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Hepatitis C virus (HCV) is a major global health burden accounting for around 170 million chronic infections
worldwide. Although highly potent direct-acting antiviral drugs to treat chronic hepatitis C have been
approved recently, owing to their high costs and limited availability and a large number of undiagnosed
infections, the burden of disease is expected to rise in the next few years. In addition, HCV is an excellent
paradigm for understanding the tight link between a pathogen and host cell pathways, most notably lipid
metabolism. HCV extensively remodels intracellular membranes to establish its cytoplasmic replication
factory and also usurps components of the intercellular lipid transport system for production of infectious
virus particles. Here, we review the molecular mechanisms of viral replicase function, cellular pathways
employed during HCV replication factory biogenesis, and viral, as well as cellular, determinants of progeny
virus production.
Introduction
Infections by the hepatitis C virus (HCV) are characterized by a

high rate of chronicity. Despite the mild, often asymptomatic

course of acute infection, chronic hepatitis C frequently leads

to steatosis, liver cirrhosis, and eventually hepatocellular carci-

noma (Yamane et al., 2013). Highly potent direct-acting antiviral

drugs (DAAs) have been approved, allowing virus elimination in

more than 90% of treated individuals. However, owing to high

costs and limited availability in most countries with high HCV

prevalence, it is expected that on a global scale the number of

HCV-infected individuals will drop only very slowly.

HCV belongs to the Hepacivirus genus of the family Flaviviri-

dae, which also comprises the genera Flavivirus, Pestivirus,

and Pegivirus (Simmonds, 2013). HCV enters the cell by recep-

tor-mediated endocytosis involving multiple cell surface mole-

cules (see review by Ding et al., 2014). Upon release into the

cytoplasm, the�9.6 kb single-stranded RNA genome of positive

polarity is directly used for translation at the rough endoplasmic

reticulum (ER). The resulting polyprotein precursor has a length

of �3,000 amino acid residues (aa) and is co- and posttransla-

tionally cleaved by cellular and viral proteases into ten mature

products (Figure 1); core and envelope glycoproteins E1 and

E2 are main constituents of the virus particle, whereas the p7 vi-

roporin and nonstructural protein 2 (NS2) participate in virus as-

sembly. NS3, NS4A, NS4B, NS5A, and NS5B form the replicase

complex that is sufficient for viral RNA replication (Lohmann

et al., 1999a) occurring via a negative-strand copy. Progeny

RNA is either used for translation, thus giving rise to new viral

proteins, used for synthesis of new negative strands, or pack-

aged into virus particles that acquire their envelope most likely

via budding into the ER lumen. Finally, virions exit the cell via

the secretory pathway.

In this review, we focus on recent insights related to the

mechanisms of viral RNA replication, biogenesis of membranous

HCV replication factories, and the formation of infectious virus
Ce
particles. We discuss the involvement of host cell factors in all

of these processes, with an emphasis on lipids that play key roles

in the HCV replication cycle.

HCV RNA Translation and Regulatory Mechanisms
The HCV genome lacks a 50-terminal cap and a 30-terminal

poly(A) tract but contains highly structured 50- and 30-nontrans-
lated regions (NTRs) flanking a single open reading frame (re-

