
D-PAttNet: Dynamic Patch-Attentive Deep Network for Action 
Unit Detection

Itir Onal Ertugrul1,*, Le Yang2, László A. Jeni1, Jeffrey F. Cohn3

1Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States,

2School of Computer Science, Northwestern Polytechnical University, Xian, China,

3Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States

Abstract

Facial action units (AUs) relate to specific local facial regions. Recent efforts in automated AU 

detection have focused on learning the facial patch representations to detect specific AUs. These 

efforts have encountered three hurdles. First, they implicitly assume that facial patches are robust 

to head rotation; yet non-frontal rotation is common. Second, mappings between AUs and patches 

are defined a priori, which ignores co-occurrences among AUs. And third, the dynamics of AUs 

are either ignored or modeled sequentially rather than simultaneously as in human perception. 

Inspired by recent advances in human perception, we propose a dynamic patch-attentive deep 

network, called D-PAttNet, for AU detection that (i) controls for 3D head and face rotation, (ii) 

learns mappings of patches to AUs, and (iii) models spatiotemporal dynamics. D-PAttNet 

approach significantly improves upon existing state of the art.
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1. INTRODUCTION

Facial actions communicate intention, emotion, and physical state (Tian et al., 2001). The 

most comprehensive method to annotate facial action is the anatomically-based Facial 

Action Coding System (FACS) (Ekman et al., 2002). Action units defined in FACS 

correspond to facial muscle movements that individually or in combination can describe 

nearly all possible facial expressions. Automated detection of AUs has become a crucial 

computer vision problem.

The core of the human neural system for face and facial action perception consists of three 

bilateral regions, the occipital face area (OFA), fusiform face area (FFA), and superior 

temporal sulcus (STS) (Haxby et al., 2000). Previous work suggests that the OFA represents 

face parts, including eyes, nose, and mouth, in the early stage of face perception (Liu et al., 

2010; Nichols et al., 2010; Arcurio et al., 2012). At a higher-level, the FFA performs holistic 

processing and representations of identity (George et al., 1999; Hoffman and Haxby, 2000). 

The STS is sensitive to facial dynamics and involves the representation of changeable 

aspects of faces such as expression, lip movement, and eye gaze (Hoffman and Haxby, 

2000). The anatomical location of OFA suggests that it provides input to both the FFA and 

STS. This system is consistent with hierarchical models (Grill-Spector and Malach, 2004; 

Fairhall and Ishai, 2006) that propose that complex visual objects are recognized via a series 

of stages in which features of increasing complexity are extracted and analyzed at 

progressively higher levels of the visual processing stream (Pitcher et al., 2011). The success 

of many human-inspired approaches in machine learning urges the following question: Can 

we model machine perception of facial actions with a hierarchical system analogous to the 

suggested models of human perception of faces and facial action?

Recent approaches to facial action detection have begun to address this question. Analogous 

to the OFA in human face perception, region learning, or what is referred to as patch 

learning, separately processes specific facial regions. This work is informed by the 

observation that the human face is more structured than many other natural images and 

different face regions have different local statistics (Zhao et al., 2016b). Variation in local 

statistics stems from both structural features and transient facial muscle contraction and 

relaxation. Facial action units (AUs), which are anatomically based, are responsible for 

muscle contraction and relaxation. For instance, tightening of the eye aperture results from 

contraction of the inner portion of the orbicularis oculi muscle, which is AU7. Performing 

AU7 will change the appearance of eye corners and not mouth regions. When the goal is to 

detect AU7, it is natural to look around eye region more than mouth region. Therefore, due 

to the locality of AUs, some facial regions are more important than others to detect specific 

AUs (Zhao et al., 2016a). Thus, patch learning approaches have components for representing 

facial parts. These local parts then are integrated holistically in mechanisms analogous to the 

FFA in human face perception.

Patches have been defined in one of two principal ways. One is with respect to fixed grids 

(Liu et al., 2014). The other is centered around facial landmarks (Zhao et al., 2016a). Both 

approaches assume that patches are invariant to head rotation. That is, when the head moves 

or rotates, patches are assumed to maintain consistent semantic correspondence. This 
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assumption often is violated. Faces look very different from different poses. Because most 

registration techniques treat the face as a 2D object, they are unable to accommodate 3D 

head rotation. In this work, we address this problem.

Another problem is that mappings between AUs and patches are defined a priori, and the 

mappings often fail to exploit co-occurrences among AUs. We know that some AUs 

frequently co-occur, while others inhibit the activity of others. AU6 (cheek raiser) and AU12 

(oblique lip-corner puller) occur together in both Duchenne smiles and in pain expressions. 

