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Abstract

Background: Abnormal proteostasis due to alterations in protein turnover has been postulated to play a central
role in several neurodegenerative diseases. Therefore, the development of techniques to quantify protein turnover
in the brain is critical for understanding the pathogenic mechanisms of these diseases. We have developed a bolus
stable isotope-labeling kinetics (SILK) technique coupled with multiple reaction monitoring mass spectrometry to
measure the clearance of proteins in the mouse brain.

Results: Cohorts of mice were pulse labeled with 13 C6-leucine and the brains were isolated after pre-determined
time points. The extent of label incorporation was measured over time using mass spectrometry to measure the
ratio of labeled to unlabeled apolipoprotein E (apoE) and amyloid β (Aβ). The fractional clearance rate (FCR) was
then calculated by analyzing the time course of disappearance for the labeled protein species. To validate the
technique, apoE clearance was measured in mice that overexpress the low-density lipoprotein receptor (LDLR). The
FCR in these mice was 2.7-fold faster than wild-type mice. To demonstrate the potential of this technique for
understanding the pathogenesis of neurodegenerative disease, we applied our SILK technique to determine the
effect of ATP binding cassette A1 (ABCA1) on both apoE and Aβ clearance. ABCA1 had previously been shown to
regulate both the amount of apoE in the brain, along with the extent of Aβ deposition, and represents a potential
molecular target for lowering brain amyloid levels in Alzheimer's disease patients. The FCR of apoE was increased by
1.9- and 1.5-fold in mice that either lacked or overexpressed ABCA1, respectively. However, ABCA1 had no effect on
the FCR of Aβ, suggesting that ABCA1 does not regulate Aβ metabolism in the brain.

Conclusions: Our SILK strategy represents a straightforward, cost-effective, and efficient method to measure the
clearance of proteins in the mouse brain. We expect that this technique will be applicable to the study of protein
dynamics in the pathogenesis of several neurodegenerative diseases, and could aid in the evaluation of novel
therapeutic agents.
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Background
In the proteomics era, significant effort has been devoted
to developing techniques that accurately and efficiently
determine differences in protein amounts under normal
physiological conditions and disease states [1]. However,
quantifying protein turnover rates at both a cellular and
systemic level is also necessary for a complete under-
standing of the mechanisms dictating changes in protein
levels [2]. Several neurodegenerative diseases are charac-
terized by the accumulation of protein aggregates in the
brain, including Alzheimer’s disease (AD) [3], Parkinson’s
disease [4], Huntington’s disease [5], and frontotemporal
dementia[6]. Although the underlying cause of protein
aggregation in these diseases remains unclear, it is likely
due to abnormal proteostasis caused by alterations in
protein production or clearance [7,8]. Therefore, the de-
velopment of techniques that can assess protein dynam-
ics in the brain are fundamental for advancing our
understanding of these disease processes and aiding the
conception of innovative therapeutics.

Stable isotope tracers have been in use for many years
to facilitate the analysis of protein turnover in cells and
whole organisms [9]. Mass spectrometry (MS) has
proven an effective tool for the analysis of stable isotope
incorporation into individual proteins [10]. Liquid chro-
matography-mass spectrometry (LC-MS) analysis allows
for the comparison of the relative abundance of labeled
to unlabeled peptides due to their mass separation.
Coupling stable isotope amino acid labeling with LC-MS
has been applied to quantify protein synthesis and deg-
radation in yeast [11], mammalian cell lines [12,13], and
small animals [14,15]. However, protein turnover stud-
ies in animals have been limited due to issues with
MS detection sensitivity and accurate label quantifica-
tion, along with difficulties in achieving cost-effective
and practical methods for tracer administration. Re-
cently, Bateman et al. have developed a method to
measure the dynamics of low abundance proteins in
the cerebral spinal fluid (CSF) of humans [16]. In this
technique, 13 C6-leucine is injected intravenously into
research participants and samples of the lumbar CSF
are serially collected over a predetermined time period.
The synthesis and clearance rates of proteins are then
measured by quantifying the appearance and dis-
appearance of the 13 C6-leucine in proteins over time
via LC-MS [16,17]. The value of this technique has
specifically been highlighted for the amyloid β (Aβ)
peptide, which accumulates in the brains of AD
patients and has been implicated in the disease patho-
genesis [3]. Application of stable isotope labeling to
studies of Aβ dynamics have demonstrated impaired
Aβ clearance in individuals with AD and the ability of
a gamma secretase inhibitor to decrease Aβ synthesis
in the CNS [8,16,18].
Apolipoprotein E (apoE) plays a central role in the trans-
port of cholesterol by functioning as a ligand for the recep-
tor-mediated endocytosis of lipoprotein particles into cells
[19]. In humans, three common apoE isoforms exist
(apoE2, apoE3, and apoE4) that differ by amino acids at
positions 112 and 158. ApoE4 is currently the strongest
known genetic risk factor for late-onset AD, and as a result
significant effort has been devoted to understanding apoE’s
physiological function in the brain along with its role in
AD pathogenesis [20]. A major hypothesis for how apoE4
affects the onset of AD contends that apoE promotes the
aggregation of Aβ into amyloid plaques in the brain, either
through impairing Aβ clearance [21,22], directly regulating
the propensity of Aβ to form amyloid fibrils [23,24], or
both mechanisms. Independent of apoE isoform, the
amount of apoE in the brain appears to be critical for de-
termining the extent of amyloid deposition [25,26]. There-
fore, finding proteins and molecular pathways that
regulate apoE levels in the brain has been the focus of sig-
nificant attention in the AD research community.