viewed in Niepmann, 2013) (Figure 1). The presence of a type

III internal ribosomal entry site (IRES) in the 50 NTR ensures trans-

lation initiation by a cap-independent mechanism (Honda et al.,

1996). The IRES encompasses most of the 50 NTR and the

following �15 nucleotides, which form two domains and a dou-

ble pseudoknot structure (Niepmann, 2013). Translation of the

HCV RNA is stimulated by several cis-acting RNA elements

(CREs) residing in the 30 NTR and by two stem-loop structures

located in the core-coding region (Figure 1). In line with current

models proposed for other positive-strand RNA viruses, recent

studies suggest that the HCV genome can circularize by inter-

actions between motifs in the IRES and stem-loop structures

residing in the NS5B coding region (Romero-López et al.,

2014). While these in vitro studies argue for direct RNA-RNA

interaction, in cells a possible circularization of the HCV genome

is likely facilitated by viral and cellular proteins. These include

the NFAR proteins and IGF2BP1 (insulin-like growth factor II

mRNA-binding protein 1) (Isken et al., 2007; Weinlich et al.,

2009). Regardless of the mechanism, circularization of the HCV

genome might help to avoid ‘‘clashes’’ between translating ribo-

somes moving in the 50 to 30 direction and the viral replicase

complex copying the RNA in the 30 to 50 direction. In addition,

HCV subverts the highly abundant liver-specific microRNA-122

(miR-122) (Jopling et al., 2005) (Figure 1), which binds to two

sites in the 50 NTR of the HCVRNA genome. This promotes accu-

mulation of viral RNA by several nonexclusivemechanisms, such

as stimulation of IRES-mediated translation, enhancement of
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Figure 1. HCV Genome Organization and Polyprotein Processing
The single-strand (ss) HCV RNA genome is shown on the top. Secondary structures of cis-acting RNA elements (CREs) in the nontranslated regions (NTRs) and
the coding region are schematically depicted. Interaction sites with miR-122 in the 50 NTR that contains an internal ribosome entry site (IRES) are indicated. The
polyprotein precursor and cleavage products are shown below. Numbers refer to amino acid positions of the JFH-1 isolate (GenBank accession number
AB047639). Scissors indicate proteases responsible for polyprotein cleavage. SP, signal peptidase; SPP, signal peptide peptidase. Functions of cleavage
products are indicated below each viral protein. RdRp, RNA-dependent RNA polymerase. VR, variable region in the 30 NTR.
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HCV RNA replication, and protecting viral RNA from degradation

(Niepmann, 2013). Thus, in contrast to the usually negative regu-

lation exerted by miRNAs, in case of HCV, miR-122 seems to be

a positive regulator.

HCV Replication Machinery and Involved Host Cell
Factors
After polyprotein cleavage, the viral replicase complex is consti-

tuted (Figure 2). It is composed of at least NS3 to NS5B and the

genomic RNA template. Although the NS2 protease per se is not

essential for RNA replication, cleavage at the NS2/NS3 junction

appears to be a rate-limiting step (Madan et al., 2014). Since fully

processed NS3 is required for RNA replication, NS2 might indi-

rectly affect replication.

NS3 is a bifunctional molecule composed of an N-terminal

serine-protease domain, activated by tight interactions with the

NS4A cofactor, and a C-terminal helicase domain (Moradpour

and Penin, 2013) (Figure 2). While the protease, in complex
570 Cell Host & Microbe 16, November 12, 2014 ª2014 Elsevier Inc.
with NS4A, is responsible for polyprotein cleavage, the role

of the helicase domain in viral replication is poorly defined.

In vitro it can unwind RNA in an inchworm or ratchet-like manner

(Dumont et al., 2006; Gu and Rice, 2010; Appleby et al., 2011),

and it was shown that helicase activity is important for RNA repli-

cation. In addition, the linker connecting protease and helicase

domain appears to be critical for assembly, eventually mediating

NS3 interactions with other viral or cellular proteins or by modu-

lating NS3-4A structure (Kohlway et al., 2014b). In fact, the struc-

turally flexible linker might transpose the helicase domain away

from the membrane-proximal protease domain by a complex

series of conformational changes (Brass et al., 2008) (Figure 2).

Why the protease and helicase domains are linked is not known,

but accumulating evidence reveals a crosstalk between the two

domains (Moradpour and Penin, 2013).

The NS4A protease cofactor is a short transmembrane

(TM) protein anchoring NS3 to the ER membrane (Figure 2)

and playing a regulatory role for replicase complex function by
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Figure 2. Model of an HCV-Induced Double-Membrane Vesicle and Hypothetical 3D Structures of Membrane-Associated HCV Proteins
Virus-induced double-membrane vesicles (DMVs) contain HCV nonstructural proteins and RNA and are sites of active RNA replication. The DMVmight contain a
(transient) opening or a distinct transporter to allow exchange of nucleotides and viral RNA of the DMV interior with the cytoplasm. Note that the viral replicase
might also reside on the outer surface of the DMV (not shown). Ribbon diagrams of membrane-associated HCV proteins and assumed conformational changes
required for replication are indicated in boxes on the right. NS5B: the structure on the left corresponds to the closed conformation, representing the potential
initiation state of the enzyme. The panel on the right shows NS5B in a hypothetical elongation mode. This conformational change would release the RNA binding
groove to accommodate a dsRNA replication intermediate (shown in blue and yellow). NS5A: model of a full-length dimer associated to a membrane via the
N-terminal amphipathic a helix. Only the clam-like dimer (Tellinghuisen et al., 2005) is shown for simplicity. Domains (D) 2 and 3 are intrinsically unfolded and
thought to interact with multiple co-opted host factors, including cyclophilin A (CypA) binding to D2. NS3-4A complex: the presumedmembrane orientation of the
NS3-4A complex during polyprotein synthesis and prior to self-cleavage at the NS3/4A site is shown on the left. After cleavage, profound structural changes
occur, most notably a membrane insertion of the C-terminal tail of NS4A (orange) and a repositioning of the C-terminal NS3-helicase domain (gray) away from the
membrane. NS4B: the proposed dualmembrane topology is shown. Structures of amphipathic a helices AH2 andH2 have been determined experimentally, while
the other structural elements are based on in silico predictions. AH2 potentially traverses the membrane posttranslationally. Structure models are adapted from
Bartenschlager et al. (2013) with permission from the publisher and Francois Penin.
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stimulating both protease and RNA helicase activities of NS3

