binding with the responsive DNA sequences38. The antagonism of the AhR protein leads simultaneously to 
an increased expansion of CD34+ cells and decreased AHRR levels39. Interestingly, we observed enrichment of 
smoking-related DMPs on enhancers of CD34+ together with decreased methylation and increased expression 
of AHRR. Although we did not evaluate the connection between AHRR methylation and expression in matched 
RNA and DNA samples obtained concurrently from the same individuals, we speculate that there might be a 
link between the deregulated AHRR/AhR activity, and the differential number of CD34+ cells after smoking. 

MS-only model (μ ~ PY + Smoking, φ ~ Smoking)

Regression parameters for the mean (μ)

Predictor Effect* 95% CI P-value

Pack-Year (PY) −0.050 −0.061–−0.038 <2 × 10−16

Smoking B5Y −0.014 −0.197–0.170 0.88

Smoking W5Y −0.295 −0.512–−0.078 7.70 × 10−3

Regression parameters for the precision (φ)

Predictor Effect 95% CI P-value

Smoking B5Y −1.380 −1.969–−0.792 4.33 × 10−6

Smoking W5Y −1.422 −2.009–−0.835 2.04 × 10−6

MS/HC model (μ ~ PY + MS + Smoking + PY:MS, φ ~ Smoking)

Regression parameters for the mean (μ)

Predictor Effect* 95% CI P-value

Pack-Year (PY) −0.023 −0.031–−0.015 1.17 × 10−8

MS 0.047 −0.026–0.119 0.21

Smoking B5Y 0.065 −0.048–0.179 0.26

Smoking W5Y −0.326 −0.462–−0.191 2.24 × 10−6

PY:MS interaction −0.027 −0.037–−0.016 3.86 × 10−7

Regression parameters for the precision (φ)

Predictor Effect 95% CI P-value

Smoking B5Y −1.086 −1.504–−0.668 3.59 × 10−7

Smoking W5Y −1.556 −1.963–−1.148 7.30 × 10−14

Table 2.  Summary of the beta regression. *Effect: indicates the change in log-odds for the DNA methylation 
estimate (logit link).
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Indeed, it has previously been observed that smoking is associated with decreased circulating CD34+ cells40. 
Furthermore, it remains an open question whether the inflammation in MS is influencing the mobilization of 
CD34+ cells to the peripheral blood, as some studies show that Natalizumab increases the proportion of blood 
CD34+ cells in MS patients and that response to the treatment is associated with their mobilization41.

In conclusion, smoking might act as an environmental epigenetic modifier that is able to hamper the cellular 
regulatory networks, which are in essence built by interactions between genes and are remodeled in association 
with the onset of MS and its natural history. Both from a public health and pathogenetic perspective, the impact 
of smoking has a fundamental importance in the understanding and the management of MS, therefore the find-
ings presented here provide clues for further study of the connection between the environment and the reversible 
epigenetic changes observed in MS patients that associate with smoking.

Conclusions
We verified that smoking has a genome-wide significant effect on blood DNA methylation in MS patients, and 
that the effect is especially evident in current smokers and patients that stopped smoking in a period of less than 5 
years prior to sampling. Although the effect does not seem to be confounded by the major cell types’ proportions, 
we found an interesting association with CD34+ regulatory sites. We analyzed in detail the AHRR gene, whose 
expression is increased in smokers and shows hypomethylation at several CpG sites. For the top significant site 
(cg05575921), we thoroughly modeled the effect of the smoking load and we suggested an interaction with the 
disease, conceivably indicating a connection between a modifiable risk factor, an epigenetic modification and the 
pathogenetic mechanisms.

Methods
Ethics, consent and sample collection.  The Regional Ethical Review Board in Stockholm approved this 
study (# 04-252/1-4, 02-548 and 2009/2107-31/2) and methods were carried out in accordance with institutional 
guidelines on human subject experiments. Informed consent was obtained from all subjects. All samples were 
collected between 2005 and 2009 and are part of the large and unique Epidemiological Investigation of Multiple 
Sclerosis (EIMS) cohort in Sweden, comprising MS cases and controls matched by age, sex, and residential area7. 
Self-reported smoking information (cigarettes, cigars and pipes) was acquired from the EIMS questionnaire. 
DNA was extracted from whole blood.

Study cohorts.  Description of the cohorts is shown in Supplementary Table 1. The Selected cohort (S) con-
sisted of 50 patients, stratified by considering the time they reported the last smoking event, prior to the time of 
sampling, i.e. within 5 years (W5Y, n = 19), 5 years and beyond (B5Y, n = 9), and never-smokers (NS, n = 22). 
Importantly, all individuals included in this cohort are Swedish females in the age of 26–59 years, carrying the 
genetic risk for MS, i.e. carrier of HLA-DRB1*15:01 risk variant and non-carrier of HLA-A2 protective variant. 
All NS reported no exposure to passive smoking and one smoker reported the concomitant use of cigars. Disease 
duration spanned from 0–10, 0–7 and 0–5 years prior to sampling for W5Y, B5Y and NS, respectively.

