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Abstract

Genetic changes are infrequent in acute myeloid leukemia (AML) compared to other malignancies 

and often involve epigenetic regulators, suggesting that an altered epigenome may underlie AML 

biology and outcomes. In 96 AML cases including 65 pilot samples selected for cured/not-cured, 

we found higher CpG island (CGI) promoter methylation in cured patients. Expanded genome-

wide digital restriction enzyme analysis of methylation (DREAM) data revealed a CGI methylator 

phenotype independent of IDH1/2 mutations we term AML-CIMP (A-CIMP+). A-CIMP was 

associated with longer overall survival (OS) in this dataset (median OS, years: A-CIMP+ = Not 

reached, A-CIMP− =1.17; P=0.08). For validation we used 194 samples from The Cancer Genome 

Atlas interrogated with Illumina 450k methylation arrays where we confirmed longer OS in A-

CIMP (median OS, years: A-CIMP+ =2.34, A-CIMP− =1.00; P=0.01). Hypermethylation in A-

CIMP favored CGIs (OR: CGI/non-CGI=5.21), and while A-CIMP was enriched in CEBPA 
(P=0.002) and WT1 mutations (P=0.02), 70% of cases lacked either mutation. Hypermethylated 

genes in A-CIMP function in pluripotency maintenance, and a gene expression signature of A-

CIMP was associated with outcomes in multiple datasets. We conclude that CIMP in AML cannot 

be explained solely by gene mutations (e.g. IDH1/2, TET2), and that curability in A-CIMP+ AML 

should be validated prospectively.
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Introduction

Acute myeloid leukemia (AML) in adults is curable in a subset of cases that remain 

incompletely characterized. Certain molecular aberrations have been shown to associate with 

differential outcomes in AML1–4. For instance, curability is highest in younger patients with 

core binding factor (CBF) rearrangements between chromosomes 8 and 21, and within 

chromosome 16, while prognosis is poor in patients with autosomal monosomies2, 5–9. 

Despite these clinically useful cytogenetic risk associations, outcomes in AML remain 

heterogeneous and the biological mechanisms for diverse outcomes remain obscure10. 

Importantly, a number of patients with intermediate or poor risk cytogenetics can still be 

cured and may benefit from dose-intensive chemotherapy but their identification is 

uncertain, even in the era of whole genome mutational analysis1, 2, 10–12.

DNA methylation is an epigenetic process that is frequently altered in AML, either as a 

primary defect or secondary to mutations in regulators of DNA methylation such as TET2, 
DNMT3A and IDH1 or IDH213–20. Aberrant methylation at many CpG islands (CGIs) 

characterizes a subset of cancers of multiple primary origin that has been termed CGI 

methylator phenotype (CIMP)21. Interestingly, CIMP is often associated with a relatively 

better outcome. In colon cancer, CIMP is associated with microsatellite instability, and these 

patients often survive longer, perhaps as a result of enhanced anti-tumor immunity22–26. In 

gliomas, CIMP is an independent predictor for improved outcome27–29 and in breast cancer, 

CIMP is associated with a gene expression signature characteristic of good survival30, 31. 

Consistent with CIMP, Marcucci, et al. recently reported expression of seven genes that gain 

methylation in AML is associated with improved survival32. While these and other data 

suggest that CIMP exists in AML, its biological and clinical characteristics remain 

incompletely defined32–34. Observed mutations in IDH1/2 are a notable potential cause of 

CIMP. It has previously been shown that the R132H mutation in IDH1 and the R140Q or 

R172K mutations in IDH2 can cause aberrant enzymatic generation of the oncometabolite, 

2-hydroxyglutarate, which inhibits normal TET-mediated DNA demethylation35–38. While 

IDH1/2 mutations can lead to hypermethylation, CIMP in colorectal and gastric cancers are 

not IDH1/2 associated; thus, other potential causes of CIMP remain unexplored.

In this study, we analyzed AML patient samples for DNA methylation status and identified 

two distinct CIMP phenotypes: an IDH1/2 mutation-associated CIMP (I-CIMP), and an 

IDH1/2 mutation-independent AML CIMP (A-CIMP). We found that the DNA methylation 

patterns, genetic backgrounds, and clinical characteristics between I-CIMP and A-CIMP are 

distinct, with an overall survival (OS) benefit for patients with A-CIMP+ disease.
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Methods

Patient samples

For the pilot analysis we examined 65 bone marrow samples from AML patients who had 

been treated at MD Anderson Cancer Center (MDACC) from 1985 to 2004. The samples 

were selected for patients with short and long survival from a tissue bank. The expanded 

whole-genome methylation analysis was based on 42 of these 65 samples (selected by DNA 

availability) in addition to an unselected cohort of 59 consecutive samples from patients 

treated for AML at MDACC. We included only patients treated with MDACC-standard 

idarubicin + cytarabine based chemotherapy. None of the patients received treatment with 

hypomethylating agents. Standard diagnostic and remission criteria were used. DNA was 

extracted by standard methods. Cytogenetic risk groups were defined as follows: good 

(inv16), intermediate (normal karyotype; +8; +18; +6, +21), and poor (−5/del5q; −7; 11q23; 

t(6;11), +21; complex karyotype with 3 or more genetic abnormalities). For normal controls, 

peripheral blood leukocytes were obtained from 32 healthy volunteers (18–53 years of age). 

