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ORIGINAL RESEARCH

Information Extraction From Electronic 
Health Records to Predict Readmission 
Following Acute Myocardial Infarction: Does 
Natural Language Processing Using Clinical 
Notes Improve Prediction of Readmission?
Jeremiah R. Brown, PhD, MS; Iben M. Ricket , PhD, MPH; Ruth M. Reeves, PhD; Rashmee U. Shah, MD, MS; 
Christine A. Goodrich, MS; Glen Gobbel, PhD; Meagan E. Stabler, PhD; Amy M. Perkins, MS; Freneka Minter , PhD; 
Kevin C. Cox, BS; Chad Dorn , MS; Jason Denton, BS; Bruce E. Bray, MD; Ramkiran Gouripeddi , MS, MBBS; 
John Higgins, MS; Wendy W. Chapman, PhD; Todd MacKenzie, PhD; Michael E. Matheny, MS, MD, MPH

BACKGROUND: Social risk factors influence rehospitalization rates yet are challenging to incorporate into prediction models. 
Integration of social risk factors using natural language processing (NLP) and machine learning could improve risk prediction 
of 30- day readmission following an acute myocardial infarction.

METHODS AND RESULTS: Patients were enrolled into derivation and validation cohorts. The derivation cohort included inpatient 
discharges from Vanderbilt University Medical Center between January 1, 2007, and December 31, 2016, with a primary 
diagnosis of acute myocardial infarction, who were discharged alive, and not transferred from another facility. The validation 
cohort included patients from Dartmouth- Hitchcock Health Center between April 2, 2011, and December 31, 2016, meeting 
the same eligibility criteria described above. Data from both sites were linked to Centers for Medicare & Medicaid Services 
administrative data to supplement 30- day hospital readmissions. Clinical notes from each cohort were extracted, and an NLP 
model was deployed, counting mentions of 7 social risk factors. Five machine learning models were run using clinical and 
NLP- derived variables. Model discrimination and calibration were assessed, and receiver operating characteristic comparison 
analyses were performed. The 30- day rehospitalization rates among the derivation (n=6165) and validation (n=4024) cohorts 
were 15.1% (n=934) and 10.2% (n=412), respectively. The derivation models demonstrated no statistical improvement in model 
performance with the addition of the selected NLP- derived social risk factors.

CONCLUSIONS: Social risk factors extracted using NLP did not significantly improve 30- day readmission prediction among 
hospitalized patients with acute myocardial infarction. Alternative methods are needed to capture social risk factors.
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Every year, >635 000 people in the United States ex-
perience their first acute myocardial infarction (AMI).1 
Over 1 in 10 patients will be rehospitalized within 

30 days of discharge.1 For older patients, those aged 
≥65 years, almost 1 in 5 patients will be rehospitalized 
within 30 days.2 In addition, rehospitalization rates are 
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higher in hospitals that serve poorer patients.3 Because 
readmission risk is higher among certain populations, 
health systems and providers need a way to identify pa-
tients at increased risk for readmission to test different 
strategies to improve outcomes and reduce costs.4,5 
Prior prediction models experienced limited discrimi-
nation, with area under the curve values ranging from 
0.63 to 0.75, did not leverage the wealth of patient data 
generated by an AMI hospitalization, and lack portabil-
ity because of interhospital data collection variability.6– 9 
In addition, social risk factors are rarely included in re-
admission prediction models, despite their established 
role in health outcomes and hospital readmissions.5,10– 13

Improving prediction model accuracy is an import-
ant step toward reducing unnecessary readmissions 
and improving outcomes.14,15 Recent studies suggest 
that broadly applied strategies to reduce readmission 
rates do not work.16,17 Heterogeneity among the at- risk 
group may explain these results, and more targeted 

interventions based on accurate models may lead to 
more successful strategies. Computational advances 
allow us to ascertain structured and unstructured 
textual data from clinical documentation that were 
previously difficult to extract, including social risk fac-
tors (eg, medication adherence, homelessness, and 
at- home support).13,18 These factors have promise for 
improving risk prediction, dependent on successful 
data ascertainment.3,4 Moreover, social risk factors are 
disproportionately seen among vulnerable and high- 
need populations, a group that experiences higher 
risk for readmissions.3,5 Therefore, integration of so-
cial risk factors into prediction models may be espe-
cially valuable for addressing readmission disparities. 
The overall goal of this study was to improve on prior 
AMI 30- day readmission models by incorporating data 
available from the electronic health record (EHR) using 
a common data model, machine learning (ML) compu-
tational methods, and incorporating social risk factors 
by using natural language processing (NLP) on clinical 
documents.

METHODS
To ensure compliance with the Centers for Medicare 
& Medicaid Services, data collected for this study 
cannot be shared without appropriate regulatory 
provisions. Analytic methods and study materi-
als are available from the corresponding author on 
reasonable request. This study was conducted at 
Vanderbilt University Medical Center (VUMC), a large 
tertiary care academic hospital in Nashville, TN, that 
serves a catchment area of 9 surrounding states. 
Dartmouth- Hitchcock Medical Center (DHMC) is a 
tertiary care facility serving New Hampshire and 3 
neighboring states. VUMC served as the derivation 
cohort, whereas DHMC was the validation cohort. 
Cohort derivation and inclusion criteria are described 
elsewhere.6 Briefly, patients hospitalized at VUMC 
with a primary diagnosis of AMI and discharged alive 
between January 1, 2007, and December 31, 2016, 
were included in the cohort (n=6165). A separate 
cohort of hospitalized patients discharged between 
March 2, 2011, and December 31, 2016, from DHMC 
was included as the validation cohort. Nonindex AMI 
hospitalizations were excluded (VUMC=4241, and 
DHMC=2617) to ensure 1 hospitalization per patient. 
Moreover, patients who died before discharge were 
also excluded (VUMC=327, and DHMC=244). The 
final cohort was 6165 VUMC and 4024 DHMC unique 
patients. VUMC and DHMC cohorts were linked to 
Medicare inpatient Medicare Provider Analysis and 
Review claims data to supplement 30- day read-
missions following index hospitalization. Social se-
curity numbers were used to match clinical data to 

CLINICAL PERSPECTIVE

What Is New?
• Integrating social risk factors by using natural 

language processing and machine learning, did 
not offer material improvements in predicting 
30- day readmission following an acute myocar-
dial infarction.

What Are the Clinical Implications?
• Given the importance of social risk factors, 

alternative methods for integrating these vari-
ables are needed when generating prediction 
tools evaluating risk for 30- day hospital read-
mission among patients with acute myocardial 
infarction.

Nonstandard Abbreviations and Acronyms

DHMC Dartmouth- Hitchcock Medical Center
EN elastic net
LASSO least absolute shrinkage and selection 

operator
ML machine learning
NSRF natural language processing– derived 

social risk factors (main effects)
OMOP Observational Medical Outcomes 

Partnership
RF random forest
SCD structured clinical data
VIF variance inflation factor
VUMC Vanderbilt University Medical Center
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Medicare Provider Analysis and Review claims, with 
a match rate of 73.7% and 76.4% for VUMC and 
DHMC, respectively.

