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Abstract: The aim of the study was to investigate the tolerance and pharmacokinetics of 

dexamethasone (DEX)-loaded poly(lactic acid–co-glycolic acid) nanoparticles (DEX-NPs) in 

rabbits after intravitreal injection. The DEX-NPs were prepared and characterized in terms of 

morphology, particle size and size distribution, encapsulation efficiency, and in vitro release. 

Ophthalmic investigations were performed, including fundus observation and photography, 

intraocular pressure measurement, and B-scan ocular ultrasonography. There were no abnor-

malities up to 50 days after administration of DEX-NPs in rabbits. The DEX concentrations in 

plasma and the ocular tissues such as the cornea, aqueous humor, lens, iris, vitreous humor, and 

chorioretina were determined by high-pressure liquid chromatography. The DEX-NPs maintained 

a sustained release of DEX for about 50 days in vitreous and provided relatively constant DEX 

levels for more than 30 days with a mean concentration of 3.85 mg/L-1. Based on the areas 

under the curve, the bioavailability of DEX in the experimental group was significantly higher 

than that in the control group injected with regular DEX. These results suggest that intravitreal 

injection of DEX-NPs lead to a sustained release of DEX with a high bioavailability, providing 

a basis for a novel approach to the treatment of posterior segment diseases.
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Introduction
The leading cause of vision impairment and blindness is posterior segment diseases, 

including age-related macular degeneration, proliferative vitreoretinopathy, diabetic 

macular edema, and endophthalmitis. However, delivery of drugs to the posterior 

segment is challenging, due to the anatomic and physiologic barriers of the eye.1 

Intravitreal injection has been reported to be the most direct therapeutic approach 

for delivering the drug directly into the posterior segment, bypassing the corneo-

scleral barriers.2 This type of administration is recommended when less aggressive 

routes are discarded or for severe pathologies that affect the vitreous or the retina. 

Intravitreal injections generally achieve improved drug absorption and diminish or 

prevent the adverse effects associated with systemic or topical treatment. However, 

many of the vitreoretinal diseases that intravitreal injections target are not controlled 

by a single injection, and the need for multiple injections is poorly tolerated and has 

inherent risks, such as endophthalmitis, cataract, retinal detachment, and vitreous 

hemorrhage.3,4 Moreover, the low therapeutic rate of some drugs used for the treat-

ment of the posterior segment diseases can lead to toxic concentrations in the retina. 

Some of these inconveniences can be overcome by the use of new dosage forms such 

as controlled release systems, which allow a reduction in the number of injections, 
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or surgical implantation of sustained drug release devices. 

Sustained drug release devices require surgical placement 

and are not ideal for the routine management of common 

posterior segment diseases due to the risk of surgery, unless 

the benefit is exceedingly high.5

The development of sustained release systems that can 

lead to a controlled release of the drug and are adapted to 

the intraocular route are very useful because it would be 

possible to achieve the same effect with a single injection 

as with multiple doses, above all for drugs with a short 

half-life.6 It has been shown that sustained intraocular 

drug concentrations can be realized through coupling the 

desired drug to liposomes, microparticles, or nanoparticles. 

Nanoparticle drug delivery has demonstrated promising 

results in ophthalmic drug delivery over the last 10 years. 

When delivered to the eye, these nanoparticles did not induce 

inflammatory reactions in the retinal tissue or disturb the 

organization of the surrounding ocular tissues. The major 

problem of intravitreal injection is inducing the stimulation 

of pathogenic immune responses, which results in photore-

ceptor degeneration.7–11 Various studies have also shown that 

intravitreal administration of nanoparticles did not generate 

organ-specific autoimmune phenomena.12

Dexamethasone (DEX) has demonstrated to be an efficient 

anti-inflammatory drug in the treatment of acute and chronic 

posterior segment eye diseases such as uveitis or affec-

tions that involve neovascularization, such as proliferative 

vitreoretinopathy or subretinal neovascularization.13 Current 

treatments of the posterior segment diseases using corticoids 

are performed by direct injections of corticoid solutions or 

suspensions. However, direct injections of corticoids into the 

vitreous often require large boluses and repeated injections 

to ensure therapeutic levels over an extended period of time, 

leading to a reduction of patient compliance, or to an increased 

likelihood of complications.14 The controlled-release delivery 

of DEX via a nanoparticle system would allow a sustained 

delivery of the drugs, thus prolonging the duration of drug 

action, avoiding the need for frequent intraocular injections, 

and decreasing the risk of complications.