AU24, which presses the lips together, inhibits dropping of the jaw (AU27). Because 

appearance changes in different facial regions are likely to contribute to the prediction of co-

occurring AUs, it may be advantageous to weight the significance of patches to detection of 

specific AUs. Some patch-based AU detection methods fail to weight the contribution of 

each patch (Zhao et al., 2016b). A few of them do by using either regularization on the 

shallow representation of patches (Zhao et al., 2016a) or pre-defined attention masks in 

CNN (Jaiswal and Valstar, 2016; Sanchez et al., 2018), which often ignore AU correlations. 

Below, we show that AU detection can be improved by learning attention maps empirically 

to accommodate AU correlations.

The STS is sensitive to dynamic change in facial parts, and a number of studies have 

reported that dynamic information contributes to expression perception (Ambadar et al., 

2005; Bould et al., 2008; Kätsyri and Sams, 2008; Horstmann and Ansorge, 2009). Yet, most 

recent work in machine perception of AUs ignores motion information or dynamics. In static 

approaches, each video frame is considered independently and outside of its temporal 

context. Temporal context may matter little for strong AUs but for subtle AUs lack of 

dynamics weakens the detection. Human observers have difficulty perceiving subtle AUs 

when motion information is missing (Ambadar et al., 2005). The same may be true for 

automated AU detection. When dynamics has been considered, spatial and temporal 

information typically is handled sequentially. For instance, a CNN represents spatial 

information and then LSTM models temporal information (Jaiswal and Valstar, 2016; Chu et 

al., 2017; Li et al., 2017). In human perception, on the other hand, spatiotemporal 

information may be processed tightly integrated.

Informed by human face perception and facial anatomy and dynamics, we propose a 

dynamic patch-attentive deep network (D-PAttNet) for AU detection. D-PAttNet jointly 

learns static and dynamic patch representations and weights them for AU detection. We first 

apply 3D registration to reduce changes from head movement and preserve facial actions 

that would be distorted by change in pose. Then, we crop local patches that contain the same 

facial parts across frames and that are informative for detection of specific AUs. We encode 

patches with individual 2D and 3D CNNs and obtain local representations that capture 

spatiotemporal information. Inspired by the recent success of attention mechanisms in 

various tasks including neural machine translation (Luong et al., 2015), text classification 

(Yang et al., 2016), and object detection (Rodríguez et al., 2018), we then introduce an 

attention mechanism to weight the importance of patches in detecting specific AUs. Since 

our network is trained in an end-to-end manner, the network itself learns (i) static and 

dynamic encoding of patches and (ii) the degree of attention to those patches to maximize 

AU detection. Unlike state-of-the-art attention approaches, which employ softmax activation 
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function to “select” where to attend, we propose sigmoidal attention to allow networks to 

attend to multiple patches when needed.

The contributions of this paper are:

• An end-to-end trainable dynamic patch-attentive deep network that learns to 

encode static and dynamic patch information and learns to attend to specific 

patches for the detection of specific AUs.

• A sigmoidal attention mechanism that allows multiple static and dynamic patch 

encodings to contribute to the prediction of specific AUs.

• Relative to state of the art, an increase of 2.1% performance in F1-score and 

0.7% performance in AUC.

2. RELATED WORK

2.1. Using Dynamics for AU Detection

Most AU detection approaches model frames individually and ignore the temporal 

dependencies among them (Chu et al., 2013; Zeng et al., 2015; Zhao et al., 2018; Onal 

Ertugrul et al., 2019a,c). Valstar and Pantic (2007) combine Support Vector Machines and 

Hidden Markov Models to incorporate temporal information. Gonzalez et al. (2015) propose 

a hidden semi-Markov model (HSMM) and variable duration semi-Markov model 

(VDHMM) to recognize AU dynamics. Koelstra et al. (2010) present a dynamic texture 

based approach that combines a discriminative, frame-based GentleBoost classifier with a 

dynamic, generative HMM model for temporal AU classification. Yang et al. (2009) extract 

temporal information of facial expressions using dynamic haar-like features and uses 

AdaBoost to select highly discriminating subset of these for AU recognition. Jeni et al. 

(2014) represent the spatio-temporal organization of expressions with time-series of shape 

and appearance descriptors and uses time-warping methods to classify different facial 

actions.

Recently, deep approaches have been proposed to model temporal information for AU 

detection. Chu et al. (2017) propose an architecture that combines convolutional neural 

network (CNN) and long short-term memory network (LSTM) for multilabel AU detection. 