Increasing the endocytosis of apoE via the low-density
lipoprotein receptor (LDLR) has been shown to decrease
apoE levels in the mouse brain, likely through increased
apoE clearance [27]. Brain levels of the cholesterol trans-
porter ATP binding cassette A1 (ABCA1) also alter the
amount of apoE and the extent of apoE lipidation in mice.
Both the overexpression and deletion of ABCA1 in the
mouse brain resulted in a decrease in apoE protein level
[28-30]. In transgenic mice that overexpress the human
amyloid precursor protein (APP), increasing ABCA1 levels
caused a significant decrease in amyloid deposition in the
brain [30]. Therefore, it has been hypothesized that
ABCA1 regulates amyloid levels in the brain by altering
Aβ clearance, and this could occur through the effect of
ABCA1 on either apoE lipidation or total apoE levels.
However, no study has yet addressed this hypothesis for-
mally by studying apoE and Aβ metabolism in the brain of
mice with altered ABCA1 levels.
Herein, we describe a novel method to study protein

clearance in the mouse brain. We show that following a
bolus injection of 13 C6-leucine into mice, LC-MS ana-
lysis of brain tissue can be used to measure the frac-
tional clearance rate (FCR) of individual proteins. We
validate our technique by analyzing changes in the
clearance of apolipoprotein E (apoE) in mice that have
been genetically engineered to overexpress LDLR. Fi-
nally, we use 13 C6-leucine labeling coupled to LC-MS
analysis to measure the clearance of apoE and Aβ in
APP transgenic mice that either overexpress or lack
ABCA1. Both overexpression and deletion of ABCA1
resulted in an increased fractional clearance rate of
apoE. However, ABCA1 levels did not alter the clear-
ance rate of Aβ in the mouse brain, suggesting ABCA1
acts via another pathway, such as directly influencing
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Aβ aggregation, to regulate amyloid deposition. These
results highlight the power of our stable isotope label-
ing technique in elucidating mechanisms of protein
clearance from the brain, and suggest that future stud-
ies could use this technique to study the clearance
pathways of other proteins implicated in neurodegen-
erative disease.

Results and discussion
Stable isotope labeling of mice and protein isolation
Several methods have been described to study protein
turnover in animals using stable isotope labeling. Trad-
itionally, stable isotope incorporation was measured by
gas chromatography mass spectrometry (GC-MS) quan-
titation of labeled amino acids obtained following protein
derivatization [9]. However, this technique is limited to
measuring large quantities of proteins, and consequently
has only been used to analyze total tissue protein turn-
over or the kinetics of highly abundant proteins [31-33].
Recently the more sensitive analytical technique of LC-
MS has been applied to quantify the turnover of specific
proteins following administration of a stable amino acid
in the diet of animals [14,15]. Though these techniques
have provided useful information on the turnover of
abundant proteins in various organs, the requirement of
labeled amino acid delivery via the diet has been a tech-
nical issue. Creating a diet enriched with an isotopic
label is costly, and inability to control feeding patterns in
animals such as mice and rats requires long term expos-
ure (several hours to days) to the labeled diet to achieve
reliable and consistent isotope levels in tissues. This is
especially problematic in studying proteins with rapid
turnover rates, as the difficulty in accurately measuring
label incorporation over short time periods (minutes to
hours) limits the sensitivity of kinetic analysis. To create
a more practical and efficient method of labeling pro-
teins, we have tested whether pulse labeling of mice
could be used to measure protein turnover rates in the
mouse brain.
The outline of our experimental design for the labeling

of mice and tissue processing is shown in Figure 1A.
Mice were intraperitoneally (IP) injected with a bolus of
13 C6-leucine, a non-radioactive stable isotope form of
the amino acid leucine. We chose 13 C6-labeled leucine
because it is one of the essential amino acids that rapidly
crosses the blood brain barrier via facilitative neutral
amino acid transport [34]. Intraperitoneal administration
of the label was chosen because it is straightforward and
quick, and it allows for high bioavailability upon absorp-
tion into the bloodstream. Following the injection, we
observed a rapid increase in the amount of 13 C6-leucine
in the plasma of the mice over the first hour, as mea-
sured by the ratio of labeled to unlabeled free leucine
quantified by GC-MS (Figure 1B). After predetermined
time points, the mice were euthanized and the brains
were quickly removed and frozen. Upon collection of all
of the brain samples for each time course, the tissue was
then lysed in a 1% Triton X-100 lysis buffer and the pro-
tein of interest (apoE and Aβ for this study) was immu-
noprecipitated with protein-specific antibodies covalently
coupled to protein G sepharose beads. Only the cortex
of the brain was used in this study; however this tech-
nique could easily be applied to measure turnover rates
in other regions of the brain. The isolated proteins were
eluted off the beads using formic acid, and the concen-
trated samples were digested with trypsin to generate
protein-specific peptides for each protein. These peptide
mixtures were then subjected to LC-MS analysis for
identification and characterization as described below.