Deriving NLP Variables
An NLP model was deployed on the clinical notes for 
patients with AMI. Methods related to this NLP pro-
gramming model are described elsewhere.13 Briefly, 
the rule- based NLP tool, Moonstone, was applied to 
a corpus of clinical notes dated between the index 
AMI hospitalization and 30 days after discharge of the 
AMI cohorts at both sites. All notes were processed 
for 7 measures of social risk, mapping to the follow-
ing classifications: living alone, instrumental sup-
port, medication noncompliance (called medication 
compliance), impaired activity of daily living (ADL) or 
impaired instrumental activities of daily living, medi-
cal condition affecting ADL/instrumental activities of 
daily living, dementia, and depression. The assertion 
value of each social risk factor classification was also 
determined. In other words, the NLP output was in-
cluded for each social risk factor recognized, whether 
it was positively asserted, negatively asserted, or ex-
pressed as uncertain (eg “the patient’s brother was un-
certain whether she stilled lives alone”). Performance 
metrics for Moonstone include 0.83, 0.74, and 0.78 
for precision, recall, and F1 measure, respectively.13 
Definitions for each social risk factor classification are 
found in Table S1. The social risk factor data derived 
by Moonstone’s processing of all notes in both facili-
ties’ corpora was rolled up to the encounter level, de-
noting a presence or absence of a social risk factor 
for each classification. All social risk factor mentions 
recognized by Moonstone were collected by classifica-
tion and assertion value per document, such that each 
document was represented as a series of counts per 
the combined classification+assertion value, and all 
notes documented per each hospitalization per patient 
(using unique encounter identifiers) were aggregated in 
the same manner. We assumed that social risk factors 
were not present if the NLP system extracted none. 
Univariate analysis was used to identify the strongest 
attribute status for each of the 7 NLP- derived social 
risk factors, which were retained as candidate pre-
dictors for model development. Pairwise interactions 
were generated between the 7 NLP- derived social risk 
factor variables and structured clinical data variables. 
Backward step logistic regression was used to identify 
variables to retain in subsequent modeling.

Structured Clinical Data Candidate 
Predictors
Main effect predictors and definitions are available 
in Table S2. These include 4 demographic variables, 
9 medication orders, 86 administrative variables, 9 

composite score variables, and 33 laboratory results. 
Second- order terms were evaluated using forward and 
backward stepwise logistic regression, with α=0.10, as 
a threshold for retaining the interaction term. Second- 
order interaction terms were included in parametric 
models. Nonparametric models can inherently evalu-
ate higher- order relationships. All candidate predictors 
generated at VUMC were replicated at DHMC.

Outcome
The main outcome of interest was all- cause 30- day 
hospital readmission. Readmission was defined as an 
observation or acute inpatient hospitalization within 
30 days from the index AMI discharge, excluding re-
habilitation admissions, nursing home admissions, or 
scheduled admissions for surgeries or procedures 
(Centers for Medicare & Medicaid Services defini-
tion). Hospital administrative databases were used 
to derive the dates and causes of readmission, in-
cluding the admitting hospital state and surrounding 
state inpatient data sets and Medicare claims. This 
assured complete ascertainment of 30- day readmis-
sions. Outcome derivation was the same at VUMC 
and DHMC.

Missing Values

The final analytic file contained 26 clinical variables 
with missing values at VUMC and DHMC. Percentage 
missingness of these variables is available in Table S3. 
Multiple imputation was used to address missing data. 
When missing data are assumed to be random and con-
fined to predictor variables, multiple imputation provides 
robust results.19 Moreover, multiple imputation is con-
sidered superior to using a missing category indicator 
among nonrandomized studies.20 Except for laboratory 
variables, null data within the EHR were considered not 
present in the analytical file. For laboratory variables, 20 
imputed data sets were generated in SAS using Markov 
chain Monte Carlo methods, assuming all imputed vari-
ables had a multivariate normal distribution.21 Having 20 
data sets ensures sufficient uncertainly about missing 
value estimates to have confidence about the variables’ 
influence on the outcome. With sufficiently large sam-
ples, this method provides reliable estimates, even if the 
assumption of normality is not fully met.9

The final analytic data files at VUMC and DHMC 
contained a total of 325 variables, including 134 clinical 
main effects, 7 NLP- derived social risk factors (main 
effects), 85 second- order clinical terms, 98 second- 
order NLP- derived social risk factors, and 1 outcome. 
Information on variables is available in Table S2. Each 
site contained 20 imputed data files with 123  300 
observations at VUMC and 80  480 observations at 
DHMC. The final files were imported into R 3.6.0 for 
ML development.
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Model Definition

Models were run on 3 unique data sets and then 
scored on the same set of data from the external vali-
dation cohort. The first contained structured clinical 
data (SCD) only. The second contained SCD and NLP- 
derived social risk factors (NSRF; NSRF+SCD). The 
third contained NSRF main effects only. The following 
methods were used in the development and scoring of 
all 3 models.

Model Development
Five ML models were developed and included para-
metric (elastic net [EN], least absolute shrinkage and 
selection operator [LASSO], and ridge regression) and 
nonparametric models (random forest [RF] and gradi-
ent boosting machines). These models were chosen 
to provide a balance between model complexity and 
interpretability. Although EN, LASSO, and ridge re-
gression offer the ease of model interpretability and 
understanding, their ability to characterize complex 
relationships between variables is limited. RF and gra-
dient boosting, on the other hand, are well suited to 
characterize nonlinear relationships; however, their 
model outputs (eg, variable weights) offer interpretabil-
ity challenge. Developing and validating models from 
both families provides a comprehensive approach to 
identifying the model that best characterizes the data. 
Default and optimized (ie, tuned) hyperparameter set-
tings for each model were run. Optimized hyperparam-
eters were identified using a random grid search on 
key hyperparameters of each model using the caret 
package in R with 10- fold cross- validation. Default and 
optimized hyperparameters for each of the models are 
available in Tables S4 through S6. Before deploying 
each ML model, the final analytic data file was ran-
domly split into 0.80 training set and 0.20 testing set in 
each of the 20 imputed data sets. Parametric models 
were developed in R using the glmnet and caret pack-
ages.22 Nonparametric models used the randomFor-
est and gbm packages.23,24

Model Assessment and Scoring
Each model was trained using 10- fold cross- validation 
on the full training set with 5 repeats. Model perfor-
mance was then determined using the full hold- out test 
set. The area under the receiver operating characteris-
tic curve (AUROC) and 95% CIs were calculated from 
the test set for each imputed data set (1– 20) for each 
model. The AUROC and 95% CIs were pooled across 
all imputed files using Rubin’s indexes to generate a 
single metric for each distinct ML model.21 Calibration 
was assessed using calibration curve belts and per-
centage of calibration (proportion of predictions where 
the calibration belt crossed the 1.0 line) for each model 
on the training and test data sets.25 Last, the pooled 

Brier score was assessed, which is a global metric 
that combines discrimination and calibration perfor-
mance.26 Once ML models were deployed on VUMC 
derivation cohort, scoring was performed using the 
DHMC validation cohort. The models were scored on 
the full DHMC data set, using models with default and 
optimized hyperparameters. Model discrimination was 
assessed with pooled AUROCs and 95% CIs. In ad-
dition, calibration was evaluated with calibration curve 
belts and percentage of calibration, following methods 
previously described.

Statistical Analysis: Model Comparisons
Univariate and bivariate logistic regression models 
were run to generate unadjusted associations between 
each NSRF variable and the outcome. Adjusted as-
sociations for each NSRF variable were determined 
using the best performing parametric and nonpara-
metric models. For nonparametric models, the coef-
ficient equivalent was outputted (ie, variable or relative 
importance).