Intravitreal injection of DEX-loaded nanoparticles for the 

posterior segment eye diseases requires a thorough understand-

ing of its pharmacokinetics for further potential application. 

Although the pharmacokinetics and local distribution of DEX 

in the eye have been investigated in the past,15 we did not 

find information regarding its pharmacokinetics by intravit-

real injection via a nanoparticle system. Taking the above-

mentioned information into account, it was hypothesized 

that DEX-loaded poly(lactic acid–co-glycolic acid) (PLGA) 

nanoparticles (DEX-NPs) could lead to controlled release of 

the drug following a single intravitreal injection and achieve 

the same effect as multiple injections of the conventional 

agent. To examine this hypothesis and evaluate the feasibility 

of intraocular application of drug-loaded nanoparticles, we 

have investigated the pharmacokinetic behavior and toler-

ance of DEX-NPs in ocular tissues and plasma after a single 

intravitreal injection in rabbits.

Materials and methods
Materials
Poly(lactic acid–co-glycolic acid) (PLGA) 50/50 (90,000 

molecular weight) was purchased from Birmingham Polymers, 

Inc. (Birmingham, AL). Poly(vinyl alcohol) (PVA) with an 

average molecular weight of 30,000–70,000 was obtained 

from Sigma-Aldrich (St. Louis, MO). DEX was purchased 

from Sigma-Aldrich All organic solvents were either high-

pressure liquid chromatography (HPLC) or analytical grade.

Nanoparticle preparation
DEX-NPs were prepared by an oil-in-water (O/W) emulsion/

solvent evaporation protocol with minor modifications.16 

Briefly, PLGA was dissolved in dichloromethane (DCM) 

and DEX in acetone. The two organic solutions were mixed 

and added to an aqueous solution containing 2.5% PVA and 

sonicated over an ice bath using a microtip probe sonicator 

(Sonicator Model XL2020; Misonic, Inc., Farmingdale, NY) 

at 40 KW power output for 10 min to form an O/W emulsion. 

The organic solvents were allowed to evaporate overnight by 

stirring over a magnetic stir plate in a laminar flow cabinet. 

Nanoparticles thus formed were collected by ultracentrifu-

gation, and then washed three times with distilled water to 

remove free drug and PVA. The final product was dried by 

lyophilization for 48 h.

Nanoparticle characterization
Nanoparticle size distribution (mean diameter and 

polydispersity index) was determined by photon correlation 

spectroscopy (PCS) (Draft-290000AT; Brookhaven Co., 

Holtsville NY). The analysis was performed at a scattering 

angle of 90° at a temperature of  25 using samples appropri-

ately diluted with ultrapurified water. The morphology of 

the nanoparticles was ascertained by transmission electronic 

microscopy (TEM). A drop of the nanoparticle suspension 

was placed on the copper electron microscopy grids. The 

dried sample was then examined. The DEX content in the 

PLGA nanoparticles was assayed by HPLC. A few milligrams 

of nanoparticles were dissolved in chloroform, and then 
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methanol was added to precipitate the polymer. The supernatant 

was obtained by centrifugation, diluted by methanol and the 

concentration of DEX in the supernatant was measured using 

HPLC. The HPLC system was equipped with a reverse phase 

Diamond® C18 column (inner diameter 150 mm × 4.6 mm, 

pore size 5 µm). The mobile phase consisted of 60/40 (v/v) 

methanol/water, which was degassed and vacuum filtered. 

The column was equilibrated before each run at a flow rate of 

1.0 ml/min−1 and the temperature was thermostated at 35 °C 

until a stable baseline was achieved. The compound was 

detected by a UV detector at 240 nm wavelength. Prednisone 

acetate-methanol solution was used as an internal standard. 

The encapsulation efficiency of DEX-NPs was calculated 

with the following equal formula:

Drug encapsulation efficiency (%, w/w) = (Actual drug 

  loading/Theoretical drug loading) × 100

In vitro drug release
In vitro release of DEX from the nanoparticles was performed 

in sodium phosphate-buffered saline (PBS; pH 7.4, 0.1M) at 

37 °C with a dialysis membrane method on a shaker stand. 