Mass spectrometry analysis to calculate the ratio of labeled
to unlabeled peptide
We used a targeted LC-MS approach to accurately and
precisely quantify the amount of labeled apoE and Aβ in
the brain. Multiple reaction monitoring (MRM) assays
were developed for each protein by first selecting a pep-
tide that shows high MS signal intensity, contains only
one leucine residue, and is specific for each protein
(LQAEIFQAR for apoE, LVFFAEDVGSNK for Aβ). Syn-
thetic peptides were then directly injected into the MS
to select and optimize the MRM product transitions for
each parent ion (Figure 2A, Table 1, details of the MRM
optimization protocol are found in the METHODS sec-
tion). These parent/precursor ion groupings were then
used for the relative quantitation of the labeled and un-
labeled peptides from the brain sample. The area under
the curve (AUC) of the MRM ion count during the
course of the parent ion elution was calculated for both
the labeled and unlabeled peptide peaks (Figure 2B). The
AUC for the labeled peak was then divided by the AUC
for the unlabeled peak to calculate the tracer-to-tracee
ratio (TTR) for each sample.
In order to accurately compare the TTR values between

individual brain samples and across cohorts of animals, we
developed standard curves for both apoE and Aβ using the
stable isotope labeling of amino acids in cell culture
(SILAC) method [35]. The standard curve for Aβ was gen-
erated as previously described [17]. Since astrocytes are the
main cell type in the brain that produce apoE [20], we used
primary astrocyte cultures to produce a labeled apoE
standard curve. To label newly synthesized apoE, the astro-
cytes were cultured in leucine-free media supplemented
with different ratios of 13C6-leucine to unlabeled leucine.
Under these conditions, all apoE that was synthesized and
secreted into the cell media are labeled with the percentage
of 13C6-leucine provided to the cells. After a 48 hr incuba-
tion, the cell media was collected and apoE was immuno-
precipitated. Following trypsin digestion, the apoE peptides
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Figure 1 Experimental schematic for stable isotope labeling and isolation of mouse brain proteins. (A) Cohorts of mice were pulse-
labeled with 13 C6-leucine via a bolus intraperitoneal injection (200 mg/kg of body weight). After a pre-determined time following the 13 C6-
leucine administration, the mice were euthanized and the brains were removed. The brain tissue was then lysed using a 1% Triton X-100 lysis
buffer, and the protein of interest was immunoprecipitated from the brain lysate (apoE is shown as an example). The precipitated proteins were
then eluted from the antibody beads and subjected to trypsin digestion. The resulting peptide mixture was separated and analyzed via ultra
performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS) (yellow = apoE, blue = sepharose bead, red = trypsin). (B) To
observe the bioavailability of the 13 C6-leucine, plasma samples were collected at sequential time points following the bolus injection and
subjected to GC-MS analysis. The tracer-to-tracee ratio (TTR, shown as labeled/unlabeled leucine) was then measured by quantifying the relative
amounts of 13 C6-leucine and dividing by the amount of unlabeled leucine in each sample. Each time point in the graph represents the average
value from 5–6 individual mice
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were subjected to LC-MS as described above. The mea-
sured amount of percent labeled apoE gave values that
were very close to the expected values (Figure 2C). The lin-
ear fit had a slope of 0.976 and an R2 value of 0.9954. The
apoE and Aβ media standards were used in all subsequent
experiments to calibrate the quantitation of the mouse
brain samples.
In order to calculate the fractional clearance rates
(FCRs) of apoE and Aβ from the brain for each cohort of
mice, mice were injected with 13C6-leucine and the brains
were removed at predetermined time points following the
label administration. To determine the optimal time
course for analyzing apoE and Aβ clearance, a preliminary
experiment was performed with 1 to 2 mice at each time



Time

la
b

el
ed

/u
n

la
b

el
ed

 p
ro

te
in

 (%
)

A.

Peak of 13C6-labeled apoE
m/z 541.29

Peak of unlabeled apoE
m/z 538.29

R
el

at
iv

e
io

n
 in

te
n

si
ty

R
el

at
iv

e 
io

n
 in

te
n

si
ty

B.

R
el

at
iv

e 
io

n
 in

te
n

si
ty

C.
Slope = 0.976 ± 0.0167
R2 = 0.9954

labeled/unlabeled protein =
(AUC Labeled IC/AUC Unlabeled IC)

TTR of several mice

Each point is average

D.

2.5 5 12.5 25

5

10

25

2.5

Expected labeled/
unlabeled apoE (%)

M
ea

su
re

d
 la

b
el

ed
/

u
n

la
b

el
ed

 a
p

o
E

 (%
)

Figure 2 Tandem mass spectrometry (MS/MS) analysis and quantitation of stable isotope labeled apoE. (A) Tryptic peptides from
immunoprecipitated apoE were separated by liquid chromatography and detected using a Xevo TQ-S triple quadrupole mass spectrometer. To
facilitate the accurate and specific quantitation of labeled apoE, MRM transitions and conditions were optimized for the parent ion LQAEIFQAR.
MS/MS spectrum for the product MRM transitions is shown. A similar analysis was performed for the Aβ specific peptide. (B) Representative
relative ion count peaks from multiple reaction monitoring (MRM) analysis of the labeled and unlabeled apoE parent peptide LQAEIFQAR are
shown [mass charge ratio (m/z) = 541.29 for labeled peptide and 538.29 for unlabeled peptide]. The area under the curve of the MRM ion counts
were used for quantitation of the labeled and unlabeled peptide (C) Standard curve of labeled apoE. To generate a standard curve for the MS
quantitation, primary mouse astrocytes were incubated in culture media with different percentages of labeled leucine. The media of the
astrocytes was then collected and the secreted apoE was immunoprecipitated, digested with trypsin, and analyzed using LC-MS. The measured
labeled/unlabeled ratios along with the predicted labeled/unlabeled values are shown with a linear regression line (n = 3, dotted lines represent
95% confidence bands). (D) Representative diagram of time course of labeled proteins used for kinetic analyses. The labeled/unlabeled ratio was
calculated for individual protein samples by dividing the area under the curve of the labeled ion count (IC) by the area under the curve of the
unlabeled IC. The labeled/unlabeled ratios were averaged for all of the mouse brain samples collected at each time point. The averaged labeled/
unlabeled ratios were then plotted versus time to obtain the kinetic curve for each mouse genotype.
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Table 1 MRM transitions used for apoE and Aβ analysis