Using Delong’s receiver operating characteristic 
comparison analysis, the AUROC from the 5 mod-
els using SCD only was compared with those using 
SCD+NSRF. In addition, AUROCs from the 5 mod-
els using SCD only were compared with those using 
NSRF main effects only. The AUROC, SE, test statis-
tics, and 95% CIs were pooled across imputed files 
in accordance with Rubin’s indexes.21 This was done 
for the models developed on VUMC data along with 
the scored models. Discrimination and calibration were 
used to evaluate differences between models using 
SCD only and those using SCD+NSRF.

We followed Transparent Reporting of a multi-
variable prediction model for Individual Prognosis Or 
Diagnosis guidelines for transparent reporting of mul-
tivariable prediction models for individual prognosis.27 
This study was approved by the VUMC and DHMC in-
stitutional review boards under expedited review with 
a waiver of informed consent. Co– first authors had full 
access to the data and take full responsibility for their 
integrity and analysis.

NLP and Structured Data Collinearity 
Assessment
To determine if variables from SCD served as surrogates 
for NSRF, variance inflation factor (VIF) analysis was 
used. Briefly, VIF analysis evaluates multicollinearity pre-
sent within a model by measuring the variance of a full 
model relative to the variance of a model with a single 
parameter.28 To begin, a LASSO model was run using all 
possible predictors as features. The 47 features selected 
from the LASSO model along with all NSRF variables not 
selected by the LASSO model were used in a multiple 
logistic regression model. Within this model, 7 variables 
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were removed because of matrix singularity issues, likely 
attributable to multicollinearity. Once removed, the multi-
ple logistic regression model was rerun and VIF analysis 

was implemented. In total, we tested 32 structured clini-
cal variables and second- order terms against 103 NSRF 
(main effects and second- order terms).

Table 1. Characteristics for 6195 Patients Hospitalized at VUMC With a Primary Diagnosis of AMI (Derivation Cohort)

Characteristic Readmission, % (n=934) Nonreadmission, % (n=5231)

Sex

Men 63.5 (n=593) 67.8 (n=3545)

Women 36.5 (n=341) 32.2 (n=1686)

Race

White 83.7 (n=782) 83.4 (n=4363)

Black 10.8 (n=101) 9.4 (n=492)

Other§ 5.5 (n=51) 7.2 (n=376)

Comorbidities

Arrhythmia 21.0 (n=197) 12.7 (n=666)

Anemia 17.0 (n=160) 8.2 (n=430)

Hypertension 38.3 (n=358) 30.2 (n=1580)

COPD 4.5 (n=42) 2.9 (n=150)

CKD 16.0 (n=149) 6.7 (n=353)

Tobacco use 6.2 (n=58) 4.7 (n=246)

Depression 6.9 (n=64) 4.1 (n=217)

CAD 10.3 (n=96) 10.1 (n=528)

CHF 21.2 (n=198) 11.5 (n=599)

Dementia 2.6 (n=24) 1.9 (n=101)

Cardiac arrest 5.7 (n=53) 5.1 (n=269)

STEMI 48.2 (n=450) 50.7 (n=2651)

Heart failure during hospitalization 53.2 (n=497) 35.8 (n=1871)

Ischemia during hospitalization 17.0 (n=159) 11.5 (n=600)

Histories

AMI 24.0 (n=224) 21.4 (n=1122)

Peripheral vascular disease 21.2 (n=198) 12.4 (n=647)

Angina 15.2 (n=142) 11.0 (n=575)

Unstable angina 24.4 (n=228) 19.9 (n=1042)

Hypertension 51.1 (n=477) 42.8 (n=2241)

Depression 12.8 (n=120) 10.2 (n=535)

Discharge location

Home 78.1 (n=729) 89.3 (n=4671)

Health facility 21.9 (n=205) 10.7 (n=560)

Mean continuous scores

Age, y 67.78 (SD=13.04) 63.22 (SD=12.99)

LACE score* 5.71 (SD=2.35) 4.67 (SD=2.0)

GRACE score† 141.06 (SD=33.3) 129.55 (SD=33.18)

HOSPITAL score‡ 3.42 (SD=1.65) 2.63 (SD=1.58)

Charlson Deyo score 1.19 (SD=1.86) 0.75 (SD=1.46)

Length of stay, d 7.47 (SD= 5.64) 5.67 (SD=5.06)

AMI indicates acute myocardial infarction; CAD, coronary artery disease; CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic 
obstructive pulmonary disease; STEMI, ST- segment– elevation myocardial infarction; and VUMC, Vanderbilt University Medical Center.

*LACE indicates length of stay, acuity of admission, comorbidity of the patient (measured with the Charlson comorbidity index score), and emergency 
department use (measured as the number of visits in the 6 months before admission). Possible score range is 1 to 19.

†GRACE indicates Global Registry of Acute Coronary Events; possible score is 1 to 372 points.
‡HOSPITAL score indicates hemoglobin levels at discharge, discharge from an oncology service, sodium level at discharge, procedure during the index 

admission, index type of admission, number of admissions during the past 12 months, and length of stay. Possible score range is 0 to 13.
§Other includes all racial groups other than White and Black.
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RESULTS
Among 6165 patients, 934 (15.1%) were readmitted 
within 30 days, 4138 (67.1%) were men, 1020 (16.5%) 
were Black and other people of color, and most were 
non- Hispanic ethnicity (Table 1). Among 4024 DHMC 
patients, 412 (10.2%) were readmitted within 30 days, 
1440 (35.8%) were women, and most were non- 
Hispanic ethnicity and White race. Low cell thresh-
olds limited specific release of race and ethnicity data. 
Table 1 and Table S7 provide additional patient charac-
teristics at each site.

NLP Results From Moonstone
Moonstone was deployed on clinical notes from 93 670 
VUMC patients and 119  000 DHMC patients. There 
were 46 123 total mentions of any social risk factor at 
VUMC and 232 034 at DHMC. The social risk factor 
with the most frequent mentions at VUMC and DHMC 
was impaired ADL (30  223 and 106  006, respec-
tively), and the least frequent mention at both sites was 
medication compliance (429 and 4862, respectively). 
Instrumental any and impaired ADL/instrumental ac-
tivities of daily living position were the 2 most preva-
lent NSRF variables across both sites (Table S8). The 
prevalence of nearly all NSRF variables was higher at 
DHMC when compared with VUMC. Positive univariate 

and bivariate associations between NSRF variables 
were identified at both sites (Table 2).

For models including SCD only, the testing set 
AUROC was between 0.681 and 0.705 (Table 3). For 
models run on SCD+NSRF, the testing set AUROC 
was between 0.654 and 0.703 (Table  3). Finally, for 
models run on NSRF main effects only, the testing 
set AUROC was between 0.519 and 0.629 (Table 3). 
Among models run on SCD only along with models run 
on SCD+NSRF, the best performing EN, LASSO, ridge 
regression, and gradient boosting models occurred 
with default hyperparameters, and the best perform-
ing RF models occurred with optimized hyperparam-
eters. For models run on NSRF main effects only, the 
best performing models for EN, LASSO, ridge regres-
sion, and RF occurred with default hyperparameters. 
Among the validation cohort, the best performing mod-
els occurred with optimized hyperparameters for those 
using SCD only along with those using SCD+NSRF. 
Best performing models among the validation cohort 
for those using NSRF main effects only occurred with 
default hyperparameters for LASSO, EN, and RF.