The freeze-dried DEX-NPs were weighed, dispersed in 1 ml 

of buffer and then put in dialysis bags (Sigma-Aldrich) with 

a molecular mass cut-off of 12,000 Da. Then the bag was 

put into a plastic tube immersed in 15 ml PBS. The tube was 

placed in an incubator shaker, which was maintained at 37 °C 

and shaken horizontally at 130 rpm. At predetermined time 

intervals, the release medium was completely withdrawn 

and replaced with an equal volume of fresh buffer. The 

concentration of DEX in the release medium was measured 

by HPLC as described above.

Animal handling
Forty-eight New Zealand White rabbits (NZW) of either 

sex, weighing 2∼3 kg, were purchased from Tianjin Medical 

Laboratory Animals Center (Tianjin, China). The Admin-

istrative Committee on Animal Research in the Institute 

of Biomedical Engineering, Chinese Academy of Medical 

Science, approved all the protocols for animal experiments. 

All animal experiments were performed in compliance with 

the Guiding Principles for the Care and Use of Laboratory 

Animals, Peking Union Medical College of China. The 

animals were classified randomly into two groups: experi-

mental group with thirty rabbits, and control group with 

eighteen rabbits. Before intravitreal injection, all of the eyes 

were found to be normal by fundus observation.

After being sterilized by γ-radiation, DEX-NPs were sus-

pended in normal saline at the equivalent DEX concentration 

of 20 g/L-1. Rabbits in the experimental group received 

intravitreal injections of 0.1 ml of DEX-NPs suspension 

and the control rabbits received intravitreal injection of 

0.1 ml DEX (20 g/L-1 in saline). For the experimental group, 

ophthalmic investigations, including fundus observation 

and photography, intraocular pressure (IOP) measurement, 

and B-scan ocular ultrasonography, were performed 1, 3, 7, 

14, 21, 28, 35, 42, 50, and 80 days after injection. The drug 

concentrations in plasma and various ocular tissues, including 

the cornea, aqueous humor, lens, iris, vitreous, and chorio-

retina were measured by HPLC at each time point. For the 

control group, the same experiments were performed 1, 2, 

3, 5, 7, and 14 days after injection.

Intravitreal injection and observation
The animals were anesthetized by intramuscular injection of 

0.3∼0.4 ml Sumianxin mixture (dihydroetrophine, xylazole, 

haloperidol). The pupils were dilated with 2.5% phenyl-

ephrine hydrochloride. Paracentesis was performed with 

a 30-gauge needle attached to a tuberculin syringe before 

intravitreous injection. About 100 µl of aqueous humor were 

withdrawn carefully from the eyes. The DEX-NPs or DEX 

alone (100 µl) were injected into the midvitreous cavity with 

a 30-gauge needle on a 1-ml tuberculin syringe through the 

pars plana. The intravitreal injection was always carried out 

in both eyes for each rabbit. The eyes were examined with 

the indirect ophthalmoscope at each time point after injection; 

ophthalmic investigations including fundus observation and 

photography, IOP measurement, and B-scan ocular ultraso-

nography study were also performed at each time point.

Preparation and purification of samples
Three rabbits were randomly selected at each time point. 

Blood samples were taken from the marginal vein of the ear 

and collected in heparin tubes, and the plasma was taken 

for analysis after separation by centrifugation. Euthanasia 

was performed with an intracardiac pentobarbital overdose. 

Both eyes were quickly dissected under a microscope, and 

samples of each ocular tissue, including cornea, aqueous 

humor, lens, iris, vitreous, and chorioretina were taken and 

extracted for HPLC analyses. 0.1 ml of PBS was added to 

the cornea, chorioretina, iris, and lens samples, and the mix-

ture was homogenized in glass homogenizers. Prednisone 

acetate-methanol solution (0.1 ml) was added to each 

sample as internal standard, then 2 ml methyl tert-butyl ether 

(MTBE) was added to each solution. After vortex-mixing, 

the supernatant was dried by N
2
 purging and then dissolved 

in 0.1 ml methanol for HPLC analysis as described above.
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Preparation of calibration curves  
and data analysis
Aliquots (0.1 ml) of the internal standard and different 

concentrations of standard DEX were added to the rabbit 

plasma, and each ocular tissue, including the cornea, aqueous 

humor, lens, iris, vitreous, and chorioretina, to form a set 

of standard solutions. The samples were then prepared by 

the method described in 2.7 before HPLC analysis. Three 

injections (20 µl) of each solution were made into the chro-

matographic system.

