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Cluster of microcalcifications can be an early sign of breast cancer. In this paper, we propose a novel approach based on
convolutional neural networks for the detection and segmentation of microcalcification clusters. In this work, we used 283
mammograms to train and validate our model, obtaining an accuracy of 99.99% on microcalcification detection and a false
positive rate of 0.005%. Our results show how deep learning could be an effective tool to effectively support radiologists during
mammograms examination.

1. Introduction

Breast cancer is one of the most common malignant neo-
plasms in the female population. +e referral examination
used for screening of breast cancer is mammography.

Mammography is a radiological procedure that uses a
bundle of X photons to map the breast tissue attenuation.
With the use of high-resolution detectors, it is possible to
detect microstructures with a high atomic number in the
breast. Among them, breast microcalcification (MC) can be
an indicator for the diagnosis of breast cancer as it is the
expression of cell necrosis.

In mammograms, microcalcifications appear as regions
with high intensity compared to the local background, and they
can vary in size and have shapes ranging from circular ge-
ometries to strongly irregular ones with sharp or soft contours.

+e Breast Imaging Reporting and Data System (BIR-
ADS) standardized the interpretation of MCs by defining a
scale ranging from 2 (benign finding) to 5 (highly suspicious
of malignancy) based on their shape, density, and distri-
bution within the breast.

An important type of benign calcification that can be
seen incidentally on mammography is breast arterial cal-
cification (BAC), which seems to correlate with coronary
calcification. Breast vascular calcifications are differentiated
from malignant and ductal calcifications by size, mor-
phology, and distribution and appear as linear “tram tracks”
[1] of calcification along arterial walls with a winding rather
than branching course on mammography.

Since there are studies [2] correlating the estimation of
the patient cardiovascular disease (CVD) with the amount of
calcium residing at vascular level inside the breast, the exact
identification of the pixels belonging to a calcification can
become crucial to assess possible outcomes for the future [3].
For this reason, the proposed system not only localizes MCs
inside the tissue but also aims to provide the exact seg-
mentation of these lesions.

Because of the variability of connective, glandular, and
adipose tissue within the breast, microcalcifications are often
difficult to find even for experienced operators. +e hetero-
geneity of the breast tissue and projective image capture ge-
ometry implicate the impossibility to use a simple density
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threshold to automatically detectMCs. In addition, it is difficult
to carry out the research by means of morphological filtering
operations due to the large variability of their geometry.

Due to the intrinsic limitations of classical methods, with
this work, we propose a system based on deep learning [4],
demonstrating the potentialities of convolutional neural
networks (CNNs) to effectively detect and segment breast
microcalcifications to support radiologists in mammograms
examination.

2. Related Works

In the literature, a wide range of algorithms has been
proposed for the automatic detection of clusters of mam-
mary calcifications, highlighting the importance of this task.
+e first attempts were mainly based on the spatial char-
acteristics of these lesions; an example of that is the mor-
phological system proposed by Zhao et al. [5]. Given the
appearance of MCs as a locally high-intensity region, this
work introduced a method based on the application of an
adaptive thresholding operation on the mammogram, used
to subsequently extract the lesions.

Subsequently, Wang and Karayiannis [6] proposed an
approach employing the wavelet transform to emphasize
local variations in contrast. +e intuition behind wavelets
usage resides in their ability to discriminate different fre-
quency bands and the possibility to preserve signal details at
different resolutions. In this context, microcalcifications
correspond to high-frequency components in the image, and
they can be detected by decomposing the mammograms into
different frequency subbands and filtering out low frequency
variations from the image.

Another proposal for the MCs detection pipeline is the
multiresolutional analysis carried out by Netsch and Peitgen
[7], where the detection of microcalcifications is based on
the Laplacian scale-space representation of mammograms.

Later on, several papers proposed machine learning
approaches to solve the task. Particularly, Edwards et al. [8]
formulated the MCs detection task as a supervised-learning
problem and employed a Bayesian neural network to detect
true MCs among several candidates obtained by a pre-
liminary analysis of the mammogram. A second machine
learning approach is the one proposed by El-Naqa et al. [9],
who investigated instead, the possibility to apply support
vector machines to develop the detection algorithm.