(Lindenbach et al., 2007). Moreover, formation of NS4A TM

homodimers appears to be a prerequisite for efficient HCV repli-

cation and virus particle production, suggesting that NS3-4A

dimers or oligomers are crucial for the viral life cycle (Kohlway

et al., 2014a). Apart from the ER, NS4A seems to target the

NS3-4A complex to mitochondrial membranes or defined ER re-
Ce
gions closely opposed to mitochondria and designated mito-

chondria-associated membranes (MAMS) (Horner et al., 2011).

This localization plays an important role for blocking the inter-

feron (IFN) response by proteolytic cleavage of themitochondrial

antiviral-signaling protein (MAVS).

NS4B is a poorly characterized protein with a complex

TM topology (Figure 2). It can undergo a posttranslational
ll Host & Microbe 16, November 12, 2014 ª2014 Elsevier Inc. 571
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conformational change by flipping its N-terminal amphipathic a

helix into the ER lumen (Gouttenoire et al., 2009), which might

be regulated by NS5A (Lundin et al., 2006). In addition to its early

recognized, central role in inducingmembrane alterations (Egger

et al., 2002), NS4B was found to be critically involved in RNA

replication as well as formation of infectious HCV particles

(Jones et al., 2009; Paul et al., 2011). The underlying mecha-

nisms are poorly defined, but NS4B properties are most likely

regulated by multiple interactions either with itself by forming

homo-oligomers or with other viral proteins, including NS3 and

NS5A (Paredes and Blight, 2008; Gouttenoire et al., 2010; Paul

et al., 2011).

NS5A is a multifunctional protein associated with intracellular

membranes via an N-terminal amphipathic a helix (Figure 2). The

protein can form different kinds of homodimers and, eventually,

also oligomers (Tellinghuisen et al., 2005; Love et al., 2009;

Lambert et al., 2014). NS5A is composed of three domains,

separated by low-complexity sequences. Only domain I is struc-

tured, whereas domains II and III are intrinsically unfolded. It is

widely accepted that NS5A is a RNA-binding phosphoprotein

that exists as a basal and a hyperphosphorylated form. The

phosphorylation status of NS5A appears to be determined by

several kinases, such as casein kinases (CK) I and II, polo-like

kinase 1, glycogen synthase kinase 3, protein kinase A, and

mitogen-activated protein kinases (MAPKs), but the physiolog-

ical relevance of these kinases for NS5A phosphorylation re-

mains to be established (Masaki et al., 2014; Cordek et al.,

2014). Apart from that, several studies reported a phosphoryla-

tion-independent activation of NS5B RNA-dependent RNA poly-

merase (RdRp) by NS5A, at least in vitro. This activationmight be

mediated by the RNA-binding ability of NS5A or by direct inter-

action with NS5B (Shirota et al., 2002; Quezada and Kane, 2013).

No enzymatic activities have been ascribed to NS5A. Its

functions are presumably exerted by interactions with various

cellular factors, including VAPA (vesicle-associated membrane

protein-associated protein A), CypA (cyclophilin A), PI4KIIIa

(phosphatidylinositol-4-kinase IIIa), or ApoE (apolipoprotein E),

as described in detail below. One of the best-studied factors

is CypA, a prolyl-peptidyl isomerase (PPI) that is required for

HCV replication (Kaul et al., 2009; Liu et al., 2009). NS5A binds

to CypA (Figure 2), eventually altering local folding of domains

II and III (Coelmont et al., 2010; Verdegem et al., 2011). CypA ap-

pears to increase NS5A RNA-binding capacity, which is reduced

by Cyp inhibitors (Foster et al., 2011). Strikingly, the function of

NS5A that is necessary for formation of themembranous replica-

tion compartment (see below) also seems to require CypA PPI

activity (Madan et al., 2014). However, the appealing hypothesis

that RNA binding and induction of membrane rearrangements by

NS5A are linked remains to be explored.