Protein Peptide
sequence

Precursor
m/z

Product
m/z

Collision
Energy (V)

ApoE LQAEIFQAR 538.2852 634.2609 14

ApoE LQAEIFQAR 538.2852 763.2590 12

ApoE LQAEIFQAR 538.2852 834.2775 14

ApoE [13 C6]LQAEIFQAR 541.2852 634.2609 14

ApoE [13 C6]LQAEIFQAR 541.2852 763.2590 12

ApoE [13 C6]LQAEIFQAR 541.2852 834.2775 14

Aβ LVFFAEDVGSNK 663.3405 819.3840 24

Aβ LVFFAEDVGSNK 663.3405 966.4520 24

Aβ LVFFAEDVGSNK 663.3405 1113.5210 24

Aβ [13 C6]LVFFAEDVGSNK 666.3500 819.3840 24

Aβ [13 C6]LVFFAEDVGSNK 666.3500 966.4520 24

Aβ [13 C6]LVFFAEDVGSNK 666.3500 1113.5210 24
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point. For the actual experiments, several mice (n= 5 to 6)
were labeled for each time point and the TTR values were
averaged. The averaged TTR values were then plotted
over time for the whole cohort of mice to obtain the kin-
etic time course of label disappearance (Figure 2D). The
negative of the slope of the monoexponential curve was
then calculated in order to determine the fractional clear-
ance rate for each protein from the brain. Through the
use of cell-derived labeled protein standards, this tech-
nique yielded highly reproducible results. For instance, the
labeling of three different cohorts of wild-type (Wt) con-
trol mice resulted in similar FCR values for apoE (Table 2;
0.093, 0.10, and 0.09 pools/hr, mean=0.094 pools/
h± 0.003). These cohorts did not have the same amount
of apoE protein as measured by ELISA [Pool size (PS) in
Table 2], likely because of the different genetic back-
grounds of the mice. Studies have shown that different
mouse strains can have up to a four-fold difference in
plasma apoE levels [36,37]. Since we observed similar
Table 2 Pool Sizes (PS), Fractional Clearance Rates (FCR),
Production Rates (PR), and Half-lives for ApoE by Mouse
Genotype

Genotype PS
(ng/mg)

FCR
(pools/hr)

PR
(ng/mg/hr)

Half-life
(t1/2, hrs)

Wt (LDLR Tg control) 125.4 ± 9.1 0.093 ± 0.011 11.69 ± 1.64 7.5

LDLR Tg 44.7 ± 1.9 0.25 ± 0.019 11.07 ± 0.96 2.8

P <0.0001 <0.0001 0.75

Wt (ABCA1 Tg control) 135.5 ± 4.8 0.10 ± 0.019 14.08 ± 1.64 6.9

ABCA1 Tg 109.2 ± 3.8 0.15 ± 0.022 16.81 ± 0.96 4.6

P <0.0001 0.106 0.46

Wt (ABCA1 −/− control) 230.5 ± 12.1 0.09 ± 0.015 20.76 ± 3.64 7.7

ABCA1 −/− 117.6 ± 8.0 0.17 ± 0.010 20.41 ± 2.13 4.1

P <0.0001 <0.0001 0.94
FCR values from the Wt mice across the different genetic
strains, our results suggest that the different brain apoE
levels are not caused by variations in apoE catabolism.

LDLR overexpression enhances the apoE clearance rate
To verify that our labeling technique could measure dif-
ferences in the clearance rates of proteins, we analyzed
the effect of overexpressing LDLR on the apoE clearance
rate from the brain. LDLR is a receptor that binds to
apolipoprotein B and apoE in the periphery to facilitate
the uptake of cholesterol-laden lipoproteins by cells [38].
Previously we have shown that LDLR transgenic mice
that overexpress LDLR in the brain have significantly
decreased levels of brain apoE [27]. We therefore
hypothesized that the apoE clearance rate in the brain
would be increased in mice that have elevated LDLR
levels. Wt and LDLR Tg mice were labeled with 13 C6-
leucine and the apoE TTR values were measured after
pre-determined time points. Plots of the TTR values
(presented as labeled/unlabeled apoE) over time along
with the monoexponential slopes of these curves are
shown in Figures 3A and 3B, respectively. Table 2 shows
the pool sizes (PS), fractional clearance rates (FCRs), and
production rates (PR) for apoE from each genotype. The
FCR of apoE was 2.7-fold faster in the LDLR Tg mice in
comparison to the Wt mice, while the apoE pool size
was 2.8-fold higher for the Wt mice in comparison to
the LDLR Tg mice. These values were used to estimate
the PR values for both genotypes (see METHODS section
for explanation of PR calculation), and no statistical differ-
ence in the PR was observed between Wt and LDLR Tg
mice. These results convincingly demonstrate that apoE
clearance is enhanced in the brains of LDLR Tg mice, pro-
viding the likely explanation for the decreased total apoE
protein levels. We therefore concluded that the pulsed
13C6-leucine injection labeling technique is effective for
measuring the clearance of proteins from the brain, and
could be used to detect differences in FCRs between genet-
ically modified mouse models.