Unfortunately, even if in some cases these methods were
able to achieve a good sensitivity (i.e., in [9], a sensitivity of
94% was achieved, outperforming all the other methods
tested by the authors), most of the previous approaches
usually suffer from a high false positive rate.+is weakness is
a direct consequence of the great variability of the breast
tissue which must be taken into account to avoid misses of
true positives also in very different mammograms.

Due to intrinsic limitations of classical methods, recent
years have seen an increasing interest in nonlinear ap-
proaches based on convolutional neural networks. Such
tools allow the avoidance of hand-crafted features definition,
providing at the same time both automatic feature extraction
and evaluation for the task at hand.

In particular, Mordang et al. [10] used a CNN architecture
inspired by the OxfordNet [11] and obtained state-of-the-art
performance with one of the first studies employing deep
learning tools. Later on, Wang and Yang [12] modelled the
mammogram analysis as a bipartite procedure defining a
model for MC detection consisting of two subnetworks: one
operating on the local image window and the other on the
surrounding image background; the two subnetworks
extracted features from the mammogram in parallel and fed
them together into a shared fully connected layer for clas-
sifying the input window as containing a MC or not.

Going further, in this paper, we propose a fast MC
detection and segmentation procedure based on the usage of
two CNNs: one to quickly detect the candidate region of
interests (ROIs) and one to subsequently segment them.
Later, our system identifies the clusters of MCs in the image.

Subsequent to the detection of calcification clusters,
further development of this work might deal with the
identification of potential cancers or identification of BAC
for the CVD stratification. In this work, however, we focus
only on the segmentation of MCs and the cluster detection,
without making any clinical assessment of patient risk.

3. Materials and Methods

3.1. Model. Mammograms are high-resolution images, and
they can correspond to big matrices (e.g., 4095× 5625 pixels)
which could be time expensive to analyse. For this reason, we
developed a model consisting of two CNNs: we called the
first CNN detector while the second one was called seg-
mentator. Detector’s role is detecting candidate ROIs to be
analysed, while segmentator classifies every pixel inside the
given ROI.

+e process of suspect ROIs detection must be non-
computationally expensive because its role is to accelerate
the processing of the whole mammographic image, and then
we preprocessed input images using Otsu thresholding to
detect background pixels and exclude them from further
evaluation.

We implemented both neural networks in Python, using
the open-source software library Tensorflow.

We chose a patch-based approach to process the input
mammograms assuming the local information sufficient to
classify such small and circumscribed regions. Moreover, by
contrast with fully convolutional approaches, a patch-based
approach allowed us to considerably increase the training set
and easily perform a good data augmentation.

With this purpose in mind, we extracted squared patches
with N×N dimension and their annotated labels from the
available mammograms and segmentation masks. We as-
sociated positive labels to the patches fed to the detector
when they contained a microcalcification inside and negative
labels in the opposite case. On the other hand, we assigned
positive or negative labels to the patches fed to the seg-
mentator accordingly to their central pixel: being part of a
calcification or not.

In the proposed model, once completed the training
process of the networks and during test time, the input
mammogram is patched at run-time with N×N windows
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overlapped byN/2 pixels on each direction.+is overlapping
area determines an increased redundancy while detecting
the ROIs, limiting the false negative rate. Once the image has
been patched, the detector classifies each of these N×N
inputs with a binary label relating to the potential presence
of MCs inside. Candidate ROIs are subsequently segmented
by segmentator CNN, bringing to the creation of a MC
binary mask (Figure 1).

+e resulting mask is then analysed via a labelling al-
gorithm in order to localize the position of every MC inside
the matrix. Clusters are considered inside regions with more
than 5 distinct MCs on cm2, as the radiological definition
suggests [13].

3.2.Data. For our experiments, we used 283 mammography
images with a resolution of 0.05mm. Among these images,
there are both natively digital mammograms and digitized
images.

Every image is associated to the corresponding manual
segmentation mask realized by a breast imaging radiologist.
Since each segmentation mask consisted in a binary matrix,
by classifying every pixel as a part of a MC or otherwise, we
could utilize them to validate the obtained results.

In order to train our neural networks, the binary masks
were also utilized to create the labels to be fed together with
training samples to the CNNs, as ground truth.