The key enzyme catalyzing viral RNA replication is the NS5B

RdRp (Figure 2). It is composed of an N-terminal catalytic

domain, a linker, and a hydrophobic transmembrane domain

(TMD) comprising the C-terminal 21 aa, anchoring the protein

to intracellular membranes. Although crucial for viral replication

in cell culture, the TMD is dispensable for RdRp activity

in vitro. 3D crystal structures of NS5Bs from various genotypes

revealed a typical right-hand shape with fingers, thumb, and

palm subdomains; this feature is shared by most other polymer-

ases (Ago et al., 1999; Bressanelli et al., 1999). A distinctive prop-
572 Cell Host & Microbe 16, November 12, 2014 ª2014 Elsevier Inc.
erty of the HCV RdRp is the completely encircled catalytic site,

resulting from multiple interactions between the fingers and

thumb subdomains, and from structural movements of the linker

and a b hairpin of the thumb subdomain that protrudes into the

active site (Lesburg et al., 1999). This structure represents the

so-called ‘‘closed’’ conformation of the polymerase and is

assumed to correspond to the active form of the RdRp respon-

sible for de novo (i.e., primer-independent) initiation of RNA syn-

thesis. This enzyme can bind the single-strand template and

priming nucleotides but is too narrow to accommodate dou-

ble-strand (ds) RNA as formed during RNA synthesis (Simister

et al., 2009) (Figure 2).

HCV RNA Synthesis
De novo priming by NS5B requires two nucleotide binding sites

in the catalytic pocket of the enzyme to synthesize a dinucleotide

(Ferrari et al., 2008). At least in vitro, de novo initiation at the very

30 end of the template RNA is specifically stimulated by high

concentrations of GTP (Lohmann et al., 1999b) that binds to an

allosteric site (Bressanelli et al., 2002). Binding of GTP to NS5B

appears to play a role in triggering the switch from primer-dinu-

cleotide formation to elongation of RNA synthesis (Harrus et al.,

2010; Ranjith-Kumar et al., 2003). This switch requires profound

conformational changes in the NS5B structure, including a

displacement of the linker and the b-hairpin flap that obstructs

the catalytic pocket and blocks the egress of nascent dsRNA

(Mosley et al., 2012; Scrima et al., 2012). In this way, the entire

enzymatic core is opened up to accommodate dsRNA. In line

with this model, the structure of RdRp from the highly replica-

tion-competent isolate JFH-1 has an unusually closed active

site; accordingly, in vitro, this enzyme shows unprecedented

de novo initiation efficiency (Simister et al., 2009).

HCV RNA replication is a multi-step process that is orches-

trated by the coordinated action of viral and cellular proteins

as well as multiple CREs (Lohmann, 2013) (Figure 1). It is

assumed that synthesis of negative-strand RNA initiates at the

30 end of the viral genome. This reaction appears to be rate-

limiting, as positive-strand RNAs are produced in an excess

of 5- to 10-fold. Furthermore, it remains unclear how RNA

translation and replication are regulated. As described above,

circularization of the RNA genome might be one mechanism.

Occupation of the 30 and 50 NTRs by different viral or cellular pro-
teins or formation of alternative RNA structures are other possi-

bilities. In support of the latter possibility, it was shown that the 50

NTR of the positive-strand RNA genome and its complementary

sequence, i.e., the 30 NTR of negative-strand RNA, adopt very

different secondary structures (Smith et al., 2002). Moreover,

RNA sequences in domain II of the IRES are essential for RNA

replication. This overlap of signals might be involved in the regu-

lation of a switch from RNA translation to replication.

Structure and Biogenesis of HCV Replication Factories
Like all other positive-strand RNA viruses, HCV extensively re-

models intracellular membranes, giving rise to organelle-like

membranous structures, commonly referred to as viral replica-

tion factories (vRFs) that serve multiple purposes: (i) increasing

local concentration of factors required for efficient RNA

replication, (ii) spatial coordination of different steps of the viral

replication cycle (RNA translation, replication, assembly), and
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(iii) protecting viral proteins and RNA from antiviral defenses.

Membrane rearrangements induced by positive-strand RNA vi-

ruses can be assigned to two morphological subclasses: the

invaginated vesicle/spherule type and the double-membrane

vesicle (DMV) type (Paul and Bartenschlager, 2013). Despite

the very distant evolutionary relationship, HCV, picornaviruses,

and coronaviruses belong to the DMV type, whereas the more

closely HCV-related flaviviruses such as Dengue virus and

West Nile virus induce invaginated vesicles within the ER. These

morphologies are thought to reflect the subversion of common

host cell pathways to establish the membranous vRFs.

Electron microscopy (EM) studies of cells expressing the HCV

polyprotein or containing replicating HCV RNAs revealed cyto-

plasmic vesicular structures embedded into a membranous

matrix, designated membranous web (MW) (Egger et al., 2002;

Gosert et al., 2003). Follow-up studies with more sophisticated

EM methods and using HCV-infected cells identified predomi-

nantly DMVs with an average diameter of �150 nm that are

most likely derived from the endoplasmic reticulum (ER) (Ro-

mero-Brey et al., 2012; Ferraris et al., 2013). Several lines of ev-

idence suggest that DMVs are important for HCV replication.