Calibration curves were constructed using the ratio of the 

peak area of DEX and internal standard by weighted (1/y) 

linear regression analysis. The concentrations of the samples 

obtained at each time point were calculated by refitting peak 

response ratios into the derived regression equation. Data 

were analyzed using SPSS software package (version 11.0 

for Windows; SPSS Inc., Chicago, IL). The areas under 

the concentration versus time curves (AUC) values for 

DEX were calculated from the beginning to the end of the 

observation time.

Statistical analysis
Data were analyzed using SPSS software or Student’s 

t-test when appropriate. Differences were considered to be 

significant at a level of P  0.05.

Results
Characterization of DEX-NPs
DEX-NPs were prepared using an emulsion/solvent 

evaporation protocol as described previously16 with minor 

modifications. TEM has been used in our research to charac-

terize the morphology of DEX-NPs. A representative TEM 

microphotograph is presented in Figure 1, which shows 

that DEX-NPs have homogeneous spherical shapes and 

smooth surface. With respect to particle size, analyzed by 

PCS measurement, the DEX-NPs exhibited a narrow size 

distribution with an effective particle diameter of 232 ± 5.4 nm 

and polydispersity index of 0.19. The encapsulation efficiency 

of DEX in the nanoparticles was 56.0%.

In vitro release of DEX from PLGA 
nanoparticles
The DEX release profile of nanoparticles has been investigated 

in detail with the dialysis membrane method. The cumulative 

release profiles of DEX were obtained by determining the 

percentage of DEX released with respect to the amount 

of DEX originally loaded in the nanoparticles (Figure 2). 

The in vitro drug release of the nanoparticles showed a 

continuous release for about 40 days without any lag time. 

The release profile showed almost no initial burst release, 

with about 6% release during the first day, followed by a 

constant release up to 35 days, during which more than 97% 

of the drug was released. The release rate appeared to have a 

linear or zero order release rate from day 2 to 35. As the drug 

was depleted, the DEX release rate from the nanoparticles 

declined. The cumulative release of DEX after 40 days was 

Figure 1 Transmission electronic microscopy image of dexamethasone-loaded PLGA 
nanoparticles (scale bar = 0.2 µm).
Abbreviation: PLGA, Poly(lactic acid–co-glycolic acid).
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Figure 2 Dexamethasone release from DEX-NPs in PBS (pH 7.4, 0.1M) at 37 °C 
(mean ± SD, n = 3).
Abbreviations: DEX-NPs, dexamethasone-loaded PLGA nanoparticles; PBS, 
phosphate-buffered saline; PLGA, Poly(lactic acid–co-glycolic acid); SD, standard 
deviation.
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around 99%. From the sustained drug release profile, it can 

be clearly inferred that the drug was well dispersed in the 

polymer matrix, which allowed gradual and constant release 

of the drug without any apparent initial burst.

Ophthalmic observation
Ophthalmic investigations, including fundus observation 

and photography, IOP measurement, and B-scan ocular 

ultrasonography were performed at each time point. All the 

eyes were examined with the indirect ophthalmoscope. 

Photography of the fundus showed that DEX-NPs were 

suspended within intravitreal spaces, and that they gradually 

sedimented to the vicinity of retina. The volume of nanopar-

ticles decreased with time (Figure 3). There was no evidence 

of retinal abnormalities by indirect ophthalmoscopy.

IOP measurement in the rabbit eye was carried out 

using Schiötz tonometer. This instrument measures IOP by 

registering the depth of indentation produced in the cornea 

by a plunger carrying a known weight. At each time point, 

IOP stabilized between 8∼20 mm Hg, and the mean IOP of 

the experimental group was 15 ± 1 mm Hg. The Student’s 

t-test showed that there was no significant difference between 

the mean IOP values of the experimental group and the 

control group at any postoperative period, indicating that 

intravitreous injection and continuous release of DEX-NPs 

to rabbit eyes were not associated with IOP elevation.

B-scan ocular ultrasonography studies showed irregular 

middle-level echoes localized on the section behind the 

vitreous body and under the nose. These echoes were not 

consistent with the hemorrhagic echoes, and are most likely 

the result of the drug sedimentation. No other abnormal echo 

was found by ultrasonography.