Patient characteristics for the expanded analysis are described in Table 1, and for the pilot 

study alone in Supplementary Table S1. The Institutional Review Boards at MDACC, and 

Temple University approved all protocols, and all patients gave informed consent for the 

collection of residual tissues as per institutional guidelines and in accordance with the 

Declaration of Helsinki. A summary of the different patient sample cohorts used and their 

DNA methylation status is provided in Supplementary Figure S1.

Bisulfite-pyrosequencing

DNA was extracted, bisulfite-treated, and sequenced as previously reported13. In brief, 

bisulfite-treated DNA was amplified with gene-specific primers in a 2-step polymerase chain 

reaction (PCR). The second step of PCR was used to label the reverse DNA strand with 

biotin. DNA methylation was measured as the percentage of bisulfite-resistant cytosines at 

CpG sites by pyrosequencing. Assays close to transcription start sites were used for OSCP1, 
CDH13, CDKN2B, NPM2, OLIG2, SLC26A4, PGR, and SCGB3A1, as well as the LINE-1 

repeat (GenBank accession number X58075) to approximate global methylation.

DREAM interrogation of genome-wide methylation

DREAM analysis was performed on 96 AML samples and 32 normal blood controls as 

previously described39. In brief genomic DNA extracted from AML samples was 

sequentially cut with two enzymes recognizing CCCGGG sites in DNA. SmaI does not cut 

methylated sites, and leaves blunt ends. XmaI can cleave methylated sites and leaves a 5’ 

overhang sequence. Thus, specific signatures are created for methylated and unmethylated 

sites. Enzyme-treated DNA was then used to generate sequencing libraries according to 

Illumina protocols, and run on an Illumina HiSeq 2000 or 2500. Sequencing data were 

mapped to CCCGGG sites in the human genome (hg19) and methylation was calculated as 

the fraction of total CCCGGG site sequencing reads that mapped to the methylated 

signature. For quality control, these data were filtered to include sites with at least 100 reads 

in 75% of samples, giving 11,499 CpG sites for bioinformatic analysis. For clustering 

analyses missing values in each sample were imputed as the median of all non-missing 

values for that site. In order to select for cancer specific hypermethylation patterns we 
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selected CpG sites with average methylation and standard deviation <20% in normal blood, 

and standard deviation >12% in AML (1210 sites).

Targeted mutational analysis

Targeted next-generation sequencing was performed on DNA extracted from 88 AML 

samples using the Illumina TruSight Myeloid Sequencing Panel (54 genes) with library 

preparation done according to manufacturer instructions (Illumina, Inc.). In brief, genomic 

DNA was hybridized to region-specific upstream and downstream oligonucleotide pairs. 

Unbound oligonucleotides were washed and hybridized pairs were joined by a DNA 

polymerase and ligated. Captured target regions were PCR amplified with multiplexing 

index sequences added and pooled for sequencing. Paired-end sequencing was performed on 

an Illumina HiSeq 2500 which generated 78, and 85 million total aligned reads across two 

rapid run lanes. Over 95% of aligned reads had sequencing quality scores greater than 30, 

and mean coverage across all interrogated genes for all samples was approximately 5,000×. 

Because there were no normal control tissues available for these AML cases, we used 

Illumina BaseSpace TrueSeq Amplicon app and BaseSpace Variant Studio 2.2 (Illumina, 

Inc.) in conjunction with variant filtering criteria to make likely distinctions between somatic 

and germline alterations. To this end we required that non-synonymous variants with a 

minimum allelic ratio of 10% be detected by at least 50 reads with quality scores > 50, and 

that the variants be present in the COSMIC database with a hematologic cancer association. 

Based on these criteria, we detected 212 likely somatic mutations in our DREAM cohort.