In this architecture, CNN is used to learn spatial representations within frames while LSTM 

is used to model temporal dynamics among frames. Similarly, Jaiswal and Valstar (2016) use 

CNN to obtain spatial representations of facial parts cropped from the whole face using 

binary masks and used Bi-directional LSTM to learn the dynamics of facial parts for AU 

detection. Li et al. (2017) propose an adaptive region cropping based multi-label learning 

with deep recurrent net, which is based on combining region-based CNN (RCNN) with 

LSTM. Although a few deep approaches considering dynamics for AU detection have been 

proposed, many efforts have been devoted to incorporate dynamics in deep models for 

emotion recognition (Fan et al., 2016; Vielzeuf et al., 2017; Kollias and Zafeiriou, 2018; Liu 

et al., 2018; Lu et al., 2018). However, focusing on detecting action units is crucial since 

FACS is a comprehensive, anatomically-based system which describes all visually 

discernible facial movement and provides an objective measure.
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As noted above, both shallow and deep AU detection approaches (e.g., SVM and 2D CNN) 

alike combine spatial and temporal information sequentially. Temporal representation is 

added only after spatial representation. In contrast, in human perception spatiotemporal 

processing is tightly integrated.

In a recent study, Yang et al. (2019) have proposed to model spatiotemporal information 

combining 2D-CNN with 3D-CNN for frame-level AU detection. However, whole video 

sequences are fed as input to 3D-CNN part to provide summary information about the entire 

video while modeling each frame. They do not consider modeling the local dynamics of 

segments, which is more informative to detect AUs.

2.2. Patch Learning

Traditional AU detection methods are based on (i) extracting appearance (Jiang et al., 2011; 

Eleftheriadis et al., 2015; Baltrusaitis et al., 2018) or geometric features (Lucey et al., 2007; 

Du et al., 2014) from the whole face and (ii) obtaining shallow representations as histograms 

of these features, thus ignoring the specificity of facial parts to AUs (Shojaeilangari et al., 

2015). Deep approaches using whole face to train CNNs (Hammal et al., 2017; Onal 

Ertugrul et al., 2019a) also ignore the specificity of facial parts. More recent approaches 

focus on obtaining local representations using patch learning. Some of these approaches 

divide the face image into uniform grids (Liu et al., 2014; Zhong et al., 2015; Zhao et al., 

2016b) while others define patches around facial parts (Corneanu et al., 2018) or facial 

landmarks (Zhao et al., 2016a). Among them, Liu et al. (2014) divide a face image into non-

overlapping patches and categorize them into common and specific patches to describe 

different expressions. Zhong et al. (2015) identify active patches common to multiple 

expressions and specific to an individual expression using a multi-task sparse learning 

framework. Zhao et al. (2016b) use a regional connected convolutional layer that learns 

specific convolutional filters from sub-areas of the input. Corneanu et al. (2018) crop patches 

containing facial parts, train separate classifiers for each part and fuse the decisions of 

classifiers using structured learning. Zhao et al. (2016a) describe overlapping patches 

centered at facial landmarks, obtain shallow representations of patches and identify 

informative patches using a multi-label learning framework. These studies generally pre-

process their frames to remove roll rotation. None of the aforementioned studies perform a 

3D face registration to remove pitch and yaw rotation. Hence, patches cropped from 

different frames are likely to contain variable facial regions under pose. Only in a recent 

study, Onal Ertugrul et al. (2019b) cropped patches from 3D-registered faces for AU 

detection from static frames.

2.3. Regional Attention

As described in FACS (Ekman et al., 2002), AUs relate to specific regions of human faces. 

Motivated by this fact, recent studies aim to highlight information obtained from specific 

facial regions to detect specific AUs. Zhao et al. (2016a) employ patch regularization to 

eliminate the effect of non-informative shallow patch representations. Taheri et al. (2014) 

learn a dictionary per AU using local features extracted from predefined AU semantic 

regions on faces performing that AU. Jaiswal and Valstar (2016) use a pre-defined binary 

mask created to select a relevant region for a particular AU and pass it to a convolutional and 
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bidirectional Long Short-Term Memory (LSTM) neural network. Li et al. (2018) design an 

attention map using the facial key points and AU centers to enforce their CNN-based 

architecture to focus more on these AU centers. Sanchez et al. (2018) generate heatmaps for 

a target AU, by estimating the facial landmarks and drawing a 2D Gaussian around the 

points where the AU is known to cause changes. They train Hourglass network to estimate 

AU intensity. Shao et al. (2018) employ an initial attention map, created based on AU 

centers and refine it to jointly perform AU detection and face alignment. These studies have 

mechanisms to enforce their models to focus on pre-defined regions. They do not have a 

learned attention mechanism, in which the network decides where to attend itself for each 

AU. In a recent work, Onal Ertugrul et al. (2019b) has proposed a mechanism which learns 

to attend to significant patches from their static encodings.