First, DMV appearance correlates well with viral RNA replication

kinetics upon HCV infection or transfection of subgenomic repli-

con RNAs independent from the genotype. Second, purified

DMVs contain enzymatically active viral replicase, suggesting

that they are bona fide HCV vRFs (Paul et al., 2013) (Figure 2).

However, the exact topology of the viral replicase with respect

to DMV membranes is elusive. The membrane-protected nature

of HCV RNA is indicative of DMV-luminal replication sites, which

would require transport of metabolites and progeny RNA across

the two membranes. Possibly, components of the nuclear pore

complex, reported to interact and colocalize with viral proteins

in HCV-infected cells, might contribute to this transport (Neufeldt

et al., 2013). Alternatively, assuming that DMVs are highly dy-

namic structures, active replication might occur in the interior

of DMVs as long as they are connected to the cytosol (Ro-

mero-Brey et al., 2012) but cease once DMV membranes close.

Induction of DMVs does not require viral RNA replication but

can be triggered by the sole expression of HCV replicase pro-

teins NS3–5B. NS4B is proposed to be the primary inducer of

the MW (Egger et al., 2002). Indeed, mutational analysis has

shown that self-interaction of NS4B, when expressed in the

context of a NS3–5B polyprotein, is required for DMV induction

(Gouttenoire et al., 2010; Paul et al., 2011). Moreover, the

C-terminal NS4B domain (Figure 2) has been reported to alter

membrane integrity in vitro, underlining intrinsic NS4B mem-

brane activity (Palomares-Jerez et al., 2012). However, recent

data suggest that individual expression of NS4B is insufficient

to induce DMVs (Romero-Brey et al., 2012). Instead, formation

of MW-like structures appears to require a concerted action of

all HCV replicase factors (NS3–5B).

Although HCV proteins are the main drivers of membrane

remodeling, host factors crucially contribute to vRF formation.

For example, CypA that is thought to act on NS5A (Figure 2) ap-

pears to contribute to formation of HCV vRFs (Madan et al.,

2014). Another example is PSTPIP2 (proline-serine-threonine

phosphatase interacting protein 2), which belongs to the BAR

(Bin-Amphiphysin-Rvs) domain-containing protein family that

act as sensors and/or inducers of positive membrane curvature.
Ce
PSTPIP2 was recently shown to be required for HCV-induced

membrane alterations and, thus, RNA replication (Chao et al.,

2012). Both NS4B and NS5A interact with and thereby recruit

PSTPIP2 to HCV-remodeled membranes, and depletion of this

host factor abrogates DMV formation.

Besides remodeling existing intracellular membranes, HCV

induces de novo lipid and membrane biosynthesis via the sterol

regulatory element-binding protein (SREBP) pathway (Waris

et al., 2007), causing distinct changes in the lipidomic profile of

HCV-infected cells (Diamond et al., 2010) (Figure 3). Proteolytic

cleavage of SREBPs has been observed in HCV-infected as

well as core- and NS4B-overexpressing cells (Waris et al.,

2007; Park et al., 2009). This leads to elevated levels of lipogenic

transcripts, such as fatty acid synthase (FAS) and HMG-CoA

(3-hydroxy-3-methylglutaryl coenzyme-A) reductase, the rate-

limiting enzyme of the cholesterol biosynthetic mevalonate

pathway. In addition, a role of the metabolic intermediate gera-

nylgeranyl phosphate in protein prenylation was shown to be

required for viral replication (Ye et al., 2003). HCV also activates

lipogenic genes by subversion of an innate immunity pathway. It

was found that interaction of the HCV 30 NTR with DDX3X (DEAD

box polypeptide 3 X-linked) activates IKK-a, which in turn facili-

tates SREBP transcriptional activity (Li et al., 2013). Finally, FAS

has recently been described to interact with NS5B and stimulate

RdRp activity (Huang et al., 2013).

Another important determinant of vRFs appears to be the local

lipid composition. This is best illustrated by the strong depen-

dence of HCV on the lipid kinase PI4KIIIa and its product, phos-

phatidylinositol-4-phosphate (PI4P). In noninfected cells, PI4P is

predominantly found in Golgi membranes and the inner leaflet of

the plasma membrane (Figure 3). However, upon HCV infection,

presumably via interactions with NS5A and NS5B, subcellular

localization of PI4KIIIa is altered, concomitant with an increase

in intracellular PI4P levels and a decrease of the PI4P plasma

membrane pool (Figure 3) (Reiss et al., 2011; Bianco et al.,

2012). PI4KIIIa knockdown impairs HCV replication and causes

aggregation of DMVs with significantly reduced diameter (Reiss

et al., 2011), which can be phenocopied by pharmacological in-

hibition of the kinase (Wang et al., 2014). Hence, subversion of

PI4KIIIa and locally elevated PI4P levels seem to be dispensable

for DMV formation per se but required to modulate lipid content

influencing membrane characteristics that are important for

DMV functionality. Notably, DMV induction by the distantly

related picornaviruses also requires PI4P, arguing for an evolu-

tionarily conserved mechanism (Altan-Bonnet and Balla, 2012).