TCGA and microarray validation data

Level 1 Illumina HumanMethylation450k methylation array data for 194 AML patients were 

downloaded from the TCGA data portal40. The raw data were pre-processed using 

functional normalization in the minfi R package41. For normal blood controls profiled using 

the Illumina HumanMethylation450k platform we used a publicly available dataset 

(GSE51388)42. Analysis was restricted to only those CpG sites with non-NA values for all 

samples (375,324 sites). To select for cancer-specific hypermethylation, and to remove 

potential age-related sites we selected for CpG sites unmethylated and non-variable in 

normal blood (beta-value average < 20%, standard deviation < 5%) and with variable 

methylation in AML (beta-value standard deviation > 20%). To confirm the overlap in A-

CIMP targets of hypermethylation in the high-throughput datasets (DREAM and 450k) we 

examined normally unmethylated (< 20%) promoter CpG islands hypermethylated by at 

least 10% in 30% or more A-CIMP+ AML cases versus normal blood and found significant 

overlap (1.34E-49) across the two platforms (Supplementary Figure S2, Supplementary 

Table S2). RNA-seq data was also downloaded for the 176 available cases. Differential 

expression analysis was performed on read counts using the edgeR package in R, and 

hierarchical clustering was performed using z-score transformed RPKM values. For 

validation of differential gene expression, we downloaded datasets composed of 461, and 52 

well-annotated AML cases from GEO with available outcomes data (GSE6891, and 

GSE23312-GPL10107)43, 44. Cluster analysis was performed using normalized probe 

intensity data for all interrogated genes which were down-regulated and hypermethylated in 

TCGA A-CIMP (318 genes). For visual clarity, heatmap of GSE6891 microarray data 

display only genes in the 80th percentile by standard deviation. Comparisons of average z-

Kelly et al. Page 4

Leukemia. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



score gene expression for up and down –regulated genes were done using the non-parametric 

Kruskal-Wallis test followed by the Dunn post-hoc test implemented in R.

Statistics

Unsupervised hierarchical clustering was performed in R using Ward’s method (Ward.D) as 

implemented by the hclust function45. Differential methylation between clusters of AML 

cases was evaluated using the student t-test which was corrected for multiple hypothesis 

testing using the FDR method implemented in R45, 46. Clinical characteristics were 

compared between groups using single factor ANOVA and Fisher’s Exact Test. Unless 

otherwise stated, two-tailed p-values ≤ 0.05 were considered significant. For the preliminary 

pyrosequencing analysis we calculated methylation z-score by subtracting the mean 

methylation from each individual methylation level and dividing the difference by the 

standard deviation. This allows for comparison of a small number of methylation sites with 

differing variance across the samples. Cox regression analysis and Kaplan-Meier curves 

were generated in R using the survival package47.

Data Access

The DREAM data have been submitted to the Gene Expression Omnibus (GEO) repository 

(GSE92254). TCGA data used for validation and extended analyses are publicly available 

through the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). Methylation data for 

normal blood on the Illumina 450k platform are available on GEO (GSE51388). Affymetrix 

array data used for validation of the A-CIMP gene expression signature are also available on 

GEO (GSE6891, GSE23312-10107).

Results

AML patients with long survival have increased CpG island DNA methylation

To study a potential association between DNA methylation and curability in AML, we 

selected patients based on long and short survival as well as sample availability in the 

MDACC leukemia sample bank. Using bisulfite pyrosequencing, DNA methylation was 

compared between 32 patients with OS less than one year after diagnosis (short survivors, 

median OS =6.9 months) and 33 AML patients with long OS (long survivors, median OS 

=89.8 months). Patient characteristics for this pilot cohort are described in Supplementary 

Table S1. We compared DNA methylation at promoter CGIs of the genes listed in 

Supplementary Table S3 (selected from a previous study13), and found that patients in the 

long survival group had significantly more aberrant DNA methylation than the short 

survivors at multiple genes including SCGB3A1, NPM2, CDKN2B, and OSCP1 
(Supplementary Table S3). In order to account for the heterogeneous nature of a small 

number of CpG sites, we computed z-scores to normalize methylation by the standard 

deviation for each respective locus. When we compared average z-scores across all sites 

interrogated between long and short survivors, we found that the long survivor group had 

significantly higher average z-scores (Figure 1a; P=0.002), and Kaplan-Meier analysis 

demonstrated that patients with more methylation at the interrogated CpG sites had longer 

OS (median OS, years: High methylation =5.8, Low methylation =0.78, P=0.02; Figure 1b). 

Furthermore, when other prognostic factors, including cytogenetics, age, blast percentage, 
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and FLT3 mutations, were included in a multivariate Cox regression, the average 

methylation z-score retained independent significance (Supplementary Table S4), suggesting 

that CIMP may be an independent prognostic factor in AML.