Pharmacokinetics
The DEX concentration of all the samples was determined 

by HPLC at each time point (Tables 1 and 2). The DEX 

concentration in cornea, aqueous humor, and lens were 

all below the detectable limit (10 µg/L-1) of the HPLC 

assay, and could only be detected in the iris on the first day 

after injection, with a low value of  0.08 ± 0.02 g/g-1. The 

DEX-loaded nanoparticles maintained a sustained release 

of  DEX for at least 50 days in the vitreous with a maximum 

concentration (C
max

) of 8.48 ± 1.19 mg/L-1, and provided 

relatively constant DEX levels for more than 30 days. 

In contrast, in the control group treated with DEX, the C
max

 

in the vitreous was 10.73 ± 5.43 mg/L-1, with only trace 

amounts of  DEX being detected on the 7th day after injection, 

and the DEX concentration dropping below the detectable 

limit (10 µg/L-1) before the 14th day after injection (Figure 4). 

The vitreous DEX concentration in the experimental animals 

treated with DEX-NPs was higher than that of the plasma, 

with mean vitreous DEX concentration of  3.85 mg/L-1, 

which was significantly higher (P  0.001) than that of the 

plasma (0.7 mg/L-1) (Figure 5). Comparing the experimental 

group and the control group, the drug concentrations in the 

vitreous (P = 0.86), chorioretina (P = 0.74), and plasma 

(P = 0.156) showed no significant differences.

Area under the curve (AUC) is a reliable index to estimate 

the bioavailability of drugs. Calculation of areas under 

the curve revealed that the AUC of vitreous, chorioretina, 

and plasma in the experimental animals was 4.96, 4.15, 

and 6.35 times higher than that in the control animals, 

respectively, which indicates that the bioavailability of DEX 

in the experimental group (DEX-NPs) was greater than that 

in the control group (DEX) (Figure 6 and Table 3).

Discussion
Corticosteroids have been demonstrated to be efficient anti-

inflammatory drugs for the treatment of acute and chronic 

Figure 3 Fundus photograph of rabbit eye at (A) 1 day, (B) 7 days, (C) 21 days, 
(D) 35 days, and (E) 50 days after intravitreal injection of DEX-NPs.
Abbreviations: DEX-NPs, dexamethasone-loaded PLGA nanoparticles; PLGA, 
Poly(lactic acid–co-glycolic acid).
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posterior segment eye diseases such as uveitis.13 Direct 

administration of drugs to the vitreous humor is frequently 

required to treat these eye diseases since a satisfactory access 

to retina through the blood vessels can not be expected 

when using a systemic route of administration. Intravitreal 

administration is an option to deliver the desired drug to its 

target tissue in the most direct fashion as well as preventing 

the adverse effects associated with the systemic treatment. 

Several acute and chronic posterior segment diseases are 

often treated with repeated intravitreal injections in order to 

maintain drug concentrations. However, multiple intraocular 

injections are poorly tolerated and have inherent risks. 

Therefore, the development of sustained release multipar-

ticle system that can lead to a controlled drug release and 

are adapted to the intraocular route is valuable. Nanoparticle 

drug delivery offers advantages that allow a more targeted 

drug delivery and controllable release of the therapeutic 

compound. In this article, DEX-NPs were formulated and 

its pharmacokinetics as well as tolerance after intravitreal 

injection in rabbit eyes was evaluated. To our best knowledge, 

there have been no previous reports describing the pharma-

cokinetics and ocular tissue distribution of intravitreally 

injected DEX-NPs in rabbits.

DEX has been used frequently in both anterior- and 

posterior-segment treatments of the eye. The high potency 

and relatively acceptable toxicity of this compound, com-

bined with its multifunctional roles as an anti-inflammatory, 

antiangiogenic, and antipermeability agent, confirm that it 

is efficient for ocular diseases.17–19 However, the pharma-

cokinetic half-life of DEX is 3 h which does not make it 

an ideal depot injection candidate for chronic conditions in 

the eye.15 This has been addressed in DEX-biodegradable 

intraocular implant (Posurdex; Allergan, Irvine, CA), which 

was designed to release DEX for an extended amount 

of time at a steady rate. It has proved to be effective to 

treat inflammation after cataract surgery, decreasing the 

Table 1 Drug concentration in experimental group treated by intravitreal injection of DEX-loaded PLGA nanoparticles (n = 3)

Time (d) Drug concentration (mean ± SD)

Cornea 
(µg/g-1)

Aqueous humor 
(mg/L-1)

Lens 
(µg/g-1)

Iris 
(µg/g-1)

Vitreous 
(mg/L-1)

Chorioretina 
(µg/g-1)

Plasma 
(mg/L-1)