Effect of ABCA1 levels on apoE and Aβ clearance rates
ABCA1 is a transmembrane protein that plays an im-
portant role in the efflux of cholesterol and phospholi-
pids to lipid-poor apolipoproteins [39]. In the brain, the
level of ABCA1 has been shown to modulate the extent
of apoE lipidation and apoE levels. Surprisingly, both de-
letion and overexpression of ABCA1 in the mouse brain
led to a decrease in apoE levels [28-30]. However, the
apoE containing lipoprotein particles isolated from the
cerebral spinal fluid (CSF) of ABCA1−/− mice were
poorly lipidated, while those from the CSF of mice over-
expressing ABCA1 had higher levels of lipidation com-
pared to Wt animals [28,30]. Because lowering apoE
levels decreased amyloid deposition in the mouse brain



A. B.

0

5

10
Wt
LDLR Tg

3 5 7 11

Time (hr)

la
b

el
ed

/u
n

la
b

el
ed

 a
p

o
E

 (%
)

-5

-4

-3

-2
Wt
LDLR Tg

3 5 7 11

Time (hr)

ln
 (l

ab
el

ed
/u

n
la

b
el

ed
 a

p
o

E
)

Figure 3 13 C6-leucine brain apoE labeling in the presence of increased LDLR levels. (A) Wildtype and LDLR transgenic mice (3.5 months
old) were labeled with 13 C6-leucine and the brains isolated after predetermined time points. ApoE was then immunoprecipitated from the cortex
and the labeled/unlabeled ratios calculated via LC-MS. The labeled/unlabeled ratios were then plotted versus time for each genotype. (B) To
calculate the FCR, the natural log of the labeled/unlabeled ratios were plotted over time and the monoexponential slopes were calculated (n = 5
mice per time point, error bars represent SEM, dotted lines represent 95% confidence band).
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[25], it was hypothesized that altering ABCA1 levels
would also alter amyloid deposition in APP transgenic
mice. Despite decreased apoE levels with both ABCA1
deletion and overexpression, only ABCA1 overexpression
caused a significant decrease in amyloid load in the
mouse brain of APP transgenic animals [30]. The amyl-
oid load in APP transgenic mice deficient in ABCA1 did
not change, or even increased, when ABCA1−/− mice
were crossed to various APP transgenic models [40-42].
Because of the opposing effects of ABCA1 deletion and
overexpression on Aβ accumulation, ABCA1 likely alters
Aβ levels through a mechanism distinct from modulating
apoE levels. One proposed mechanism is ABCA1 levels
could alter Aβ clearance from the brain [30,43]; however
this hypothesis has never been tested in vivo. Therefore,
we used our stable isotope labeling technique to study
the effect of ABCA1 levels on both apoE and Aβ clear-
ance rates in the mouse brain.
To generate APP transgenic mice that either overex-

pressed or were deficient in ABCA1 levels, we crossed
PDAPP mice with ABCA1 Tg and ABCA1−/− mice.
These animals were then injected with 13 C6-leucine and
the FCRs of both apoE and Aβ were measured as
described above for the LDLR Tg animals. To limit com-
plications due to Aβ extraction from tissue with amyloid
plaques, all experiments were performed on young ani-
mals (3.5 months old) prior to the onset of detectable
plaque deposition. Plots of the labeled/unlabeled protein
values over time along with the monoexponential slopes
of these curves are shown in Figures 4 and 5 for apoE
and Aβ, respectively. The PS, FCR, and PR values for
apoE and Aβ are given in Table 2 and Table 3, respect-
ively. The apoE FCR was 1.5-fold faster in ABCA1 Tg
mice and 1.9-fold faster in ABCA1−/− mice compared to
Wt mice; however the difference was only significant for
the ABCA1−/− mice. The apoE PS decreased by 20% in
ABCA1 Tg mice and by 51% in ABCA1−/− mice com-
pared to Wt mice. No differences were observed in the
PR of apoE. For Aβ, no differences were observed in the
FCR, PS, or PR values (Table 3).
These results demonstrate that both ABCA1 overex-

pression and deletion increase the fractional clearance
rate of apoE from the brain, but have no effect on the
Aβ fractional clearance rate. In terms of apoE, the results
from the ABCA1−/− mice parallel nicely with plasma kin-
etic studies performed in humans with loss-of-function
mutations in ABCA1. These studies demonstrated that
the catabolism of both high-density lipoprotein (HDL)
and low-density lipoprotein apolipoprotein B-100 (LDL
B-100) were increased in the plasma of these individuals
[44,45], suggesting decreased stability of poorly lipidated
lipoprotein particles. The lipidation of apoE also signifi-
cantly alters its propensity to bind to LDLR, with
increased lipid levels leading to enhanced binding [46].
As a result, the faster apoE clearance rate in the ABCA1
Tg mice may be due to increased LDLR-mediated clear-
ance of the more highly lipidated apoE-containing lipo-
protein particles. Therefore, though both ABCA1
overexpression and deletion led to enhanced apoE clear-
ance, the mechanism underlying the difference in each
case may be different.
In regards to Aβ, our results suggest that at a young