The AUROCs were statistically similar between 
models using SCD only and models using SCD+NSRF 
(Table 3). The trend was similar among the validation 
cohort. However, statistically significant differences in 
testing AUROC were found between models run using 
SCD only compared with models using NSRF main 

Table 2. Univariate, Bivariate, and Adjusted Relationships of NSRF and 30- Day Readmission Following an AMI Among 
Derivation and Validation Cohorts

Variable
Unadjusted odds 
ratio Outcome, N (%) Nonoutcome, N (%)

Adjusted variable 
importance*

Adjusted 
coefficient†

VUMC derivation cohort (n=6195)

Dementia positive 2.920‡ 114 (2.2)‡ 57 (6.1) 4.450 0.128

Depression any 1.770‡ 591 (11.3) 172 (18.4) 5.600 0.051

Impaired ADL/IADL any 2.400* 1276 (24.4)‡ 408 (43.7) 7.020 0.033

Instrumental support any 2.200‡ 1692 (32.3)‡ 479 (51.3) 7.310 0.034

Living alone uncertain 2.940‡ 626 (12.0)‡ 267 (28.6) 8.910 0.082

Medical condition positive 2.440‡ 1257 (24.0)‡ 407 (43.6) 8.060 0.040

Medication compliance any 1.280 258 (4.9)‡ 58 (6.2) 3.440 −0.002

DHMC validation cohort (n=4024)

Dementia positive 1.800‡ 274 (7.6)‡ 53 (12.9) 4.450 0.128

Depression any 1.220 1337 (37.0)‡ 172 (41.7) 5.600 0.051

Impaired ADL/IADL any‡ 1.630‡ 2163 (59.9)‡ 292 (70.9) 7.020 0.033

Instrumental support any 1.330 3040 (84.2)‡ 361 (87.6) 7.310 0.034

Living alone uncertain 1.620‡ 260 (7.2)‡ 46 (11.2) 8.910 0.082

Medical condition positive 2.020‡ 1195 (33.1)* 206 (50.0) 8.060 0.040

Medication compliance any 1.300‡ 2153 (59.6)‡ 271 (65.8) 3.440 −0.002

ADL indicates activity of daily living; AMI, acute myocardial infarction; DHMC, Dartmouth- Hitchcock Medical Center; IADL, instrumental activity of daily living; 
NLP, natural language processing; and VUMC, Vanderbilt University Medical Center.

*Pooled variable importance from best- performing nonparametric model in derivation cohort.
†Pooled coefficients from best- performing parametric model in derivation cohort.
‡Statistically significant at P<0.05.
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effects only (Table 3). This trend was also seen among 
the validation cohort.

Sensitivity, specificity, precision, and F1 metrics 
were calculated from the models with the high-
est area under the curve for SCD, NLP only, and 
SCD+NSRF (Table 4). SCD and SCD+NSRF models 
had extremely high specificity, at the cost of a low 
sensitivity and modest F1 measure. The NLP only 
models were more balanced between sensitivity 
and specificity. More important, metrics presented 

in Table 4 can vary based on the threshold cutoff 
value, which offers flexibility to optimize the desired 
metric.6

Calibration assessment occurred on VUMC test-
ing data for models using SCD only and models using 
SCD+NSRF. The best- performing model using SCD 
only was LASSO, which had the highest percentage 
of calibrated observations (31.64%) (Figure 1). The 
best- performing model using SCD+NSRF was gradi-
ent boosting (38.99%) (Figure). Among the validation 

Table 4. Additional Pooled Metrics From Best- Performing Models From VUMC, Scored on DHMC, Run on SCD Only, NSRF 
Only, and SCD+NSRF

Variable

VUMC models* Models score on DHMC*

SCD only NSRF only SCD+NSRF SCD only NSRF only SCD+NSRF

Sensitivity 0.021 0.513 0.026 0.012 0.375 0.003

Specificity 0.992 0.708 0.994 0.984 0.765 0.999

Precision 0.306 0.238 0.426 0.081 0.154 0.228

F1 0.039 0.325 0.050 0.021 0.218 0.005

SCD and SCD+NSRF used 0.5 cutoff. NSRF only used third quartile cutoff. DHMC indicates Dartmouth- Hitchcock Medical Center; NSRF, natural language 
processing– derived social risk factors (main effects); SCD, structured clinical data; and VUMC, Vanderbilt University Medical Center.

*Best- performing models by area under the curve.

Figure. Percentage calibrated for test on Vanderbilt University Medical Center (VUMC) using structured clinical data (SCD) 
only and SCD with natural language processing– derived social risk factors (main effects) (NSRF), scored on Dartmouth- 
Hitchcock Medical Center (DHMC).
Bars represent the percentage of aligned risk predictions. Model 1, SCD. Model 2, SCD+NSRF. Default, models with untuned 
hyperparameters. Optimized, models with tuned hyperparameters. LASSO indicates least absolute shrinkage and selection operator.
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cohort, the best performing model using SCD only 
was LASSO (17%), and calibration among all models 
using SCD+NSRF was <1%.

Results of VIF analysis are available in Table  S9. 
Before VIF analysis, 7 variables were removed because 
of matrix singularity issues, likely a product of multicol-
linearity. VIF identified multicollinearity between some 
SCD variables and NSRF variables, with 66 above 
the threshold of 4, suggesting significant collinearity, 
and 39 above the threshold of 10, illustrating severe 
multicollinearity.

DISCUSSION
We report on NSRF using the NLP toolkit Moonstone 
to evaluate the clinical utility of the selected social risk 
factors against EHR SCD using the Observational 
Medical Outcome Partnership (OMOP) common data 
model to improve the prediction of 30- day readmis-
sion after AMI. Most NSRF had univariate and bivari-
ate associations with 30- day readmission, but they 
were attenuated when adjusted for SCD. This trend 
was seen among derivation and validation cohorts. All 
models at the validation site experienced a decrease 
in calibration, likely a product of variance in textual 
documentation between sites. Despite using a variety 
of ML models capable of characterizing complex rela-
tionships, the addition of NSRF to an existing clinical 
risk model using a standardized common data model 
(OMOP) did not improve the ability to predict 30- day 
readmissions following an AMI.

This study represents a “null” result. Null findings are 
critically important and underemphasized, especially in 
the field of NLP, ML, and predictive analytics.29 One in-
terpretation of these findings is that social risk factors do 
not influence outcomes in AMI. Given the large body of 
evidence to suggest otherwise, an alternative interpreta-
tion is that Moonstone relies on clinician documentation, 
which is highly variable and biased.30,31 One could hy-
pothesize that social risk factor documentation is more 
biased (eg, older patients are more likely to be asked 
about ADLs compared with younger patients) than other 
data, such as blood pressure or chest pain. Alternatively, 
the set of social risk factors selected for this study may 
have been insufficient to predict readmission. On the 
basis of findings from the NLP development, one could 
also hypothesize that the documentation of some social 
risk factors may not be prevalent enough to influence 
the models. As data depth and breadth grow, one must 
consider that a null value in the data does not equate 
to absent, and key exposures should probably be cap-
tured systematically for all patients.