Genome-wide methylation analysis identifies an IDH1/2-independent hypermethylator 
phenotype

To validate and extend our findings, we performed genome-wide DREAM analysis on 96 

AML samples and 32 normal blood controls. DREAM interrogates DNA methylation at 

thousands of CpGs across the genome and is highly quantitative39. Our preliminary and 

previously published data indicated that the best CIMP markers are those that show the most 

cancer-specific hypermethylation patterns48, 49. To enrich for those we applied filtering 

criteria as described in the methods section; this included removal of age-related methylation 

changes by excluding CpG sites which are highly variable in normal blood. Hierarchical 

clustering of the AML samples based on DNA methylation revealed at least two distinct 

hypermethylator phenotypes (Figure 2a). Ten cases clustered together tightly in a group we 

termed IDH-CIMP (I-CIMP+) because 7/10 (70%) of these cases harbor IDH1/2 mutations, 

a previously described cause for aberrant hypermethylation. Fifteen other cases clustered 

together in a separate group we termed AML-CIMP (A-CIMP+), of which none harbored 

IDH1 or IDH2 mutations. Because A-CIMP was not previously characterized we focused on 

exploring and validating its unique biology.

From an epigenetic perspective A-CIMP+ was distinct. Comparing the distribution of DNA 

methylation levels across each leukemia cluster revealed that both CIMP+ groups had 

significantly higher median methylation compared to CIMP− cases (Kruskal-Wallis 

P<0.001; Figure 2b). To explore the targets of hypermethylation we performed separate 

differential methylation analyses of CGI and non-CGI sites between A-CIMP+ and CIMP− 

leukemia (Figure 2c, d).

Compared to CIMP− cases, A-CIMP+ cases hypermethylated CGIs preferentially. Overall 

hypermethylation was observed (defined as FDR<0.05 and average methylation difference > 

20%) in 3% of detected CGI sites and 1% of non-CGI sites suggesting a significant 

preference for CGI hypermethylation (odds ratio CGI/non-CGI =3.54; 95% CI: 2.55–5.01; 

P<0.001). In contrast, I-CIMP+ cases favored non-CGI hypermethylation (Supplementary 

Figure S3a, b). Thus, the methylation targets of A-CIMP were distinct.

From a clinical perspective the A-CIMP+ patients were younger than CIMP− patients 

(median age, years: A-CIMP+ = 43, CIMP− = 53, P=0.02; Table 1), and importantly, A-

CIMP+, but not I-CIMP+ AML was associated with longer OS compared to CIMP− (median 

OS, years: A-CIMP+ = Not reached, versus CIMP− = 1.17, P = 0.08; Figure 2e; median OS 

I-CIMP+ = 3.35, P = 0.50 compared to CIMP−). Because A-CIMP is a relatively rare 

phenotype in AML we could not prove statistical independence from age in this dataset, 

however, an analysis restricted to younger patients (<60 years) revealed a trend for 

prolonged survival within this group (Supplementary Figure S4). We then interrogated the 

AML cases from a genetic mutational perspective and also identified distinct backgrounds. 

By targeted high-throughput sequencing of a hematologic cancer gene panel (54 genes), we 

identified a significant enrichment for IDH1 and IDH2 mutations in I-CIMP+ cases, 
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however, A-CIMP appeared to lack a genetic definition (Figure 2f, Supplementary Figure 

S5).

A refined classifier of A-CIMP in TCGA data

In order to validate our findings and extend our analysis we used AML samples from 

TCGA40. These Illumina 450k array-based data interrogated methylation ~480,000 sites in 

194 AML patients. We also used publicly available normal blood data analyzed on the same 

Illumina 450k methylation platform (GSE51388)42. After pre-processing, we initially used 

filtering criteria to enrich for cancer-specific CpG sites similar to those described earlier (see 

methods section). Hierarchical clustering of the 6,843 filtered CpG sites revealed a pattern 

consistent with our DREAM data; two distinct hypermethylator phenotypes were evident 

with one being highly enriched (9/10) in IDH1 and IDH2 mutation-positive cases 

(Supplementary Figure S6). To refine this classification, we used volcano plot analysis to 

identify 603 CpG sites showing A-CIMP-specific hypermethylation (Supplementary Figure 

S7). Reclustering the TCGA cases using the 603 A-CIMP-specific sites revealed a group of 

43 A-CIMP+ patients (Figure 3a).

From a clinical perspective A-CIMP+ patients had significantly longer median OS compared 

to A-CIMP− patients (median OS, years: A-CIMP+ =2.34, A-CIMP− =1.00, P=0.01; Figure 

3b). The TCGA A-CIMP+ patients also tended to be younger than A-CIMP− (median age, 

years A-CIMP+ =43, A-CIMP− =60, P<0.001; Figure 3c), and this group had relatively more 

favorable risk cytogenetic aberrations (P=0.004, Figure 3c; Supplementary Table S5). 

Analysis of I-CIMP using the same methods confirmed a lack of prognostic benefit and a 

significant enrichment for IDH mutations (Supplementary Figure S8; Supplementary Table 

S6).