We randomly chose 231 mammograms and the anno-
tated labels to build the training set while 25 mammographic
images were used to validate intermediate results and
compare different networks architectures. +e remaining 27
images were taken apart to build the test set and measure the
final performances.

3.3. Construction of Training, Validation, and Test Set.
We experimented different values of patch dimensionN.+e
final dimension was chosen as a trade-off between com-
putation burden and maximal information provided to
CNN.

We paid particular attention to collect samples for
training, validation, and test set, trying to make sure that the
networks could always see as many input typologies as
possible. For this reason, we contemplated 4 possible classes of
patch (Figure 2) summarized in Table 1 and listed as follows:

(i) Class C1: patches whose central pixel belongs to a
microcalcification

(ii) Class C2: patches with MCs close to the center but
with the central pixel not belonging to a calcification

(iii) Class C3: cases where a calcification resides inside
the patch but is located peripherally, and the central
pixel does not belong to a MC

(iv) Class C4: cases where no MC is present inside the
patch

Since MCs are small circumscribed regions inside
mammograms, certainly, class C4 contains the largest
number of patches inside the database and class C1 is the less
numerous class.

Moreover, we considered patches of class C2 as those
containing calcifications in a range of 2 to 3 pixels from the
center.+is is a tricky class because as consequence of partial
volume effect, MC border is frequently weakly defined and
the classification of these pixels is often uncertain.

We organized the training set in a SQLite database to
gather a customizable access to its samples during training.
In particular, during the training process, we sampled
patches belonging to each of these classes paying attention to
feed the network with the same number of positive and
negative samples, which means a good balance of input
minibatches. We built each minibatch on the fly with
random patches sampled from the database. Since this
approach leads to always different minibatches, as a limit
case, we could say we will not ever have exactly the same
samples in two different minibatches, we believe it could
improve the regularizing effect of batch normalization be-
cause it adds more randomicity to mean and variance inside
minibatches. Moreover, we found this strategy useful to train
networks with such a strongly unbalanced dataset.

In addition, we used data augmentation at training time
to increase the dimension of the dataset with artificial
samples, obtained randomly by rotating and flipping the
images.

Patches for the validation set and test set were extracted
from the 52 mammograms excluded from the training. Even
in those cases, each set contained a balanced number of
samples, considering the presence of each class inside.

3.4. Networks Architecture. Both detector and segmentator
CNN share the same architecture (Figure 3) consisting of 6
convolutional layers using 3× 3 kernels and stride 1.

In particular, we tested the difference between the usage
of a same convolution and a valid convolution for both the
detector and the segmentator architectures. +is means that
we tested the possibility of applying the zero padding op-
eration throughout the network layers in order to preserve
the input dimension unchanged while going deeper. +is
trial aimed to understand if the valid convolution could
invite the segmentator to gradually reduce the input patch to
features concerning only its central regions (i.e., from
49× 49 patches to 2× 2 features inputs to the final fully
connected layers) and help it during the classification task;
on the other hand, since the detector should extract features
from the whole input patch, we wondered if it could be
favored by not reducing inputs through convolutions. In the
results, we demonstrate the differences between these two
approaches.

In the architecture, the first and the second convolu-
tional layers are followed by a max-pooling layer with 2× 2
kernel to reduce the computational burden and induce the
network to extract more abstract representations of the data.
Two fully connected layers of 64 and 2 hidden units close the
architecture. We additionally used the drop-out strategy
with 50% probability over the 64-units fully connected layer
to limit network overfitting.

Exception made for the last fully connected layer, each
one of the above layers is followed by a batch normalization
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Figure 1: Example of breast segmentation process on a zoomed region in the mammogram (best viewed in color).
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Figure 2: Example of patches and their subdivision in 4 different classes.
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layer, which we found gave a consistent speed up in the
learning process, as suggested by Ioffe and Szegedy [14] and
Santurkar et al. [15]. Finally, we used He initialization [16] to
set the initial values for the weights and lessen their de-
pendence on the initial state.

Neural networks often employ the softmax function to
map the nonnormalized output to a probability distribution
over predicted output classes. In line with the literature, we
computed the posterior probability to belong to the l-th class
given the vectorized input patch X and the network weight
matrixW for each pixel yi of the vectorized output matrix Y as

p yi � l ∣ X(  �
esl


K
k�1e

sk

, l � 1, . . . , K, (1)

where s is the score function defined as s � f(X, W), given
f(·) the nonlinear functionmodelled by the neural net.With
this formalism, s corresponds to the unnormalized log
probabilities of the classes.