One pathway linked to PI4P and involving nonvesicular

cholesterol transport by oxysterol-binding protein (OSBP) ap-

pears to be subverted by HCV for vRF biogenesis (Wang et al.,

2014). The N-terminal PI4P-binding pleckstrin-homology

domain of OSBP and the C-terminal sterol-binding domain are

implicated in cholesterol transport to PI4P-containing HCV-re-

modeled membranes (Figure 3), consistent with the high choles-

terol content of DMVs. This pathway is further stimulated by

VAPA and VAPB, which are recruited by NS5A and required for

HCVRNA replication (Evans et al., 2004; Gao et al., 2004). Impor-

tantly, OSBP interacts with VAPs via its FFAT motif (Mesmin

et al., 2013), which is also required to promote cholesterol trans-

port to HCV-remodeled membranes and hence viral replication

(Wang et al., 2014). Importantly, distantly related Rhinoviruses
ll Host & Microbe 16, November 12, 2014 ª2014 Elsevier Inc. 573
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subvert this cellular lipid transport system in a strikingly similar

way (Roulin et al., 2014), arguing for an evolutionarily conserved

mechanism of DMV biogenesis. In case of HCV, reduced DMV

diameters were observed both by blocking OSBP-mediated

cholesterol transport in HCV-infected cells (Wang et al., 2014)

and by depletion of cholesterol from purified DMVs (Paul

et al., 2013), arguing that cholesterol is an important structural

component of HCV-remodeledmembranes. Although DMVmor-

photypes induced by knockdown of PI4KIIIa or OSBP are very

similar, kinase knockdown blocks HCV RNA replication to a

greater extent, arguing for additional effector functions of

PI4KIIIa and PI4P in viral RNA amplification. In any case, choles-

terol enrichment in HCV-induced DMVs could explain the re-

ported association of the viral replicase with detergent-resistant

lipid-raft-like assemblies (Shi et al., 2003) that are additionally

enriched in sphingolipids. Indeed, HCV infection induces synthe-

sis of specific sphingolipids that enhance NS5B-mediated RNA

replication (Hirata et al., 2012). Additionally, HCV has been

shown recently to subvert another PI4P effector, namely four-

phosphate adaptor protein 2 that, via an analogous mechanism

as described above for OSBP, appears to mediate sphingolipid

transport to viral replication sites (Khan et al., 2014). These

findings highlight the importance of specific lipids in HCV RNA

replication, which we are only beginning to understand.

Another cellular pathway eventually exploited by HCV and

other positive-strand RNA viruses to build up vRFs is autophagy.

One obvious link is the closemorphological similarity of autopha-

gosomes and DMV-type vRFs. Moreover, HCV infection induces
574 Cell Host & Microbe 16, November 12, 2014 ª2014 Elsevier Inc.
LC3 lipidation, a key event in autophagosome formation (Dreux

et al., 2009), and lipidated LC3 associates with HCV protein-con-

taining membrane fractions (Ferraris et al., 2010). However, con-

flicting data as to the step of the HCV replication cycle affected

by autophagy have been reported. Autophagy was reported to

stimulate translation of incoming HCV RNA without affecting

RNA replication (Dreux et al., 2009). Others suggest that auto-

phagosomes serve as platforms for HCV RNA synthesis (Sir

et al., 2012) or stimulate replication by downregulation of innate

immune response (Ke and Chen, 2011). Finally, autophagymight

affect virus production (Tanida et al., 2009). Hence, the impact

of autophagy on HCV replication might be multifaceted. How-

ever, whether the autophagy core machinery plays a role in viral

DMV biogenesis remains to be elucidated.

Mechanisms of HCV Particle Production
A remarkable feature of infectious HCV particles is their unusu-

ally low buoyant density ranging between <1.06 g/ml in the

case of serum-derived particles (André et al., 2002) and �1.1

g/ml for cell culture-grown HCV (HCVcc) (Lindenbach et al.,

2006). This exceptionally low density of HCVparticles is reflected

by their lipid composition resembling low-density lipoprotein

(LDL) particles (Merz et al., 2011). Thus, HCV virions might exist

either as single hybrid particles or as conventional virions

decorated with LDL-like particles (Bartenschlager et al., 2011;

Lindenbach and Rice, 2013) (Figure 4). In any case, HCV parti-

cles are pleomorphic, lack discernable surface features, and

have a broad size range (40–80 nm diameter) (Gastaminza



ER lumen

Hybrid particle model

Two particle model

HCV replication
complex

ER lipid bilayer

cytosolic lipid
droplet

phospholipids

triacylglycerol

cholesterylester

DGAT1/2

lipoprotein
particle

MTP

?