The distinct methylation landscape of A-CIMP+ AML

After refining a classification of A-CIMP, we examined these cases from an epigenetic 

perspective. Differential methylation analysis using volcano plots comparing A-CIMP+ to 

A-CIMP− AML across all interrogated CpG sites confirmed that significant 

hypermethylation was disproportionately at CGIs, and relatively less prevalent at non-CGIs 

(odds ratio CGI/non-CGI =5.21; 95% CI: 5.01–5.42; P<0.001; Figure 4a, b, e). As expected, 

we found similar results when comparing A-CIMP+ to normal blood instead of to A-CIMP− 

(Figure 4c and d). Examination of I-CIMP confirmed the preference for distinct non-CGI 

hypermethylation (Figure 4e, Supplementary Figure S9a–d).

Examining the overlap in differentially methylated sites revealed that many CpGs are 

hypermethylated in any AML versus normal blood, regardless of CIMP status 

(Supplementary Figure S9e, f). However, a large fraction of CGIs is specifically 

hypermethylated in A-CIMP+ (Supplementary Figure S9e), and a large fraction of non-CGIs 

is specifically hypermethylated in I-CIMP+ (Supplementary Figure S9f), again confirming 

the distinct methylation pattern of each phenotype. Most of the hypomethylated CpG sites 

were shared between CIMP+ and CIMP− AML, with many more non-CGI sites losing 

methylation compared to normal blood (Supplementary Figure S9g and h for CGI and non-

CGI sites, respectively).
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In order to dissect possible functional relationships with the observed methylation patterns in 

AML, we performed Gene Set Enrichment Analysis (GSEA), and Ingenuity Pathway 

Analysis (IPA). Both analyses revealed that promoter CGI sites characteristic of A-CIMP+ 

AML were significantly enriched for genes involved in maintaining pluripotency 

(Supplementary Tables S7–9), with the top upstream regulators including OCT4, SOX2, and 

POU5F1. Taken together, these data suggest A-CIMP+ is a biologically distinct entity with 

divergent pathway dysregulation compared to A-CIMP− AML.

Genetic backgrounds in epigenetically defined AML subtypes

The distinct biology underlying A-CIMP+ AML was also evident in the set of genetic 

aberrations detected (Figure 4f, Supplementary Figure S10). From a genetic perspective, A-

CIMP+ cases demonstrated associations with WT1 (6/43; 14%) and CEBPA (8/43; 19%) 

mutations (Fisher’s Exact Test P =0.02, and P =0.002, respectively; Figure 4f, 

Supplementary Figure S10a). These mutations were mostly mutually exclusive, with only 

one case being positive for both. However, most A-CIMP+ cases (30/43; 70%) lacked either 

WT1 or CEBPA mutations. A-CIMP+ also demonstrated significantly fewer IDH1, NPM1, 

and TET2 mutations compared to A-CIMP− AML (Fisher’s Exact Test P =0.009, P =0.01, 

and P =0.02, respectively; Figure 4f). In contrast, I-CIMP+ cases were mostly defined by 

IDH1 and IDH2 mutations (75% with IDH1 or IDH2; Fisher’s Exact Test P<0.001), 

although they also demonstrated significant enrichments for RUNX1 and PHF6 mutations, 

and a relative lack of FLT3 mutations (Fisher’s Exact Test P =0.01, P =0.04, and P=0.02, 

respectively; Supplementary Figure S8d, S10b). Notably, the 25% of I-CIMP+ cases with 

wild-type IDH1/2 were not enriched for any other genetic mutations. These observations 

suggest that the distinct DNA methylation profiles observed in AML are associated with 

specific genetic backgrounds, but that unlike, I-CIMP+, most A-CIMP+ cases do not have a 

defining mutational signature.

An A-CIMP-associated gene expression program is prognostic in multiple datasets

We hypothesized that, by virtue of differences in DNA methylation, A-CIMP+ AML would 

have a unique gene expression signature. To test this we performed a differential expression 

analysis comparing A-CIMP+ to A-CIMP−. By using the edgeR package with subsequent 

volcano plot analyses we observed 1,189 differentially expressed genes (FDR<0.01, Fold-

change>2), of which 908 (76%) were down-regulated in A-CIMP+ (Figure 5a). Among the 

down-regulated genes, there were promoter CGI methylation data on 403 of them, and we 

found significant hypermethylation (FDR<0.05) in A-CIMP+ versus A-CIMP− AML in 

318/403 (79%). A pathway enrichment analysis on these genes confirmed significant 

representation of functions maintaining human embryonic stem cell pluripotency. Some of 

the relevant down-regulated hypermethylated genes include BMPR2, WNT3A, FZD3, and 

FZD8, among others. We identified significant negative Spearman correlation coefficients 

between methylation and expression for 240 of these genes (60% of down-regulated genes 

with methylation data on the 450k array; Supplementary Figure S11, Supplementary Table 

S10).