As common in modern CNNs, we trained the model
employing Stochastic Gradient Descent with Adam opti-
mizer [17] to minimize the categorical crossentropy:

H(y, y) � −
j

yj · log yj , (2)

where yj is the ground truth label for the j-th class and yj is
the network output over that class.

We trained each network with 256 sized minibatches.
Moreover, we chose a learning rate of 1 × 10−3, but we
manually halved this value when the loss plateaued in order

to accelerate the convergence toward the minimum of the
cost function.

We applied early stopping strategy, taking the last ob-
tained model configuration before any evidence of over-
fitting on training set.

4. Results

Patch dimensions with side of 29, 39, and 49 pixels were
tested. +e following results relate to the usage of patch
dimension N � 49, which gave better performance and the
employment of a convolution of type same.

We obtained a final accuracy of 98.22% for detector
CNN and an accuracy of 97.47% for segmentator CNNwhen
considered independently and tested on a balanced number
of patches extracted from the test set images.

We did a more extensive analysis on the segmentation
masks extracted from the entire mammograms. Since most
classical methods suffer from a high false positive rate (FPR)
in the MC detection process, we calculated the FPR obtained
from our system. In particular, we analysed the binary masks
obtained from the whole system (segmentator working on
the preliminary ROIs identified by detector CNN on the
entire mammograms), and we obtained an FPR of 0.005%.
+e final accuracy was 99.99% instead.

Table 2 shows the error rate obtained for each con-
templated class and the overall accuracy obtained on test
samples. In particular, the table presents the values obtained
using a valid convolution approach and a same convolution
approach for both the detector and segmentator.
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Figure 3: Neural network architecture implemented for segmentator and detector.

Table 1: Summary of the patch classes.

MC position Class C1 Class C2 Class C3 Class C4
Center ✓
Close to the center ✓
Periphery ✓
Outside ✓

Table 2:+e obtained test error rate for each class and the overall test accuracy for the detector CNN and the segmentator CNN, using both
valid and same convolution.

Class C1 Class C2 Class C3 Class C4 Overall test accuracy
Detector
Valid architecture 0.19 1.22 20.28 1.69 96.04
Same architecture 0.09 0.47 7.84 2.09 98.22

Segmentator
Valid architecture 1.85 15.32 0.34 0.55 96.37
Same architecture 1.57 10.03 0.24 0.20 97.47
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To deepen our understanding of the network behavior, we
also conducted an analysis of misclassified patches in the
features domain using a nonlinear dimensionality reduction

technique, namely, t-SNE [18], to project the feature vectors
extracted by the layer preceding the final classifier (the output
of FC 64) on two dimensions. Figure 4 shows the 64 feature
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Figure 4: Latent feature spaces of the first fully connected layer projected on 2D plane for the detector and segmentator neural networks. (a,
c) Projection of samples from the positive and negative classes. (b, d) Misclassified sample position in the bidimensional projected spaces
(best viewed in color).
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vectors projections on 2D planes for either segmentator or
detector. Colors on the figures left represent the two input
classes, while colors on the right represent right and wrong
predictions operated by the CNNs. Figures 5 and 6 analyse
more in depth the figures on right and wrong predictions,
showing examples of misclassified patches and their nearest
neighbors in the features domain (which we should expect to
be similar to each other).

We tested the entire model on GPU GTX 970, and every
mammogram was processed in roughly 20 seconds.

An example of input region segmented by the model is
represented in Figure 1.

5. Discussion

From the results illustrated in Table 2, we could experiment
how performing a convolution of type same instead of valid
led to a relevant difference in both detector and segmentator
performance over each class.

We believe these differences to be independent from
stochastic oscillations of the cost function during the net-
work training. Instead, this improvement can most probably
be explained by the observation that using same convolution
leads to larger inputs to the first fully connected layer and

consequently to a larger number of weights at this level,
resulting both in minor contextual information loss and
larger model learning capability.

We consequently prefer the usage of a same convolution
approach in both cases since it leads to better results and
subsequently to a higher generalization capability of the model.