Social risk factors and, more broadly, social deter-
minants of health clearly influence health outcomes and 
disparities.32 However, prior results are mixed with re-
spect to inclusion of social risk variables to supplement 

clinical prediction models. In a matched case- control 
study, Wasfy et al saw an improvement in predicting 
percutaneous coronary intervention– related readmis-
sions when social support factors (eg, homelessness, 
need for medical interpreter, and anxiety described by 
clinician) were included with other clinical risk factors (eg, 
medical history, emergency department use, and medi-
cations).33 When social stability and low socioeconomic 
status variables were added to readmission models for 
heart failure, Amarasingham et al found improvement in 
predictive performance when compared with other risk 
models relying solely on clinical data.34 Frizzell et al used 
ML, with ≈250 clinical variables, and concluded that the 
variables were important, but they did not significantly 
contribute to model improvement, suggesting the pres-
ence of important nonclinical variables.9

The use of NLP to derive social risk factors also 
yields mixed results. Craig and Gillman created an all- 
cause 30- day readmission model using deep learning 
and NLP, which generated a C- statistic (0.70) compa-
rable to other published models, documenting the pre-
dictive value of unstructured text.35 Navathe et al used 
an NLP tool to extract social risk factors from physician 
notes; and when used in conjunction with clinical data 
from the EHR, the tool improved risk prediction for re-
admission models.5 In contrast, Wray et al found no im-
provement in model performance when NLP- derived 
social risk variables were added to their readmission 
model.36 However, the group did find significant univar-
iate relationships between the NLP- derived variables 
and readmission, suggesting that structured variables 
acted as surrogates for the NLP- derived variables.36

To investigate possible reasons for a lack of model 
improvement when NSRF were added to SCD, 2 sepa-
rate subgroup analyses were conducted. The first one 
investigated the operationalization of NSRF variables, 
and the second explored multicollinearity between 
variables from NSRF and variables from SCD. The first 
subgroup analysis evaluated differences in model per-
formance when NSRF variable expression was altered. 
Namely, the model performance was tested when (1) 
missingness operationalization was changed and 
when (2) NSRF variables were expressed as binary 
versus ordinal. Model performance across these dif-
ferent permutations was similar, and the best perform-
ing model occurred when NSRF variables collapsed 
missing values into “0” and when the variables were 
expressed as binary (ie, how NSRF variables were op-
erationalized in the results presented herein).

We were able to detect multicollinearity between 
some SCD and NSRF variables. Given these findings 
along with some predictive capacity by the NSRF vari-
ables alone, and no significant increase in predictive 
power when these variables were added, suggests 
that these sets of variables contain similar informa-
tion related to predicting 30- day readmission. The 
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information overlap between these variables may ex-
plain the lack of model improvement when NSRF vari-
ables were added to models with SCD.

There are several limitations to consider. Although the 
data used in the prediction models were mapped from 
EHR SCD to a common data model (OMOP), multiple 
imputation and second- order term derivation were 2 
preprocessing strategies that would require replication if 
deployed elsewhere. In addition, patients aged <65 years 
or those receiving Medicare fee for service did not have 
complete ascertainment of 30- day readmissions, and 
the patient population in the validation cohort was pre-
dominantly White race. Moreover, small variations be-
tween retrospective EHR data and real- time production 
data (attributable to iterative cleaning by business and 
clinical operations) may require surveillance and pos-
sibly recalibration of the model during implementation 
to the clinical environment. Beyond model implementa-
tion, the NSRF used in this study were limited to 7 con-
structs. By limiting specific constructs a priori, the NLP 
tool may fail to capture other important risk factors for 
readmission, such as alcohol abuse, anxiety, or fail risk.5 
Given our cohort of 6165 patients, 934 of whom had 
the outcome, and using a training/test partition of 80/20, 
we had 80% power to detect an improvement of 0.04 
in AUROC (using DeLong’s test) between models with 
and without NLP features (eg, 0.66– 0.70). There were 
data quality limitations at DHMC (external validation site), 
whereby candidate predictor variables readily available 
at the primary VUMC site could not be populated from 
DHMC EHR. This, in turn, limited the number of can-
didate predictors for the VUMC models and impacted 
model performance and variables at the DHMC external 
validation site, resulting in reduced model performance. 
Even though OMOP was developed at the external site, 
DHMC, based on the primary site, VUMC, using stan-
dardized variable definitions and code sharing, there 
were differences in EHR mappings that limited the avail-
ability of data at DHMC.6

The externally validated approach leveraged high- 
quality SCD elements with near real- time extraction 
through a common data model (OMOP). The addition 
of NLP parsers into the OMOP pipeline for prediction 
adds additional complexity with potentially limited value. 
Recent NLP approaches included feature generation in 
neural network architectures that are completely data 
driven but lack clinical interpretability. In the case of so-
cial risk factors, interpretability may be critical, as the 
users need to know where to direct their efforts. A stan-
dardized approach to capture social risk factors is pre-
ferred, just as we collect vital signs and laboratory values 
in standardized ways, and is recently being incorpo-
rated into many EHR systems in response to meaning-
ful use requirements.37 Although the use of International 
Classification of Diseases, Tenth Revision (ICD- 10), Z 
codes for documenting social determinants of health 

are poorly used, recent research identified value in using 
census bureau data in Centers for Medicare & Medicaid 
Services readmission models.32,38 These methods hold 
promise for integrating standardized measures of social 
risk in prediction models.

In conclusion, NSRF factors did not improve the 
performance of models predicting 30- day readmission 
following AMI when curated into clinically meaningful 
variables. Although NSRF maintain independent univar-
iate associations with 30- day readmission, they do not 
improve model performance when added to SCD from 
the EHR. Subgroup analysis suggests possible overlap 
in the information contained with NSRF and SCD from 
the EHR, suggesting the need to enhance existing NLP 
tools or consider alternative measures of social support. 
These findings suggest that fundamentally different ap-
proaches to data acquisition, model development, and 
NLP approaches are needed to further improve the pre-
diction of risk of 30- day readmission.
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Supplemental Table 1. Definitions for NLP-derived social risk factors  
 
Variable Name Variable Definition  Assertion Value 
Living Alone Living situation of the patient  Uncertain; uncertain 

assertion of living 
situation 

Instrumental Support  Financial, medical, food, 
housing assistance by 
friends/family  

Any; any mention of 
positive, negative or 
uncertain 

Impaired ADL/IADL&* Impaired ability to perform 
activities of daily living or 
instrumental activities of daily 
living 

Any; any mention of 
positive, negative or 
uncertain 

Medical Condition Medical conditions preventing 
the patient from performing 
ADL/IADL 

Positive; presence of 
medication condition  

Medication Compliance Evidence of willful or 
inadvertent failure to adhere to 
medication 

Any; any mention of 
positive, negative or 
uncertain 

Depression Diagnosis of depression or 
bipolar disorder  

Positive; presence of 
depression   

Dementia Diagnosis of dementia or 
indications of long-term 
cognitive impairment  

Any; any mention of 
positive, negative or 
uncertain 

* ADL: activities of daily living  
*IADL: instrumental activities of daily living   



Supplemental Table 2. Possible Machine Learning Variables  
 
Demographics  Race, age, gender, ethnicity 

Comorbidities  Charlson Deyo Comorbidity Score; Comorbid conditions that include 
age>80, arrhythmia, anemia, hypertension, chronic obstructive 
pulmonary disease, chronic kidney disease, cerebrovascular 
accident/stroke, tobacco use, depression status, hypercholesterolemia, 
coronary artery disease, diabetes, congestive heart failure, prior 
myocardial infarction, peripheral vascular disease, cerebrovascular 
disease, dementia, chronic pulmonary disease, rheumatologic disease, 
peptic ulcer, mild liver disease, hemiplegia or paraplegia, renal 
disease, AIDS 

Laboratories  Sodium (<136 mEq/L), calcium (<8.6mg/dL), troponin, hemoglobin, 
blood urea nitrogen and creatinine 

Discharge 
Information  

Anti-depressant on discharge; aspirin, beta blocker, ACE or ARB 
inhibitors combined at discharge; unstable angina, NSTEMI or 
STEMI; transfer to other hospital at discharge; LVEF diagnosis for 
index admission 