The Broad cohort (B) consisted of 132 MS patients and 135 healthy controls (HC) divided into W5Y (33 cases 
and 34 controls), B5Y (34 cases and 31 controls) and NS (65 cases and 70 controls). Male and female Swedish 
individuals in the age of 16–66 years were included and they were not selected on the basis of their HLA genotype. 

Figure 6.  The effect of the pack-years interacts with the disease. The fitted β values were obtained as a function 
of Pack-Years (PY) for MS (red) and controls (blue) in the W5Y smoking category, by using a beta regression 
model, as indicated in the main text. 95% confidence levels were estimated by bootstrapping with 1000 
replications and are shown as shaded areas.
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62 NS (30 cases and 32 controls) reported past exposure to passive smoke and 8 smokers (3 cases and 5 controls) 
reported the use of cigars or pipes. For MS cases, disease duration spanned from 0–30, 0–31 and 0–28 years prior 
to sampling for W5Y, B5Y and NS, respectively.

The peripheral blood mononuclear cell (PBMC) cohort consisted of 113 patients with MS or Clinically 
Isolated Syndrome included in a biobank of samples collected between 2001 and 2010, at the Neurology Clinic 
of the Karolinska University Hospital, Solna, Sweden. Patients were categorized into W5Y (n = 43), B5Y (n = 26) 
and NS (n = 44). Male and female individuals were included and they were not selected on the basis of their HLA 
genotype.

For all cohorts, the amount of smoking was quantified with the pack-year (PY) variable, calculated as 
= ∗PY cigarettes smoked per day years as smoker( / 20) , assuming 20 cigarettes per pack.

Methylation analysis.  S cohort. 500 ng of bisulfite converted DNA (EZ DNA Methylation kit, Zymo 
research) was amplified, fragmented and hybridized to Illumina Infinium Human Methylation450k Beadchip 
using standard protocol at BEA core facility (Karolinska Institutet). The samples were randomly assigned to 
eight BeadChips with technical replicates and processed in one run. Three samples were technically replicated 
in pairs. BeadChips were scanned using an iScan and raw IDAT files were generated and processed in R with the 
minfi package42. We performed quality control with the shinyMethyl package43. We first excluded one failing 
sample on the basis of the control probe profiles. We then normalized the intensities and calculated methylation 
estimates (β values) using the Functional Normalization algorithm44. We excluded: probes with a minfi detection 
P-value > 0.01 in at least 10% of the samples; probes with common single nucleotide polymorphisms (SNPs) at the 
single base extension or at the CpG interrogation sites, as reported in the IlluminaHumanMethylation450kanno.
ilmn12.hg19 annotation package (dbSNP 137); and cross-reactive probes as reported previously45. Phenotypic 
variables, cell type fraction estimates (see below) and technical variables (Beadchip and Array) were checked for 
association with the scores from a Principal Component Analysis, in order to identify covariates to include in our 
association model. We restricted our analysis to 436,999 probes (out of 485,512).

B cohort. 500 ng of bisulfite converted DNA (EZ DNA Methylation kit, Zymo research) was amplified, frag-
mented and hybridized to Illumina Infinium Human Methylation450k Beadchip using standard protocol at Johns 
Hopkins University School of Medicine. The samples were randomly assigned to three plates and 24 BeadChips 
and processed and analyzed as above. For PCA analysis, phenotypic variables, cell type fractions estimates (see 
below) and technical variables (plate, Beadchip and Array) were checked for association with the scores from a 
Principal Component Analysis, in order to identify covariates to include in our association model. We restricted 
our analysis to 437,034 probes (out of 485,512).

All bioinformatics analyses were performed in R, unless otherwise indicated.

Cell type composition estimation.  We estimated the blood cell type proportions (CD4+ T cells, CD8+ 
T cell, B cells, NK cells, monocytes and granulocytes) using the reference-based Houseman method18 in the minfi 
package for each cohort separately. The method makes use of methylation profiles obtained from isolated blood 
populations46 to deconvolute the heterogeneous signal from blood.

Differential Methylation.  Differentially methylated positions (DMPs) were obtained using multiple linear 
regression with limma47 on M-values, obtained by logit transformation of the β values. Infinite M-values were 
substituted with the minimum/maximum value of the finite M-value for the corresponding sample. We mod-
eled the association between DNA methylation and smoking status (NS, W5Y, B5Y), in the presence of covari-
ates. Probes were annotated with the IlluminaHumanMethylation450kanno.ilmn12.hg19 package and a β value 
change was calculated as the difference between the average group values.