Hierarchical clustering of TCGA cases on the expression of all 318 down-regulated and 

hypermethylated genes revealed a group of cases highly enriched for A-CIMP+ AML by 
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methylation status (A-CIMP-like; Figure 5b). As expected, average z-score transformed 

RPKM values were lowest for the A-CIMP-like cluster (Figure 5c). In addition, Kaplan-

Meier survival analysis of gene expression-based clusters recapitulated the prognostic 

advantage associated with A-CIMP methylation (median OS, years: A-CIMP-like = 2.25, 

Cluster 1 = 1.00, P=0.05; Figure 5d). To validate the prognostic importance of the A-CIMP 

transcriptional signature, we used published Affymetrix expression array data (GSE6891) to 

cluster 461 well-annotated AML cases on A-CIMP-down-regulated and hypermethylated 

genes (Figure 5e)43, 50. This analysis revealed an A-CIMP-like cluster of cases with the 

lowest average expression z-score for the A-CIMP signature genes (Figure 5f). Importantly, 

the A-CIMP-like cluster demonstrated significantly improved survival compared to other 

gene expression clusters (median OS, years: A-CIMP-like = 2.10, Cluster 1 = 0.44, Cluster 2 

= 0.32, Cluster 3 = 0.26, log-rank P<0.01; Figure 5g). We also examined the genetic and 

clinical characteristics associated with the A-CIMP-like cluster in GSE6891, and found an 

enrichment for favorable cytogenetics, younger age, presence of CEBPA mutations, and a 

lack of IDH1/2 and NPM1 mutations, all of which are consistent with the genetic 

background of A-CIMP identified in our previous analyses (Figure 5h, i). We next 

performed the same analysis on one more independent gene expression microarray dataset 

(GSE23312-GPL10107; Supplementary Figure S12). We clustered AML cases on A-CIMP-

down-regulated and hypermethylated genes and identified a low-expression cluster with 

improved overall survival (median OS, years: A-CIMP-like = Not reached, Cluster 1 =0.29, 

Cluster 2 =1.83, Cluster 3 =1.27, log-rank P=0.13; Supplementary Figure S12a–c). These 

results support the clinical importance of an altered transcriptional program related to DNA 

methylation status specific to A-CIMP+ AML.

Finally, a previous study found a gene expression-based prognostic signature by also 

selecting for hypermethylated promoter CGI sites associated with outcome32. We compared 

this signature to the A-CIMP classifier. We found that the previously published signature – 

Marcucci et al. CIMP (M-CIMP) – is prognostic in the TCGA methylation dataset (median 

OS, years: M-CIMP+ =2.25, M-CIMP− =1.00, P=0.04; Supplementary Figure S13a, b); 

however, it identifies a mix of A-CIMP+ and I-CIMP+ cases, and in this dataset we could not 

determine which epigenetic classifier performs better (Supplementary Figure S13c). 

Notably, FAM92A1 and SCRN1 from the M-CIMP signature were hypermethylated in both 

A-CIMP and I-CIMP in our classification of the TCGA cases, and appeared to drive their 

M-CIMP status identification (i.e. by magnitude of change they were the most 

hypermethylated genes in M-CIMP+ cases). The other genes in this signature (VWA8, 
CD34, RHOC, and F2RL1) were not found to be differentially methylated or expressed in 

our analyses of A-CIMP in the TCGA data (miR-155 was also part of this signature, 

however, we did not have data for this miRNA). In the GSE6891 microarray expression 

dataset M-CIMP gene expression was prognostic, and in a multivariate analysis, it was 

independent of A-CIMP gene expression status (Supplementary Figure S13d–g).

Discussion

In this study we interrogated DNA methylation in AML and identified two hypermethylation 

patterns, A-CIMP and I-CIMP. An important implication of these two CIMP phenotypes is 

that they affect different genomic compartments, and must arise via distinct mechanisms. A-
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CIMP is a CGI-favoring process, while I-CIMP targets are more often non-CGIs. A further 

important observation is that A-CIMP+ cancers lack mutations in epigenetic regulators 

known to cause aberrant DNA hypermethylation defects, such as IDH1/2, or TET1/2/3. 

Conversely, I-CIMP+ AML was predominantly characterized by known mutations in IDH1 
or IDH2.

The causes of IDH1/2-independent CIMP remain unknown, but some possibilities are 

lncRNA/miRNA mutations, epigenetic changes affecting epigenetic regulators, and 

exogenous factors (e.g. infectious agents) leading to metabolites affecting DNA methylation. 