With regard to the gap in the overall performance be-
tween the segmentator and the detector, it can have many
contributions and/or interpretations. +ere is obviously a
stochastic component due to the optimization procedure;
moreover, the task performed by the detector may be easier
than the one carried out by the segmentator (i.e., the detector
may be looking to the whole input patch rather than only on
its central pixels, relying on other signal carriers).

Table 2 also outlines how the hardly classified classes
mainly relate to limit cases between the assignment of
positive or negative labels. We could assume class C2 to be a
tricky class for the segmentator because, out of the partial
volume effect (the partial volume effect can be defined as the
loss of apparent activity in small objects or regions of the
image because of the limited resolution of the imaging
system), MC borders are often soft and hardly evaluated
even by humans. On the other hand, it can be observed how
class C3 achieves the worse performance during the
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Figure 5: Example of detector failure case. +e patch on the left represents the misclassified input sample containing a microcalcification,
while the patch on the right is the (well classified) closest class C4 sample in the features space. Below, you can see the ground truth
segmentations. Please note that the maximum possible error is equal to 1 and an error <0.5 means that the input patch is still correctly
classified (best viewed in color).
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detection process, which is probably due to the presence of
patches with only a small number of peripheral pixels be-
longing to aMC (i.e., with only the onemost external pixel in
the corner of the patch) and, again, often belonging to MC
border regions.

As a confirmation of all these hypotheses, we conducted
an analysis of the misclassified patches both for detector and
segmentator neural networks. In particular, we analysed
extracted data representations from the penultimate fully
connected layer using t-SNE.

We examined C2, C3, and C4 top misclassified patches
from the segmentator and extracted the nearest neighbors in
the features domain belonging to class C1 and vice versa. On
the other hand, we examined C1, C2, and C3 top mis-
classified samples from the detector and corresponding
nearest neighbor samples in the features domain which
belonged to class C4 and vice versa.

An example of meaningful misclassified patches and
their closest positive or negative samples in the latent space
is illustrated in Figures 5 and 6. Visual analysis of results
seems to confirm our preliminary interpretation of the
errors.

By contrast, we highlight how Table 2 also points out that
the error rate is maintained low in nonlimit cases, which is

desirable. In fact, for the segmentator CNN, this means that
even if the network fails classifying boundary pixels of a
calcification, it generally recognizes its presence, achieving a
good lesionwise accuracy when the lesion resides in the
central region of the input patch. At the same time, the
detector shows a good lesionwise accuracy when MCs are
well visible in the input data, failing only with more pe-
ripheral lesions. In this context, we considered an overlap of
half patch along each direction during the mammogram
analysis to prevent MC misses during the detection process
and consequently breaking down detector error rate on class
C3 samples.

In addition, aside from tricky classes, an interesting fact
pointed out by a qualitative analysis of the segmentation
masks concerns a certain inclination of the model to make
mistakes in correspondence of the transition region from the
breast tissue to the background pixels. +is is probably due
to the fact that these regions usually relate to areas with
strong contrast variation. An example of the phenomenon is
illustrated in Figure 7.

Finally, this analysis highlighted how the major source of
false positives seems to reside in the digitized images, where
the presence of a greater quantity of widespread noise leads
the network to commit a greater number of errors.
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Figure 6: Example of segmentator failure case. +e patch on the left represents the misclassified input sample containing a micro-
calcification, while the patch on the right is the (well classified) closest class C2 sample in the features space. Below, you can see the ground
truth segmentations. Please note that the maximum possible error is equal to 1 and an error <0.5 means that the input patch is still correctly
classified (best viewed in color).
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6. Conclusion

We propose a model to detect and segment breast micro-
calcifications within mammographic images. +is model is
composed of two consecutive blocks based on convolutional
neural networks: the detector and the segmentator. +anks
to the preliminary analysis carried out by the first CNN, the
computational burden is considerably reduced and the total
segmentation process does not become time consuming.

Moreover, the quality of the achieved results suggests the
potentialities of this tool to effectively support radiologists
during mammograms examination, bringing aid during the
nontrivial evaluation of uncertain regions and reducing the
diagnosis time. +is could be especially useful in the
screening setting, where the large number of examinations
could reduce the attention of the reader, to support diagnosis
or to narrow differential diagnosis.
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