Presentation/ 
Disease  

Transfer patient, chest pain, cardiac arrest, AMI location 

Administrative 
Data  

Length of index hospitalization stay, number of other admissions 
within 30 days prior to the index admission, number of other 
admissions within 1-year prior to index admission 

Patient History  History of: chest pain, myocardial infarction, CABG, PCI, peripheral 
vascular disease, angina, unstable angina, hypertension, depression, 
number of major depressive episodes within the prior year 

Prior Month 
Diagnosis  

Sepsis, hyperkalemia, hypokalemia, acute kidney failure 

Prior 3 Month 
Diagnosis  

Sepsis, disorders of magnesium metabolism, hypokalemia, acute 
kidney failure 

In-Hospital 
Outcomes  

In-hospital new heart failure, recurrent ischemia in hospital; cardiac 
surgery; post-MI CABG 

Acute Kidney 
Injury 

AKI Stage, AKI_Flag 

HOSPITAL Score 

Modified  

Overall HOSPITAL score; low hemoglobin level at discharge (<12 
g/dL), low sodium level at discharge (<135 mEq/L), number of 
hospital admissions during the previous year, admission type: non-
elective, length of stay > 5 days  



GRACE Score 

Modified  

Overall GRACE score; in-hospital PCI, troponin, age, initial serum 
creatinine (mg/dL), cardiac arrest, STEMI  

LACE Score 

Modified  

Overall LACE score; length of stay, Charlson Deyo score 
(comorbidities that include previous MI, cerebrovascular disease, 
peripheral vascular disease, diabetes with and without complications, 
CHF, chronic pulmonary disease, liver or renal disease, tumor 
including lymphoma/leukemia, dementia, connective tissue damage, 
AIDS, liver/renal disease, metastatic solid tumor) 

NLP-derived 
social risk factors 

See supplemental table 1 for definitions  

  



Supplemental Table 3. Percent Missingness of Variables at VUMC and 
DHMC  
 

Variable Name VUMC Missing % DHMC Missing % 
Sodium_Level_Avg 3.309 76.932 
Sodium_Level_Min 3.309 76.932 
Sodium_Level_Max 3.309 76.932 
Sodium_Level_First 3.309 76.932 
Sodium_Level_Last 3.309 76.932 
Creatinine_Level_Avg 3.309 76.932 
Creatinine_Level_Min 3.309 76.932 
Creatinine_Level_Max 3.309 76.932 
Creatinine_Level_First 3.309 76.932 
Creatinine_Level_Last 3.309 76.932 
Hemoglobin_Level_Avg 4.152 76.414 
Hemoglobin_Level_Min 4.152 76.414 
Hemoglobin_Level_Max 4.152 76.414 
Hemoglobin_Level_First 4.152 76.414 
Hemoglobin_Level_Last 4.152 76.414 
Calcium_Level_Avg 7.932 76.915 
Calcium_Level_Min 7.932 76.915 
Calcium_Level_Max 7.932 76.915 
Calcium_Level_First 7.932 76.915 
Calcium_Level_Last 7.932 76.915 
TROPONIN_I_AVG 20.130 74.062 
BNP_Level_Avg 62.903 88.639 
BNP_Level_Min 62.903 88.639 
BNP_Level_Max 62.903 88.639 
BNP_Level_First 62.903 88.639 
BNP_Level_Last 62.903 88.639 

  



Supplemental Table 4. Hyperparameters for parametric machine 
learning models using clinical data, clinical and NLP-derived Social Risk 
Factor data, and NLP-derived main effects data  
 
Model  Default Optimized  
Elastic Net [EN] α=0.55; λ= λ minimum α=0.55; λ= 1 standard error 

from λ minimum 
LASSO α=1.0; λ= λ minimum α=1.0; λ= 1 standard error 

from λ minimum 
Ridge Regression [RR] α=0; λ= λ minimum α=0; λ= 1 standard error from 

λ minimum 
 
  



Supplemental Table 5. Hyperparameters for Random Forest [RF] run on 
Clinical Data, Clinical and NLP-Derived Social Risk Factor Data, and NLP-
Derived Main Effects Data  
 
 Clinical Data Only  Clinical and NLP-

Derived Data 
NLP-Derived Main 
Effects Data  

Hyperparameter Default Optimized Default Optimized Default Optimized 
Number of drawn 
candidate variables 
in each split 

11.87 10 11.87 7 11.87 1 

Sample size of 
observations 

N N N N N N 

Whether 
observations were 
drawn with 
replacement 

True True True True True True 

Node size 1 1 1 1 1 1 
Number of trees 500 1000 500 1000 500 1000 
Splitting rule Gini 

impurity, p 
value, 
random 

Gini 
impurity, p 
value, 
random 

Gini 
impurity, p 
value, 
random 

Gini 
impurity, p 
value, 
random 

Gini 
impurity, 
p value, 
random 

Gini 
impurity, 
p value, 
random 

 
  



Supplemental Table 6. Hyperparameters for Gradient Boosting [GB] run 
on Clinical Data, clinical and NLP-Derived Social Risk Factor Data, and 
NLP-Derived Main Effects Data  
 
 Clinical Data Only  Clinical and NLP-

Derived Data 
NLP-Derived Main 
Effects Data  

Hyperparameter Default Optimized Default Optimized Default Optimized 
Number of trees 100 7 100 7 100 3798 

Interaction 
depth/maximum 
node per tree 

4 1 4 1 4 7 

Minimum number 
of samples in tree 
terminal nodes 

10 10 10 10 10 10 

Fraction of training 
observations 
randomly selected 
for subsequent tree 

0.5 0.5 0.5 0.5 0.5 0.5 

Shrinkage 
parameter 

0.01 0.537 0.01 0.537 0.01 0.150 

  



Supplemental Table 7. Patient Characteristics for 4,024 patients 
hospitalized at Dartmouth Hitchcock Medical Center (DHMC, validation 
site)  
 
  Readmission (%) 

(N=412) 
Non-readmission (%) 
(N=3612) 

Gender 
Male 60.2 (N=248) 64.7 (N=2336) 
Female 39.8 (N=164) 35.13 (N=1276) 
Co-morbidities 
STEMI 27.7 (N=114) 36.7 (N=1327) 
Heart Failure during hospitalization 19.7 (N=81) 9.7 (N=350) 
Ischemia during hospitalization 3.2 (N=13) 2.3 (N= 83) 
Discharge Location 
Home* 74.3 (N=306) 84.5 (N=3052) 
Health facility* 25.7 (N=106) 15.5 (N=560) 
Mean Continuous Scores 
Age (years) 74.0 (SD=11.8) 66.4 (SD=13.2) 
LACE score 4.19 (SD=1.43) 3.75 (SD=1.33) 
GRACE score 82.25 (SD=22.79) 72.44 (SD=24.33) 
HOSPITAL score 0.78 (SD=1.04) 1.30 (SD=1.26) 
Length of stay 5.42 (SD=6.18) 6.71 (SD=5.55) 

 
  



Supplemental Table 8. Prevalence of NLP-derived social risk factor  
Variable name VUMC Count (%) DHMC Count (%) 

Dementia Positive 171 (2.77) 327 (8.13) 
Depression Any 763 (12.38) 1,509 (37.5) 

Impaired ADL/IADL Any 1,679 (27.33) 2,455 (61.01) 
Instrumental Support Any 2,171 (35.21) 3,401 (84.52) 
Living Alone Uncertain 893 (14.48) 306 (7.60) 