For the S cohort, we included as covariates the age (years) and three Surrogate Variables (SVs) estimated with 
the sva method48, in order to control for unwanted variation. As an alternative to the inclusion of the SVs, another 
model was fitted including the age and the estimated cell type proportions (CD4+ T cells, CD8+ T cell, B cells, 
NK cells and monocytes). To account for the presence of technical replicates, we estimated the consensus correla-
tion as a robust average of the individual correlation values obtained by fitting a mixed linear model individually 
for each gene, and then using this value in the linear model step as within-block correlation. Coefficients, P-values 
and FDRs (Benjamini-Hochberg) were obtained for the contrasts W5Y vs. NS, W5Y vs. B5Y and B5Y vs. NS. For 
the B cohort, we performed separate analyses for the healthy controls and the MS cases. We included as covariates 
the age (years), the sex, the passive smoking (no/yes) and three SVs, in order to control for unwanted variation. 
As an alternative to the inclusion of the SVs, another model was fitted including the age, the sex, the passive 
smoking and the estimated cell type proportions (CD4+ T cells, CD8+ T cell, B cells, NK cells and monocytes). 
Coefficients, P-values and FDRs (Benjamini-Hochberg) were obtained for the contrasts W5Y vs. NS, W5Y vs. 
B5Y and B5Y vs. NS.

Meta-analysis.  We performed meta-analysis with METAL49, using inverse-variance weighting. Briefly, indi-
vidual coefficients from the limma analysis (i.e. the effect size estimates on the M-value scale) were combined 
using their estimated standard errors as weights in order to obtain and an overall P value. The FDR was obtained 
with the Benjamini-Hochberg procedure.

GSEA.  Gene Set Enrichment Analysis (GSEA) was performed using the package fgsea50 and the set of 62 CpG 
sites from Gao et al. as a gene set11. These sites were associated with smoking at least by three studies. We ranked 
all the analyzed sites for the three contrasts (W5Y vs. NS, W5Y vs. B5Y and B5Y vs. NS.) using the respective 
−log10P values, and the significance was assessed with 10,000 permutations.
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Gene regulatory domains and functional annotation.  In order to map probes to genes in a broader 
way and also obtain a gene-based summary measure, we assigned the probes to large gene regulatory domains, 
similarly to the GREAT approach51. We obtained the subset of UCSC known genes, and to obtain transcription 
start sites we considered the canonical isoform as taken from the knownCanonical table of the UCSC knownGene 
track. Then, we constructed gene regulatory domains with the “basal plus extension rule” (constitutive 5.0 kb 
upstream and 1.0 kb downstream, up to 500 kb max extension. GREAT51 was used to discover functional catego-
ries associated with DMPs. The enrichment for known cell type-specific DNase 1 hypersensitive sites and histone 
modifications was performed with eFORGE52.

Beta regression.  We performed beta regression as implemented in the package betareg53. This model is 
especially suitable for a response variable that assumes values in the unit interval (0, 1) and in presence of het-
eroskedasticity. The methylation estimates from the arrays were modeled with a variable dispersion beta regres-
sion. For the regression with the MS-only cases, we included the smoking group (NS, B5Y and W5Y) and the PY 
regression parameters for the mean (μ) and the smoking group as regression parameters for the precision (φ). 
When considering all MS and HC subjects, we included the smoking group (NS, B5Y and W5Y), the PY, the case/
control variable and its interaction with PY as regression parameters for μ, and the smoking group as regression 
parameters for the φ. Default link functions were used (logit for μ and log for φ).

RNA-Seq analysis.  A matrix with gene expression counts in PBMCs was obtained from James et al. (submit-
ted). Counts were processed and normalized with DESeq254 and a P-value for differential expression was obtained 
for smokers (W5Y or current smokers) vs. non-smokers.

Bisulfite pyrosequencing.  Bisulfite pyrosequencing was performed for technical validation. Primers were 
designed using PyroMark Design software (Qiagen), and sequences are presented in Supplementary Table 3. 
Three DMPs; cg05575921 (AHRR), cg21566642 (ALPPL2) and cg06126421 (IER3/DDR1), including additional 
adjacent CpGs (see Supplementary Figure 1), were selected for validation from the S cohort. Genomic DNA 
(500 ng) was treated with sodium bisulfite (Methylation gold Bisulfite Kit, Zymo) and subsequently 1 µl of con-
verted DNA (~10 ng) was applied as template in the PCRs performed with the PyroMark PCR Kit (Qiagen). 
The entire PCR product and 4 pmol of the respective sequencing primer, and streptavidin sepharose high per-
formance beads (GE Healthcare), were used for pyro-sequencing performed with the PSQ 96 system and the 
PyroMark Gold Q96 Reagent Kit (Qiagen). The PyroMark CpG software 1.0.11 served for data analysis.

Availability of data.  DNA methylation data are available on GEO under the accession numbers GSE60655 
for the S cohort. The data from the B and PBMC cohorts are not publicly available at the submission date due to 
non-disclosure agreements for independent manuscripts, but are available from the corresponding author on 
reasonable request.
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