ApoE

core

E1/E2

p7

NS2

NS3-4A

NS5A

HCV RNA

cytosol

Figure 4. Model of HCV Particle Production
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et al., 2010; Merz et al., 2011; Catanese et al., 2013). For these

reasons, even advanced electron tomography techniques failed

to define a precise virion structure (Catanese et al., 2013).

Spatiotemporal control of viral replication and assembly likely

requires separation of core protein from the replicase in order

to avoid competition at the level of RNA binding. One solution

to this problem might be the (temporal) recruitment of core to

distinct subcellular compartments. In the case of HCV, core

accumulates on the surface of cytosolic lipid droplets (cLDs)

(Miyanari et al., 2007). Interestingly, NS5A, which is essential

for assembly, also localizes to cLDs (Appel et al., 2008) (Figure 4).

Assembly competence of NS5A is mediated by domain III and

CK-mediated phosphorylation at a C-terminal serine cluster

(Tellinghuisen et al., 2008). Interestingly, CK1-dependent NS5A

hyperphosphorylation appears to recruit NS5A to low-density

membrane fractions around cLDs, thus promoting interaction

with core and nucleocapsid assembly (Masaki et al., 2014).

Core recruitment to cLDs is influenced by cellular enzymes

involved in LD homeostasis, including cytosolic phospholipase

A2 (Menzel et al., 2012) and diacylglycerol acyltransferase-1

(Herker et al., 2010). The latter also binds to and recruits NS5A

to cLDs, thus promoting core-NS5A interaction (Camus et al.,

2013).Moreover, recruitment of core fromcLDs intomotile struc-

tures, possibly representing assembled HCV particles, has been
Ce
observed (Counihan et al., 2011). Finally, multiple host factors,

such as the RNA binding protein YB-1 (Chatel-Chaix et al.,

2013), promoting HCV particle production are recruited

to cLDs, underlining their exceptional role as a hub for HCV

assembly.

Thus far, it has not been possible to visualize sites of HCV as-

sembly, and therefore detailed knowledge about the individual

steps of this process is lacking. Nevertheless, it is generally

assumed that nucleocapsid formation and budding are spatially

and temporally linked events (Figure 4). One key viral player is

NS2, interacting on one hand with a presumed E1/E2/p7 com-

plex and on the other hand most prominently with the NS3-4A

complex (Phan et al., 2009; Jirasko et al., 2010; Popescu et al.,

2011). In case of the latter, the NS3 linker region and helicase

domain are key players (Phan et al., 2009; Kohlway et al.,

2014b), but whether helicase activity per se is required for as-

sembly or whether its RNA binding activity is sufficient remains

unknown. In addition, homotypic self-interactions of the NS4A

TMD influence particle production (Kohlway et al., 2014a). Sur-

prisingly, NS4B and NS5B also affect HCV assembly, but under-

lying mechanisms are unknown (Jones et al., 2009; Paul et al.,

2011; Gouklani et al., 2012). These data illustrate the complexity

of HCV assembly since virtually all viral proteins seem to partic-

ipate in this process. Novel experimental approaches, including
ll Host & Microbe 16, November 12, 2014 ª2014 Elsevier Inc. 575
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trans-complementation assays, as recently established for

NS5A (Herod et al., 2014), are needed to resolve the individual

steps of HCV virion formation.

HCV particle production is tightly linked to apolipoproteins E,

A1, C1, and B. While different degrees of ApoB incorporation

into serum-derived versus HCVcc particles have been reported

(Bartenschlager et al., 2011), several lines of evidence point

toward crucial roles of ApoC1, and especially ApoE, in HCV as-

sembly. First, virus particles are efficiently neutralized by anti-

bodies targeting ApoC1 and ApoE (Meunier et al., 2008; Chang

et al., 2007). Second, knockdown of ApoE reduces HCV particle

production (Chang et al., 2007). Third, cells depleted from ApoE

do not produce infectious HCV particles, and this defect can be

restored upon ectopic expression of ApoE (Long et al., 2011; Da

Costa et al., 2012). Fourth, ApoEwas found to interact with NS5A

and viral envelope glycoproteins (Jiang and Luo, 2009; Boyer

et al., 2014; Lee et al., 2014). Recent functional data point toward

a role of ApoE in a postenvelopment step of HCV particle pro-

duction (Hueging et al., 2014; Lee et al., 2014), consistent with

earlier reported imaging studies (Coller et al., 2012). A drawback

of studying HCVcc formation is the inability of most cell lines to

produce authentic VLDL particles, which was thought to explain

the observed density differences between serum- and cell cul-

ture-derived HCV particles. However, this view was challenged

by recent studies based on HepG2 cells engineered to allow

VLDL secretion; these cells failed to produce ApoB-containing

very-low-density HCV lipoviral particles (Jammart et al., 2013).