1 – – – 0.08 ± 0.02 8.48 ± 1.19 1.79 ± 0.17 0.23 ± 0.06

3 – – – – 4.78 ± 2.44 2.41 ± 1.25 0.23 ± 0.01

7 – – – – 3.11 ± 0.58 1.08 ± 0.22 1.02 ± 0.31

14 – – – – 3.88 ± 0.19 1.96 ± 0.01 1.42 ± 0.44

21 – – – – 4.88 ± 1.83 1.08 ± 0.12 0.90 ± 1.07

28 – – – – 4.42 ± 0.45 0.99 ± 0.02 0.35 ± 0.44

35 – – – – 3.73 ± 1.90 – 0.68 ± 0.07

42 – – – – 2.73 ± 1.32 – 0.25 ± 0.15

50 – – – – 0.56 ± 0.19 – 0.75 ± 1.36

80 – – – – – – –

Abbreviations: DEX, dexamethasone; PLGA, Poly(lactic acid–co-glycolic acid); SD, standard deviation.

Table 2 Drug concentration of control animals treated by intravitreal injection of DEX (n = 3)

Time (d) Drug concentration (mean ± SD)

Cornea 
(µg/g-1)

Aqueous humor 
(mg/L-1)

Lens 
(µg/g-1)

Iris 
(µg/g-1)

Vitreous 
(mg/L-1)

Chorioretina 
(µg/g-1)

Plasma 
(mg/L-1)

1 – – – 0.21 ± 0.06 10.7 ± 5.43 2.46 ± 1.67 4.87 ± 0.04

2 – – – – 8.66 ± 0.07 1.47 ± 0.21 0.07 ± 0.08

3 – – – – 3.30 ± 1.78 1.73 ± 0.46 0.04 ± 0.01

5 – – – – 2.71 ± 0.33 1.26 ± 0.18 0.25 ± 0.06

7 – – – – 0.09 ± 0.03 – 0.90 ± 0.07

14 – – – – – – –

Abbreviations: DEX, dexamethasone; SD, standard deviation.
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risk of systemic toxicity and ocular side effects.20 Other 

ocular drug delivery systems currently under investiga-

tion for DEX include intraocular lens containing a DEX 

drug delivery system (IOL-DDS),19 an iontophoretic 

device assembled with DEX-loaded hydrogels17 and DEX 

nanoparticles.21

Drug-loaded polymeric nanoparticles (DNPs) has 

demonstrated promising results in ophthalmic drug delivery, 

offering favorable biological properties, such as biodegrad

ability, nontoxicity, biocompatibility, and mucoadhesiveness.12 

DNPs have been shown to be amenable to targeting of the 

drug to the site of action, leading to a decrease in the dose 

required and a decrease in side effects. DNPs can also be 

employed to achieve multiple purposes, including enhanced 

cellular uptake of poorly permeable drugs, reduced cellular 

and tissue clearance of drugs, and to sustain drug delivery 

over a desired time period.22–24 Furthermore, chief among the 

advantages mentioned above is the fact that no surgical proce-

dures are necessary for implanting or removing the particles, 

in contrast to conventional large polymer implants.11 These 

properties are associated with better physical stability than 

liposomes and enable DNPs to fulfill the requirements for 

ophthalmic application. PLGA is typically used to formulate 

DNPs because it has a number of advantages over other 

polymers, including biodegradability, biocompatibility, and 

approval for human use by the US Food and Drug Adminis-

tration (FDA).25–28 More importantly, the degradation rates 

of PLGA and the accompanying release of encapsulated 

drugs can be controlled by the polymer’s physicochemical 

properties, such as molecular weight, hydrophilicity, and the 

ratio of lactide to glycolide.29,30
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intravitreal injection of DEX-NPs and DEX (mean ± SD, n = 3).
Abbreviations: DEX, dexamethasone; DEX-NPs, dexamethasone-loaded PLGA 
nanoparticles; PLGA, Poly(lactic acid–co-glycolic acid); SD, standard deviation.