age prior to the onset of plaque deposition, ABCA1
levels do not alter Aβ clearance from the mouse brain.
A previous study measuring the disappearance of radi-
olabeled Aβ injected into the brains of ABCA1−/− mice
also found no effect on Aβ clearance across the blood–
brain barrier [47]. Though we cannot rule out the pos-
sibility that changes in Aβ clearance develop as the
mice age, our current data suggests that the effect of
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Figure 4 13C6-leucine brain apoE labeling in the presence of ABCA1 overexpression and deletion. (A) Cohorts of wildtype and ABCA1
transgenic mice and (C) wildtype and ABCA1−/− mice were labeled with 13 C6-leucine and the brains isolated after predetermined time points.
Note that separate groups of animals were used as the wildtype controls for the ABCA1 Tg and ABCA1−/− mice. The apoE labeled/unlabeled
ratios were then calculated and the data plotted as in Figure 3. For FCR measurements, the monoexponential slopes were measured for (B)
ABCA1 Tg and (D) ABCA1−/− mice and their respective Wt controls (n = 5-6 mice per time point, error bars represent SEM, dotted lines represent
95% confidence band).
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ABCA1 on Aβ deposition in the brain may not occur
due to altered metabolism of Aβ. Rather, it is possible
that the effect of ABCA1 relates to altered modulation
of differentially lipidated forms of apoE on Aβ aggrega-
tion or fibrillogenesis.

Conclusions
In this study, we describe a stable isotope pulse labeling
kinetics (SILK) technique that can be used to measure the
clearance of proteins from the mouse brain. The non-
radioactive labeling method is safe, straightforward, and
does not require administration of the stable isotope via
the diet. Label administration to the mice is consistent and
easily controlled by altering the amount injected. Since the
stable isotope quickly appears in both plasma and brain
within minutes of the injection, this technique is particu-
larly suitable for measuring the kinetics of proteins that
turn over rapidly. The SILK technique is not particularly
expensive and can be applied in any laboratory setting that
has access to MS instrumentation. The primary costs asso-
ciated with this technique are the purchase of the stable
isotope and the generation and maintenance of the mice
prior to injection. In terms of time, the labeling of the mice
and collection of tissue is the most laborious aspect of this
technique. Once the brain tissue is collected for the whole
cohort of mice, preparation and processing of the samples
for MS analysis is extremely efficient because all of the
samples can be processed in parallel. It takes about one
week to complete the labeling of mice and preparation of
samples for MS analysis.
We demonstrate that this labeling technique is particu-

larly useful for comparing the kinetics of a protein in
cohorts of mice with different genetic manipulations. To
show the applicability of this technique to test a hypothesis
pertinent to neurodegenerative disease, the effect of
ABCA1 levels on the clearance of Aβ from the mouse
brain were measured in vivo for the first time. Increasing
ABCA1 or deleting ABCA1 from the brain had no effect
on Aβ clearance. Consequently, ABCA1 likely regulates Aβ
deposition in the brain through a mechanism other than
altering Aβ metabolism, such as through modulating the
propensity of Aβ to aggregate. Previous studies have mea-
sured Aβ clearance from the brain either using [35 S]me-
thionine labeling [48], or by measuring the disappearance
of Aβ following the pharmacological inhibition of Aβ pro-
duction [49-51]. The half-life of Aβ clearance in these stud-
ies ranged from 30 min to 2 h. Consistent with these
studies, we observed a half-life for Aβ of approximately



Figure 5 13C6-leucine brain Aβ labeling in the presence of ABCA1 overexpression and deletion. (A) Cohorts of wildtype and ABCA1
transgenic mice and (C) wildtype and ABCA1−/− mice were labeled with 13 C6-leucine and the brains isolated after predetermined time points.
Total Aβ was immunoprecipitated from the cortex and the labeled/unlabeled ratios were then plotted versus time for each genotype. For FCR
measurements, the data was plotted as in Figure 3B and the monoexponential slopes were calculated for both (B) ABCA1 Tg and (D) ABCA1−/−

mice and their respective Wt controls (n = 5-6 mice per time point, error bars represent SEM, dotted lines represent 95% confidence band).

Table 3 Pool Sizes (PS), Fractional Clearance Rates (FCR),
Production Rates (PR), and Half-lives for Aβ by Mouse
Genotype

Genotype PS
(pg/mg)

FCR
(pools/hr)

PR
(pg/mg/hr)

Half-life
(t1/2, hrs)

Wt (ABCA1 Tg
control)

11.23 ± 0.56 0.238 ± 0.016 2.65 ± 0.21 2.91

ABCA1 Tg 11.14 ± 0.46 0.247 ± 0.016 2.77 ± 0.23 2.81

P 0.90 0.69 0.68

Wt (ABCA1
−/− control)

7.67 ± 0.26 0.247 ± 0.023 1.91 ± 0.15 2.81

ABCA1 −/− 7.87 ± 0.33 0.243 ± 0.016 1.89 ± 0.19 2.85

P 0.64 0.88 0.94
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2.8-2.9 h (Table 3). In comparison to other studies, our
technique has unique advantages in that it does not require
a radioactive tracer and kinetics are determined in the
steady-state, which does not occur with the inhibition of
Aβ production.
We propose that this method of stable isotope labeling,

and its applicability to studying the clearance of proteins
in genetically modified mouse models, will be useful in
studying the kinetics of proteins implicated in other neu-
rodegenerative diseases, such as synuclein, tau, and hun-
tingtin. We also hope that this technique will aid the
development and characterization of novel therapeutics
that target protein metabolism in neurodegeneration.