Medical Condition Positive 1,664 (26.99) 1,401 (34.82) 
Medication Compliance Any 316 (5.13) 2,424 (60.24) 

  



Supplemental Table 9  Variance Inflation Factor Analysis run on 
structured clinical and NLP-derived social risk factor data  
 
Variable Name Variable Type VIF Metric 
i_alonuDISCH_MED_ANTIDEP_F
LAG 

NLP-Derived Social Risk Factor 
Second Order 

569817.137 

i_impaDISCH_MED_ANTIDEP_F
LAG 

NLP-Derived Social Risk Factor 
Second Order 

340883.797 

i_conpDISCH_MED_ANTIDEP_F
LAG 

NLP-Derived Social Risk Factor 
Second Order 

228935.203 

i_impaQUAD_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

1091.359 

i_conpQUAD_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

1073.354 

i_alonuQUAD_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

1054.465 

i_dempQUAD_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

900.702 

i_conpCUBIC_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

701.501 

i_impaCUBIC_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

686.714 

i_alonuCUBIC_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

615.408 

i_dempCUBIC_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

469.971 

i_insaQUAD_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

365.552 

i_medaQUAD_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

301.578 

i_depaQUAD_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

290.520 

i_insaCUBIC_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

232.030 

i_medaCUBIC_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

177.820 

i_depaCUBIC_GRACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

166.523 

alone_uncertain1 NLP-Derived Social Risk Factor Main 
Effects 

136.489 

impaired_all1 NLP-Derived Social Risk Factor Main 
Effects 

133.254 

condition_positive1 NLP-Derived Social Risk Factor Main 
Effects 

107.869 



Variable Name Variable Type VIF Metric 
dementia_positive1 NLP-Derived Social Risk Factor Main 

Effects 
103.693 

i_impaLACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

63.391 

i_conpLACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

51.233 

instrumental_all1 NLP-Derived Social Risk Factor Main 
Effects 

50.442 

i_alonuLACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

43.697 

i_alonuHOSPITAL_SCORE NLP-Derived Social Risk Factor 
Second Order 

40.471 

i_insaLACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

39.243 

medication_all1 NLP-Derived Social Risk Factor Main 
Effects 

38.487 

depression_all1 NLP-Derived Social Risk Factor Main 
Effects 

36.865 

i_impaHOSPITAL_SCORE NLP-Derived Social Risk Factor 
Second Order 

33.998 

i_conpHOSPITAL_SCORE NLP-Derived Social Risk Factor 
Second Order 

27.579 

i_dempLACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

20.008 

i_insaHOSPITAL_SCORE NLP-Derived Social Risk Factor 
Second Order 

19.530 

i_medaLACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

19.304 

i_depaLACE_SCORE NLP-Derived Social Risk Factor 
Second Order 

18.300 

i_dempHOSPITAL_SCORE NLP-Derived Social Risk Factor 
Second Order 

14.117 

prim_diag410.71 Structured Clinical Main Effects 13.833 
i_depaHOSPITAL_SCORE NLP-Derived Social Risk Factor 

Second Order 
11.504 

i_medaHOSPITAL_SCORE NLP-Derived Social Risk Factor 
Second Order 

10.838 

i_conpCARDIAC_ARREST_FLA
G 

NLP-Derived Social Risk Factor 
Second Order 

10.303 

i_impaCARDIAC_ARREST_FLA
G 

NLP-Derived Social Risk Factor 
Second Order 

9.429 

i_conpIN_HOSPITAL_ISCHEMIA
_FLAG 

NLP-Derived Social Risk Factor 
Second Order 

7.581 



Variable Name Variable Type VIF Metric 
i_insaCARDIAC_ARREST_FLAG NLP-Derived Social Risk Factor 

Second Order 
7.212 

i_impaIN_HOSPITAL_ISCHEMIA
_FLAG 

NLP-Derived Social Risk Factor 
Second Order 

7.100 

i_impaHISTORY_PVD_FLAG NLP-Derived Social Risk Factor 
Second Order 

7.068 

i_impaCOMORBID_CKD_FLAG NLP-Derived Social Risk Factor 
Second Order 

6.817 

i_alonuCARDIAC_ARREST_FLA
G 

NLP-Derived Social Risk Factor 
Second Order 

6.377 

prim_diagI21.4 Structured Clinical Main Effects 6.242 
i_conpHISTORY_PVD_FLAG NLP-Derived Social Risk Factor 

Second Order 
6.101 

i_conpCOMORBID_CKD_FLAG NLP-Derived Social Risk Factor 
Second Order 

6.013 

lace_score Structured Clinical Main Effects 5.827 
prim_diag410.41 Structured Clinical Main Effects 5.525 
i_impaPRIOR_DIS_MAGN_MET
AB_90D 

NLP-Derived Social Risk Factor 
Second Order 

5.515 

i_insaIN_HOSPITAL_ISCHEMIA
_FLAG 

NLP-Derived Social Risk Factor 
Second Order 

5.483 

i_impaCOMORBID_STROKE_FL
AG 

NLP-Derived Social Risk Factor 
Second Order 

5.347 

i_insaCOMORBID_CKD_FLAG NLP-Derived Social Risk Factor 
Second Order 

5.200 

i_insaHISTORY_PVD_FLAG NLP-Derived Social Risk Factor 
Second Order 

5.125 

i_conpCOMORBID_STROKE_FL
AG 

NLP-Derived Social Risk Factor 
Second Order 

5.019 

i_alonuIN_HOSPITAL_ISCHEMI
A_FLAG 

NLP-Derived Social Risk Factor 
Second Order 

4.836 

prim_diag410.11 Structured Clinical Main Effects 4.811 
i_impaONCOLOGY_FLAG NLP-Derived Social Risk Factor 

Second Order 
4.790 

i_conpONCOLOGY_FLAG NLP-Derived Social Risk Factor 
Second Order 

4.717 

i_ckd_lace Structured Clinical Second Order 4.590 
i_alonuPRIOR_DIS_MAGN_MET
AB_90D 

NLP-Derived Social Risk Factor 
Second Order 

4.374 

i_impaCOMORBID_DEMENTIA_
FLAG 

NLP-Derived Social Risk Factor 
Second Order 

4.336 

i_alonuHISTORY_PVD_FLAG NLP-Derived Social Risk Factor 
Second Order 

4.243 



Variable Name Variable Type VIF Metric 
i_insaONCOLOGY_FLAG NLP-Derived Social Risk Factor 

Second Order 
3.980 

i_alonuDISCH_MED_ACE_ARB_
FLAG 

NLP-Derived Social Risk Factor 
Second Order 

3.936 

i_alonuCOMORBID_CKD_FLAG NLP-Derived Social Risk Factor 
Second Order 

3.921 

history_pvd_flag1 Structured Clinical Main Effects 3.848 
grace_score Structured Clinical Main Effects 3.815 
i_insaCOMORBID_STROKE_FLA
G 

NLP-Derived Social Risk Factor 
Second Order 

3.453 

i_impaDISCH_MED_ACE_ARB_
FLAG 

NLP-Derived Social Risk Factor 
Second Order 

3.433 

i_insaCOMORBID_DEMENTIA_F
LAG 

NLP-Derived Social Risk Factor 
Second Order 

3.429 

i_insaPRIOR_DIS_MAGN_META
B_90D 

NLP-Derived Social Risk Factor 
Second Order 

3.240 

i_conpDISCH_MED_ACE_ARB_F
LAG 

NLP-Derived Social Risk Factor 
Second Order 

3.224 

i_conpCOMORBID_DEMENTIA_
FLAG 

NLP-Derived Social Risk Factor 
Second Order 

3.082 

grace_score_age Structured Clinical Second Order 3.059 
i_dempCOMORBID_DEMENTIA
_FLAG 