Table 3 Area under the curve of vitreous, chorioretina, and plasma 
after intravitreal injection of DEX-NPs and DEX (mean ± SD, 
n = 3)

Group Area under the curve (mg/h/L-1)

Vitreous Chorioretina Plasma

Experimental group 6.74 1.62 1.97

Control group 1.36 0.39 0.31

Abbreviations: DEX, dexamethasone; DEX-NPs, dexamethasone-loaded PLGA 
nanoparticles; PLGA, Poly(lactic acid–co-glycolic acid); SD, standard deviation.
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In this work, DEX-NPs were prepared using an emulsion/

solvent evaporation protocol, and were intravitreally injected 

in the rabbit eyes to investigate the feasibility of intra

ocular application of drug loaded nanoparticles. Intravit-

really injected DEX-NPs bypass the blood–ocular barrier, 

allowing for the accumulation of higher intraocular drug 

concentrations than can be achieved by systemic or topical 

administration. In our work, the DEX-NPs demonstrated a 

prolonged presence following their intravitreal administra-

tion, and continued releasing DEX in the vitreous for at least 

50 days, providing relatively constant drug levels in vitreous 

for more than one month with mean DEX concentration of 

3.85 mg/L-1. Together, these factors maintained the effec-

tive level for suppressing inflammation (0.15–4.00 µg/ml) 

for more than a month following a single injection.31 The 

range of measurable intravitreal DEX concentrations in 

our study was higher than those reported in other studies, 

in which DEX delivery devices were implanted into the 

anterior chamber after cataract surgery.32–34 In addition, 

intravitreal injection is a far simpler procedure, and is likely 

to be associated with lower morbidity and cost compared to 

the implantation of a sustained delivery device. Furthermore, 

the DEX was concentrated in the vitreous and choroiretina, 

and the concentration in the vitreous was greater than that of 

plasma. Thus, the majority of the drug was absorbed by local 

tissue, while only small amount of it appeared in systemic 

system, which minimized the risk of systemic side effects. 

The calculation of AUC revealed that DEX bioavailability to 

ocular tissues was greatly improved by PLGA nanoparticles 

compared with regular DEX injection.

Intravitreal injection is frequently used for the diagnosis 

or treatment of many diseases of the posterior segment. It is a 

relatively easy technique to perform and is reliable, although 

slight variations in the injection site can provoke hemorrhage 

or inflammation.35 Intravitreal injection of corticosteroids in 

human ophthalmology is an increasingly common treatment 

for a variety of ophthalmic conditions. The sustained release 

systems are very useful for intraocular administration of 

drugs because with a single injection it would be possible to 

achieve the same effect as with multiple doses. In addition, 

they may fulfill the requirements of controlled degradation 

time and minimum inflammatory or toxic potential. In our 

studies, there were no abnormities that could be attributed to 

the intravitreal sustained-release DEX-NPs by clinical obser-

vation, including fundus observation and photography, IOP 

measurement and B-scan ocular ultrasonography. Marta and 

colleagues11 evaluated the ocular toxicity induced by the pro-

longed presence of ganciclovir-loaded bovine serum albumin 

nanoparticles after their intravitreal injection. They found the 

prolonged residence of nanoparticles in the eye seemed to be 

well tolerated and saw no inflammatory reactions or altera-

tions in the tissue architecture. Therefore, they concluded 

that vision was not affected by autoimmune phenomena or 

alterations in the behavior of ophthalmic cells due to the 

intravitreal injection of nanoparticles. Study on inhibitory 

efficacy of intravitreal DEX acetate-loaded nanoparticles 

on choroidal neovascularization in a laser-induced rat model 

detected no sign of retinal toxity.21 Although the toxicity 

of DEX acetate-loaded PLGA nanoparticles to intraocular 

tissues was not directly determined in the present study, 

we believe that it is a relatively safe method of administering 

a prolonged therapeutic level of corticosteroid to intraocular 

tissues based upon our ophthalmologic observations.

Conclusions
For the first time, the pharmacokinetics, local distribution 

and tolerance of DEX-NPs have been investigated after 

intravitreal injection in the rabbit eyes. Intravitreal injection 

of DEX-NPs provides a more efficient means for improving 

the retention of the drug in the vitreal cavity, and allows for 

sustained release of  DEX for at least 50 days in the rabbit eyes, 

during which relatively constant drug levels in the vitreous 

were obtained for about 30 days. Satisfactory biocompat-

ibility and pharmacokinetic characters were obtained after 

intravitreal injection. DEX was concentrated in the vitreous 

and choroiretina, and the DEX concentration in the vitreous 

was far higher than that in the plasma, indicating the possibility 

of minimizing systemic side effects. To conclude, although 

further experiments are necessary, intravitreal injection of 

DEX-NPs shows great promise for the treatment of acute and 

chronic posterior segment eye diseases.
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