Mutations in non-coding RNA species may function by preventing proper recruitment of 

epigenetic regulators to their genomic targets, as has recently been described51, 52. Down-

regulation of TET family members, or down-regulation of their interacting partners either 

through DNA methylation or repressive histone marks may also explain mutation-

independent hypermethylation53. Finally, it has been shown that colorectal cancers harboring 

high amounts of fusobacterium are enriched for CIMP, and EBV is associated with CIMP in 

gastric cancer54, 55. It is possible that metabolites and/or inflammation related to chronic 

infections may affect DNA methylation in other disease contexts, and it is worth exploring 

these possibilities in AML.

The specific targets of A-CIMP hypermethylation were to a large degree, normally 

unmethylated CGIs which were significantly enriched for pluripotency maintenance genes. 

This association is also intriguing in light of the genetic background of A-CIMP+ AML 

which has a relatively high frequency of mutations in CEBPA and WT1. Recent data have 

reported interactions between wild-type TET2 and both WT1, and CEBPα56–60. Di Stefano, 

et al. found that CEBPα poises B cells for transformation into pluripotent stem cells, and 

induces the expression of TET2, while Sinha, et al. found that mutant WT1 can cause DNA 

hypermethylation at PRC2 targets59, 60. Both observations are consistent with our 

description of A-CIMP, and may represent one possible contributing mechanism in a subset 

of these patients who harbor such mutations. It is important to note, however, that TET2 
mutant AML cases do not phenocopy methylation in WT1 or CEBPA mutant cases, 

suggesting that these genes have additional effects, perhaps on TET1 and/or TET3. We 

speculate that TET1 and TET3 may be more specific to CGIs because they contain a 

conserved CXXC domain that allows them to bind DNA and protect CGIs from methylation. 

TET2 lacks a CXXC domain, and thus its specificity is likely dependent on other factors, 

including its various interacting partners.

From an epigenetic mechanistic perspective, we find these alternative explanations for 

hypermethylation attractive given the very small number of patients in our analyses who 

were classified as harboring both hypermethylator profiles (3%). Presumably A-CIMP and I-

CIMP may be redundant, but since we do not know the cause of A-CIMP, we can only 

speculate that the two phenotypes very likely arise via different mechanisms. It is also 

notable that in our analyses, true epigenetic instability either manifesting in A-CIMP or I-

CIMP, comprises only about 30% of AML cases. The remaining CIMP-negative leukemias 

are not devoid of epigenetic aberrations, however, many of the DNA methylation changes 

one could observe are likely age-related, and do not reflect distinct cancer phenotypes61. 

This phenomenon has been shown in colorectal cancer, where the majority of cases show 
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aberrant methylation at age-related loci, but are CIMP-negative at disease phenotype-

specific targets62. Similarly, while we do observe epigenetic aberrations in CIMP-negative 

AML, disease specific hypermethylation is limited to the relatively small subset of A-CIMP 

and I-CIMP leukemias.

A final important implication of our data is the clinical relevance of CIMP in AML 

management. Our analysis revealed that only A-CIMP is associated with a favorable 

prognosis, and that this phenotype tends to occur more frequently in younger patients. 

Because A-CIMP is relatively rare, we could not definitively prove prognostic independence 

from age, however, we observed trends hinting at independence. Given the functional nature 

of A-CIMP+ hypermethylation targets it is plausible that these patients’ improved survival is 

related to a lack of full dedifferentiation in their leukemia, possibly making them more 

chemosensitive. Because the targets of hypermethylation in I-CIMP+ patients are quite 

distinct, and their outcomes are poor compared to A-CIMP+, this subgroup does not seem to 

respond well to chemotherapy, but may potentially benefit from treatment with 

hypomethylating agents (e.g. decitabine, azacitidine). This possibility is further alluded to by 

recent data suggesting gliomas harboring IDH mutations favor hypermethylation of CTCF 

binding sites and demonstrate reduce expression of the oncogenic driver, PDGFRA, upon 

administration of azacitidine63. Ongoing clinical trials in AML may reveal whether such a 

treatment strategy benefits patients with an identifiable I-CIMP+ epigenomic signature.