Methods
Materials
13 C6-leucine was obtained from Cambridge Isotope La-
boratories (Andover, MA, USA). HJ5.2 (Aβ) and HJ6.3
(ApoE) antibodies were made in-house. Protein G Seph-
arose 4 Fast Flow beads were obtained from GE Health-
care (Piscataway, NJ, USA). Formic acid (Optima LC-
MS) was obtained from Fisher Scientific and triethylam-
monium bicarbonate was obtained from Sigma-Aldrich
(St. Louis, MO, USA). Trypsin Gold (mass spec grade)
was purchased from Promega (Madison, WI, USA).
Animal labeling and tissue collection
The production and characterization of the LDLR trans-
genic and ABCA1 transgenic mice have been previously
described [27,30]. ABCA1+/− mice on a DBA background
were obtained from the Jackson Laboratory (Bar Harbor,
ME, USA). PDAPP mice on a C57/BL/6J background
were a generous gift from Eli Lilly (Indianapolis, IN,
USA). LDLR Tg+/− mice were bred to Wt mice to gener-
ate mice that were LDLR Tg+/− and LDLR Tg−/−. ABCA1
Tg mice were backcrossed to C57/BL/6J mice for 8
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generations, and then crossed to DBA mice. PDAPP
mice were also crossed to DBA mice and ABCA1+/−

mice were crossed to C57/BL/6J mice to create strains
that were on a 50%C57/BL/6J/50%DBA background.
The ABCA1 Tg+/− and PDAPP+/− mice were then bred
to each other to generate ABCA1 Tg+/−/PDAPP+/− and
ABCA1 Tg−/−/PDAPP+/− mice that were used for the
experiments. ABCA1+/− were crossed to PDAPP+/− mice
to generate mice that were PDAPP+/−/ABCA1+/−. These
mice were then bred to ABCA1+/− mice to generate mice
that were PDAPP+/−/ABCA1+/+, PDAPP+/−/ABCA1+/−,
and PDAPP+/−/ABCA1−/−. The PDAPP+/−/ABCA1+/+

and PDAPP+/−/ABCA1−/− mice were used for all experi-
ments. Mice were maintained under constant light/dark
conditions and had free access to food and water. All ex-
perimental protocols were approved by the Animal Stud-
ies Committee at Washington University in St. Louis.
Prior to injection, the 13 C6-leucine was dissolved in

medical-grade normal saline to a concentration of
7.5 mg/mL. The mice were weighed and then intraperi-
toneally injected with the 13 C6-leucine (200 mg/kg of
body weight). After predetermined time points, the ani-
mals were anesthetized and the blood was collected by
cardiac puncture. The mice were then perfused with
PBS-heparin and regional brain dissection was per-
formed. All brain samples were subsequently frozen on
dry ice.

Primary astrocyte cell culture and in vitro labeling
Primary astrocytes were cultured from postnatal day (P1)
C57/BL/6J mouse pups as described previously [27].
Cells were cultured in serum-containing growth media
(DME/F12, 15% fetal bovine serum, 10 ng/mL epidermal
growth factor, 100 units/mL penicillin/streptomycin, and
1 mM sodium pyruvate) until they reached 70% con-
fluency. The cell media was then changed to serum free
media that did not contain any leucine (DME/F12 with-
out leucine prepared by the Washington University Tis-
sue Culture Support Center, N2 growth supplement, 100
units/mL penicillin/streptomycin, and 1 mM sodium
pyruvate) and cultured for 12 h. 13 C6-leucine was then
diluted into unlabeled leucine to make labeled/unlabeled
percentages that were either 0, 1.25, 2.5, 5, 10, or 20%.
These different percent-labeled leucine solutions were
then added to separate flasks of primary astrocytes, and
the cells were cultured for an additional 48 h. The media
was then collected from the cells, spun down at
1500 rpm to clear cellular debris, and stored at −80°C.

ApoE and Aβ immunoprecipitation
Antibody beads were prepared by covalently binding either
HJ6.3 (apoE) or HJ5.2 (Aβ) to Protein G Sepharose 4 Fast
Flow beads. The beads initially were washed 3 times with
ice-cold PBS and then resuspended in ice-cold PBS to
make a 50% slurry of beads. 300 μL of the washed 50%
beads were then mixed with antibody (0.4 μg/μL of 50%
bead mixture), 10 μL of 1% Triton X-100 and ice-cold PBS
to make a final volume of 1000 μL. This mixture was then
tumble incubated overnight at 4°C. The beads were then
washed 3 times with 1% Triton X-100 lysis buffer (Triton
X-100, 150 mM NaCl, 50 mM Tris–HCl) and 2 times with
0.2 M triethanolamine (pH=8.2). Freshly prepared di-
methyl pimelimidate in 0.2 M triethanolamine (pH=8.2)
was then added to the beads, followed by a 30 min incuba-
tion with tumbling at room temperature to allow for cross-
linking. The beads were then washed once with 50 mM
Tris (pH=7.5) to stop the crosslinking reaction, and twice
with 0.1% Triton X-100 in PBS. The washing solution was
removed by vacuum aspiration, and the beads were resus-
pended in PBS to make a 50% bead slurry.
Brain cortex samples were weighed and 1% Triton X-100