Formation of VLDL requires the microsomal triglyceride trans-

fer protein (MTP) mediating triacylglycerol incorporation into

nascent ER-luminal LDs and lipid loading of ApoB. While some

studies observed a decrease in viral titers upon inhibition or

knockdown of MTP (Gastaminza et al., 2008; Huang et al.,

2007), others could not corroborate these findings (Chang

et al., 2007; Jiang and Luo, 2009), perhaps reflecting the use

of cell-culture systems differing in their capacity to produce

authentic VLDL. HCV virions are thought to be transported along

the conventional secretory pathway to the Golgi, where E1

and E2 glycoproteins undergo complex modifications (Vieyres

et al., 2014). Moreover, microtubular transport machinery and

the endocytic recycling compartment (ERC) are involved in the

exit of HCV particles (Coller et al., 2012). Although HCV particle

production appears to require components of the ESCRT

machinery, a role in membrane scission during budding of

HCV particles seems rather unlikely. Instead, ESCRT function

might indirectly promote HCV particle release by modulating

the ERC (Corless et al., 2010; Tamai et al., 2012).

Conclusions and Future Perspectives
Despite important new insights into structure and function of viral

proteins, many details of HCV RNA translation, replication, and

assembly, the spatiotemporal coupling of these processes, and

the involvement of co-opted host factors remain poorly under-

stood. This is due, at least in part, to the lack of adequate exper-

imental systems. For instance, up to now, in vitro studies of HCV

RNA synthesis have been limited to rather simplistic biochemical

reactions lacking host cell membranes and proteins or are based

onpreassembled vRFs isolated fromcells and recapitulating only

some of the involved reactions. Thus, in vitro systems similar to

those developed for picornaviruses are needed to decipher the
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different steps of the HCV replication cycle. Moreover, decipher-

ing themolecular composition of themembranous HCV vRFswill

be instrumental in identifying the plethora of cellular proteins and

lipids involved in HCV replication and eventually assembly.

Importantly, unraveling of the 3D structures of full-length HCV

proteins in their most authentic state, i.e., in association with

lipids, will be required to understand their mode of action. Novel

approaches including in vitro expression of proteins in the pres-

enceof lipids coupledwith solid-stateNMRorX-ray free-electron

laser might help to overcome these hurdles. Another challenge is

to decipher the biogenesis of DMVs and their dynamics. Thus far,

no intermediates have been detected, and the link to autophagy,

if any, remains unclear.

Equally unresolved is the role of LDs in the different steps

of virus particle formation and the sites of HCV assembly, which

so far could not be visualized. Since biochemical approaches are

limited by the rareness of assembly events, imaging techniques

such as correlative light electron microscopy offer an attractive

alternative. These approaches can be complemented by su-

per-resolution microscopy in combination with novel detection

methods, such as metabolic labeling of viral RNA and proteins.

Moreover, live-cell imaging has the potential to discover mecha-

nisms orchestrating the spatiotemporal regulation of HCV RNA

translation, replication, and packaging. The availability of very

powerful molecular virology tools that have been developed

for HCV makes it an ideal model system to gain fundamental

insights into the relationship between the host cell and a non-

cytolytic virus.
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Weinlich, S., Hüttelmaier, S., Schierhorn, A., Behrens, S.E., Ostareck-Lederer,
A., and Ostareck, D.H. (2009). IGF2BP1 enhances HCV IRES-mediated trans-
lation initiation via the 3’UTR. RNA 15, 1528–1542.

Yamane, D., McGivern, D.R., Masaki, T., and Lemon, S.M. (2013). Liver injury
and disease pathogenesis in chronic hepatitis C. Curr. Top. Microbiol. Immu-
nol. 369, 263–288.

Ye, J., Wang, C., Sumpter, R., Jr., Brown, M.S., Goldstein, J.L., and Gale, M.,
Jr. (2003). Disruption of hepatitis C virus RNA replication through inhibition of
host protein geranylgeranylation. Proc. Natl. Acad. Sci. USA 100, 15865–
15870.
ll Host & Microbe 16, November 12, 2014 ª2014 Elsevier Inc. 579