In summary, we present evidence of multiple hypermethylator phenotypes in AML. Using 

high-throughput methylation profiling of clinical AML specimens we identified three 

epigenetic phenotypes defined by distinct DNA methylation patterns: A-CIMP+, I-CIMP+, 

and CIMP−. These epigenetic states are associated with differential outcomes and gene 

expression in AML, and were validated using TCGA data. Future studies should focus on 

both further characterizing the transcriptional changes and aberrant epigenetic mechanisms 

associated with these observed methylation patterns in AML, and investigating the use of 

novel epigenetic biomarkers as clinical tools in AML management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Long surviving AML patients have increased DNA methylation
a) Average methylation z-score is plotted for patients with long survival (>12 months) versus 

short survival (<12 months). b) Overall survival (OS) of patients with high methylation 

(average methylation z-score > 0.0) and low methylation (average methylation z-score ≤ 

0.0).
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Figure 2. DREAM analysis identifies A-CIMP in AML
a) Hierarchical clustering of 96 AML patient samples and 32 normal blood controls on 

quantitative DNA methylation levels. b) The distribution of methylation values across all 

1,210 selected CpG sites from Figure 2a were stratified by cluster. Vertical lines correspond 

to the median of average methylation values across all CpG sites for each respective cluster. 

P-value was computed using the non-parametric Kruskal-Wallis test. c, d) Volcano plot 

differential methylation analysis comparing A-CIMP+ to CIMP− AML for CGI sites (c), and 

non-CGI sites (d). e) Kaplan-Meier survival analysis of A-CIMP+ compared to CIMP− 

AML. f) Genetic mutations associated with A-CIMP, and I-CIMP. * P < 0.05, ** P < 0.01, 

*** P < 0.001.
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Figure 3. Characterization of A-CIMP+ AML in the TCGA cohort
a) Hierarchical clustering of 194 AML patient samples and 24 normal blood controls on the 

basis of 603 CpG sites. b) Kaplan-Meier survival analysis of 194 cases based on the clusters 

derived in Figure 3a. c) Clinical characteristics associated with A-CIMP+ versus A-CIMP− 

AML.
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Figure 4. A-CIMP+ AML is defined by CGI enriched hypermethylation
Volcano plot and density plot differential methylation analysis between A-CIMP+ and A-

CIMP− for CGI sites (a), and non-CGI sites (b); and between A-CIMP+ AML and normal 

blood for CGI sites (c), and non-CGI sites (d). Numbers in each volcano plot correspond to 

CpG sites with methylation beta-value differences greater than 0.2, and FDR<0.001. 

Numbers in each density plot correspond to CpG sites with methylation beta-value 

differences compared to normal blood greater than 0.2. Orange dashed lines in density plots 

represent LOWESS regression of the CpG density data. The enrichment of CGI sites 

hypermethylated in A-CIMP is distinct from the non-CGI preference seen in I-CIMP, as 

reflected by odds ratios of hypermethylated CpGs (e). f) Plots of somatic mutations 

associated with A-CIMP. Despite widespread epigenetic changes in A-CIMP, there is not a 

dominant genetic mutational definition for this subset of AML. * P < 0.05, ** P < 0.01, *** 

P < 0.001.
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Figure 5. Gene expression program characteristic of A-CIMP is prognostic in multiple datasets
a) Volcano plot of differential expression analysis comparing TCGA A-CIMP+ to A-CIMP− 

AML defined by methylation. b) Hierarchical clustering of TCGA cases on RNA-seq data 

for down-regulated and hypermethylated genes identified in (a). c) Average expression z-

scores for clusters in (b). Lines correspond to median z-score values. d) Kaplan-Meier 

analysis of gene expression clusters. e) Hierarchical clustering of 461 cases from GSE6891 

based on down-regulated and hypermethylated genes identified in (a). For clarity, heatmap 

shows only genes with 80th percentile standard deviation, however clustering was done using 

all genes. f) Average expression z-scores for clusters in (e). g) Kaplan-Meier analysis of 

gene expression clusters in (e). h) Molecular characteristics of gene expression clusters in 

(e). i) Other clinical characteristics associated with gene expression clusters from (e). * P < 

0.05, ** P < 0.01, *** P < 0.001.
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Table 1

Clinical characteristics of MDACC cohort.

A-CIMP I-CIMP CIMP-negative P-value

Samples in cluster 15 10 71 -

Age, years, median (range) 43 (17–62) 43 (20–75) 53 (20–77) 0.02

Male sex, number (%) 6 (40%) 2 (20%) 35 (49%) 0.21

Platelet count, × 10^9/L, median
(range)

40 (6–135) 48 (13–126) 57 (11–676) 0.34

WBC count, × 10^9/L, median (range) 10.1 (0.8–312) 39.7 (11.8–263) 16.4 (0.8–271) 0.34

Peripheral blood blast percent, median
(range)

50 (4–97) 91 (40–96) 31 (0–95) <0.01

Bone marrow blast percent, median
(range)

65 (30–96) 82 (42–94) 64 (20–99) 0.14

Cytogenetic risk, number (%)

  Favorable 0 (0%) 0 (0%) 5 (7%)

  Intermediate 14 (93%) 7 (70%) 48 (68%) 0.39

  Adverse 1 (7%) 3 (30%) 18 (25%)
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