NLP-Derived Social Risk Factor 
Second Order 

3.001 

grace_score_creatinine_level_fi Structured Clinical Second Order 2.852 
i_insaDISCH_MED_ACE_ARB_F
LAG 

NLP-Derived Social Risk Factor 
Second Order 

2.722 

i_alonuCOMORBID_STROKE_FL
AG 

NLP-Derived Social Risk Factor 
Second Order 

2.630 

i_lace_oncology Structured Clinical Second Order 2.566 
i_alonuONCOLOGY_FLAG NLP-Derived Social Risk Factor 

Second Order 
2.506 

los5_flag1 Structured Clinical Main Effects 2.490 
i_conpPRIOR_DIS_MAGN_MET
AB_90D 

NLP-Derived Social Risk Factor 
Second Order 

2.475 

i_alonuCOMORBID_DEMENTIA
_FLAG 

NLP-Derived Social Risk Factor 
Second Order 

2.469 

comorbid_peripheral_vascular_di1 Structured Clinical Main Effects 2.390 
i_depaHISTORY_PVD_FLAG NLP-Derived Social Risk Factor 

Second Order 
2.351 

prior_year_admissions_count Structured Clinical Main Effects 2.277 
creatinine_level_min Structured Clinical Main Effects 2.193 
prim_diagI21.19 Structured Clinical Main Effects 2.187 



Variable Name Variable Type VIF Metric 
i_dempHISTORY_PVD_FLAG NLP-Derived Social Risk Factor 

Second Order 
2.186 

i_depaCOMORBID_CKD_FLAG NLP-Derived Social Risk Factor 
Second Order 

2.073 

i_depaDISCH_MED_ANTIDEP_F
LAG 

NLP-Derived Social Risk Factor 
Second Order 

2.069 

prim_diag410.91 Structured Clinical Main Effects 2.048 
i_medaCOMORBID_CKD_FLAG NLP-Derived Social Risk Factor 

Second Order 
2.037 

i_insaDISCH_MED_ANTIDEP_FL
AG 

NLP-Derived Social Risk Factor 
Second Order 

1.994 

age_80_flag1 Structured Clinical Main Effects 1.993 
prim_diag410.21 Structured Clinical Main Effects 1.928 
i_dempCOMORBID_CKD_FLAG NLP-Derived Social Risk Factor 

Second Order 
1.892 

i_medaHISTORY_PVD_FLAG NLP-Derived Social Risk Factor 
Second Order 

1.884 

i_medaCARDIAC_ARREST_FLA
G 

NLP-Derived Social Risk Factor 
Second Order 

1.873 

i_depaIN_HOSPITAL_ISCHEMIA
_FLAG 

NLP-Derived Social Risk Factor 
Second Order 

1.867 

prim_diag410.31 Structured Clinical Main Effects 1.859 
comorbid_chf_flag1 Structured Clinical Main Effects 1.833 
i_dis_metab90d_prior_yr_count Structured Clinical Second Order 1.792 
i_medaONCOLOGY_FLAG NLP-Derived Social Risk Factor 

Second Order 
1.766 

i_dempIN_HOSPITAL_ISCHEMI
A_FLAG 

NLP-Derived Social Risk Factor 
Second Order 

1.750 

i_depaDISCH_MED_ACE_ARB_F
LAG 

NLP-Derived Social Risk Factor 
Second Order 

1.711 

i_medaCOMORBID_DEMENTIA_
FLAG 

NLP-Derived Social Risk Factor 
Second Order 

1.707 

comorbid_anemia_flag1 Structured Clinical Main Effects 1.676 
i_depaCOMORBID_STROKE_FL
AG 

NLP-Derived Social Risk Factor 
Second Order 

1.652 

i_depaCOMORBID_DEMENTIA_
FLAG 

NLP-Derived Social Risk Factor 
Second Order 

1.649 

i_depaCARDIAC_ARREST_FLA
G 

NLP-Derived Social Risk Factor 
Second Order 

1.584 

i_dempCARDIAC_ARREST_FLA
G 

NLP-Derived Social Risk Factor 
Second Order 

1.582 

i_dempCOMORBID_STROKE_FL
AG 

NLP-Derived Social Risk Factor 
Second Order 

1.569 



Variable Name Variable Type VIF Metric 
i_dempONCOLOGY_FLAG NLP-Derived Social Risk Factor 

Second Order 
1.539 

i_medaCOMORBID_STROKE_FL
AG 

NLP-Derived Social Risk Factor 
Second Order 

1.536 

prim_diag410.51 Structured Clinical Main Effects 1.521 
prior_sepsis_90d1 Structured Clinical Main Effects 1.473 
comorbid_arrhythmia_flag1 Structured Clinical Main Effects 1.456 
i_dempDISCH_MED_ACE_ARB_
FLAG 

NLP-Derived Social Risk Factor 
Second Order 

1.443 

calcium_level_avg Structured Clinical Main Effects 1.426 
in_hospital_hf_flag1 Structured Clinical Main Effects 1.398 
prim_diag410.81 Structured Clinical Main Effects 1.377 
i_depaONCOLOGY_FLAG NLP-Derived Social Risk Factor 

Second Order 
1.363 

i_medaIN_HOSPITAL_ISCHEMI
A_FLAG 

NLP-Derived Social Risk Factor 
Second Order 

1.362 

comorbid_chronic_pulmonary_dise
1 

Structured Clinical Main Effects 1.333 

i_medaDISCH_MED_ACE_ARB_
FLAG 

NLP-Derived Social Risk Factor 
Second Order 

1.241 

bnp_level_last Structured Clinical Main Effects 1.228 
history_angina_flag1 Structured Clinical Main Effects 1.220 
aki_stage1 Structured Clinical Main Effects 1.180 
aki_stage2 Structured Clinical Main Effects 1.164 
aki_stage3 Structured Clinical Main Effects 1.163 
prim_diag410.61 Structured Clinical Main Effects 1.148 
comorbid_aids_flag1 Structured Clinical Main Effects 1.131 
prim_diagI21.3 Structured Clinical Main Effects 1.122 
comorbid_mild_liver_disease_fla1 Structured Clinical Main Effects 1.095 
prim_diagI21.29 Structured Clinical Main Effects 1.088 
chest_pain_flag1 Structured Clinical Main Effects 1.086 
post_mi_cabg_flag1 Structured Clinical Main Effects 1.054 
i_med_ace_prior_yr_count Structured Clinical Second Order 1.037 
quad_hemoglobin_max Structured Clinical Second Order 1.026 
i_dempPRIOR_DIS_MAGN_MET
AB_90D 

NLP-Derived Social Risk Factor 
Second Order 

1.000 

i_depaPRIOR_DIS_MAGN_MET
AB_90D 

NLP-Derived Social Risk Factor 
Second Order 

1.000 

prim_diagI21.11 Structured Clinical Main Effects 1.000 
prim_diag410.10 Structured Clinical Main Effects 1.000 



Variable Name Variable Type VIF Metric 
prim_diag410.70 Structured Clinical Main Effects 1.000 
i_dempDISCH_MED_ANTIDEP_F
LAG 

NLP-Derived Social Risk Factor 
Second Order 

1.000 

prim_diag410.40 Structured Clinical Main Effects 1.000 
prim_diag410.90 Structured Clinical Main Effects 1.000 

 