lysis buffer (Triton X-100, 150 mM NaCl, 50 mM Tris–
HCl, 1 X Roche Complete Protease Tablet) was added at a
concentration of 150 mg brain tissue/μL of lysis buffer.
The samples were then sonicated (2 rounds of 20 1-sec
pulses) and centrifuged at 14,000 rpm for 30 min. The
supernatant was collected and used for subsequent immu-
noprecipitation steps. Brain lysates and cell media were
pre-cleared with beads not conjugated to antibody by tum-
ble incubating the samples with 50 μL of the 50% bead
slurry for 4 h at 4°C. The pre-cleared lysate and media
samples were then tumble incubated with antibody-conju-
gated beads overnight at 4°C. The beads were then washed
3 times with PBS and 3 times with 25 mM triethylammo-
nium bicarbonate (TEABC). Following the last TEABC
wash, the TEABC was removed via vacuum aspiration with
a pipette tip. Formic acid was then added to the beads to
elute the bound proteins, and the mixture was vortexed for
20 min. The beads were then centrifuged at 14,000 rpm for
5 min and the supernatant was collected from the beads.
The formic acid supernatant was transferred to a new
microcentrifuge tube and evaporated in a Savant SpeedVac
for 60 min (37°C). The dried proteins were then resus-
pended in 20% acetonitrile/80% 25 mM TEABC and vor-
texed for 30 min. The samples were then digested with
500 ng of mass spectrometry-grade trypsin (Promega) and
incubated at 37°C for 16 h. The digested samples were
dried again by vacuum evaporation, resuspended in 10%
acetonitrile and 0.1% formic acid in water, and transferred
to mass spec vials.

Liquid chromatography/mass spectrometry
LC-MS/MS measurements were performed on a Waters
Xevo TQ-S triple quadrupole mass spectrometer (Waters
Inc., Milford, MA) coupled to a Waters nano-ACQUITY
ultra performance liquid chromatography (UPLC) system,
equipped with a Waters nano-ESI ionization source. To
identify multiple reaction monitoring (MRM) transitions,
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the synthetic apoE peptide LQAEIFQAR and synthetic Aβ
peptide LVFFAEDVGSNK were purchased from AnaSpec,
Inc. (Fremont, CA), and directly infused into the LC-MS
for automatic tuning of optimized MRM transitions pro-
duced by the peptide. For both the apoE and Aβ peptide,
optimal conditions were identified as a capillary voltage of
3.3 kV, source temperature of 80°C, cone voltage of 52 V,
purge gas flow rate set at 100 L/hr, and cone gas at 50 L/
hr. Obtained MRM transitions (Table 1) were then vali-
dated by the analysis of apoE and Aβ cell culture media
standards. For the actual experiments, all digested peptide
samples were kept at 4°C and 1 μL aliquots were injected
onto a Waters BEH130 nanoAcquity UPLC column (C18
particle, 1.7 μm, 100 μm × 100 mm). The peptide mixtures
were separated on a reverse-phase nanoUPLC operated at
a flow rate of 500 nL/min with a gradient mixture of sol-
vents A (0.1% formic acid in water) and B (0.1% formic
acid in acetonitrile). For apoE, the column was initially
kept at 99% solvent A for 1.5 min, followed by a separation
gradient of 1% to 97% solvent B from 1.5 to 18 min. The
column was then kept at 97% solvent B for another 5 min
followed by 1% solvent B to re-equilibrate for 10 min to
prepare for the next injection. For Aβ, the column was ini-
tially kept at 90% solvent A for 7.0 min, followed by a sep-
aration gradient of 10% to 45% solvent B from 7 to 12 min.
The column was then kept at 45% to 95% solvent B from
12 to 14 min, and at 95% solvent B for another 3 min fol-
lowed by 10% solvent B to re-equilibrate for 15 min to pre-
pare for the next injection. All raw data were acquired and
quantified using Waters MassLynx 4.1 software suite. The
labeled/unlabeled ratio was obtained by dividing the area
under the curve (AUC) of the MRM total ion for the la-
beled peptide by the AUC for the unlabeled peptide, and
converted to tracer-to-tracee ratios (TTRs) by reference to
the standard curve.

Gas chromatography/mass spectrometry
The free leucine tracer-to-tracee ratio was measured
from the mouse plasma using GC/MS. Plasma proteins
were precipitated with ice-cold acetone, and lipids were
extracted using hexane solvent. The resulting aqueous
fraction was then dried with a vacuum (Savant Instru-
ments, Farmingdale, NY) and converted to t-butyldi-
methylsilyl derivatives. The free leucine TTR was then
measured by monitoring ions with m/z ratios of 200 (un-
labeled) and 203 (labeled) [52].

Kinetic analysis
The mice were in steady-state conditions, since the amount
of apoE and Aβ did not significantly change over the time
period of the kinetic analysis. This was determined by
measuring the protein level (via ELISA as described below)
for the cohorts of mice at each time point following the
stable isotope injection, and comparing across groups. At
metabolic steady state, the fraction of the pool that is
synthesized per unit time equals the fraction of the pool
catabolized per unit time (FCR), which can be calculated as
the negative of the slope of the natural log of TTR plotted
over time [53]. Production rates (PRs) were determined as:
PR (protein amount/mg/hr) = [FCR (pools/hr) × protein
concentration (protein amount/mL)× lysate volume (mL)]/
brain weight (mg). The half-lives (t½) were calculated using
the equation t½= ln 2/FCR. Protein concentrations of apoE
and Aβ in the lysates were determined by protein-specific
sandwich ELISAs using in-house antibodies. For apoE,
HJ6.2 was used as the coating antibody and biotinylated
HJ6.3 as the detection antibody. Pooled C57/BL/6 J mouse
plasma was used as a standard. For Aβ, HJ2 (anti-Aβ35-40)
and biotinylated HJ5.1 (anti-Aβ13-28) were used as the
coating and detection antibody, respectively.

Statistical analysis
Data were analyzed using GraphPad Prism Software and
presented as mean± standard error of the mean (SEM).
For analyzing differences in protein levels and produc-
tion rates, a two-tailed student’s t-test was used. Differ-
ences in the FCR values were compared using analysis of
covariance (ANCOVA) of the negative of the slope of the
natural log of TTR plotted over time, which was deter-
mined using linear regression analysis.
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