3. METHODS

Figure 1 shows the components of the proposed dynamic patch-attentive network (D-

PAttNet) architecture. First, we perform dense 3D registration from 2D videos (Figure 1a). 

Then, we crop patches containing local facial parts. For each patch location, we use a 

separate 2D-CNN to encode local, static information and 3D-CNN to encode local, dynamic 

information. We concatenate static and dynamic encoding to obtain patch encoding (Figure 

1b). We employ a sigmoidal attention mechanism to weight the contribution of each patch to 

detect specific AUs (Figure 1c). Finally, using the final face encoding, we detect 12 AUs 

(Figure 1d). In the following, we describe in detail, the different components of the proposed 

D-PAttNet approach.

3.1. 3D Face Registration

We track and normalize videos using ZFace (Jeni et al., 2015, 2017), a real-time face 

alignment software that accomplishes dense 3D registration from 2D videos and images 

without requiring person-specific training. ZFace performs a canonical 3D normalization 

that minimizes appearance changes from head movement and maximizes changes from 

expressions. First, it uses dense cascade-regression-based face alignment to estimate a dense 

set of 1,024 facial landmarks. Then a part-based 3D deformable model is applied to 

reconstruct a dense 3D mesh of the face. Face images are normalized in terms of pitch, yaw 

and roll rotation and scale and then centered. At the output of this step, video resolution is 

512 × 512 with an interocular distance (IOD) of about 100 pixels.

3.2. Patch Cropping and Encoding

The 3D face registration step ensures that faces in all frames of all individuals are registered 

to the same template and that same landmarks (facial parts) in all frames are very close to 

each other. This step allows us to identify the locations of face parts and crop patches 

containing the same face parts for all frames.

Patch locations are identified using the domain knowledge of human FACS coders and based 

on the FACS manual (Ekman et al., 2002). We identify N = 9 patches given in Figure 2 with 

the aim to cover specific face parts that are deformed during the appearance of specific AUs, 

namely right eyebrow (P1), left eyebrow (P2), right eye (P3), region between eyebrows and 
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nose root (P4), left eye (P5), right cheek and lip corner (P6), nose and upper mouth (P7), left 

cheek and lip corner (P8), and mouth and chin (P9). Then, we crop N = 9 patches using the 

same identified locations from all frames in the dataset. The size of each RGB patch is 100 × 

100 pixels.

3.2.1. Static Patch Encoding—We use 2D-CNNs to encode static information. Input 

to each 2D-CNN is a single patch. We feed patches cropped from each of the nine locations 

to a different static encoder so that each encoder aims to learn representations of local face 

parts. Each of the nine static encoders has an identical architecture, which includes three 

convolutional layers and 1 fully connected layer. At the output of static encoders, we obtain 

M-dimensional vector representations of local patches.

3.2.2. Dynamic Patch Encoding—We use 3D-CNNs to encode dynamic information. 

We feed a patch sequence of length T as input to each 3D-CNN. Note that, each patch 

sequence contains the current patch fed to 2D-CNN and T − 1 patches preceding the current 

patch. Similar to static encoders, we feed patch sequences cropped from each of the nine 

locations to a different dynamic encoder so that each encoder aims to learn dynamic 

representations of local face parts. 3D-CNNs have the same architectures as 2D-CNNs 

except 2D convolution layers are replaced by 3D convolution layers. At the output of 

dynamic encoders, we obtain M-dimensional vector representations of local patches.

After we obtain static and dynamic encoding of patches, we concatenate them and have a 

2M-dimensional patch encoding.

3.3. Patch Weighting by Sigmoidal Attention Mechanism

Different face patches contribute unequally to the face representation to predict AUs. In 

order to weight the contribution of patch encodings, we use an attention mechanism. An 

attention mechanism aggregates the representation of the informative patch encodings to 

form a face encoding. Let ep be the encoding of patch p obtained by concatenating the 

outputs of 2D and 3D CNNs. First, patch encoding ep is fed to a one-layer MLP to obtain 

hidden representation hp of ep as follows:

hp = tanh W f ep + b f (1)

where Wf and bf are the weight and bias parameters of the MLP, respectively. Then, the 

importance of each patch is measured by the similarity between hp and a patch level context 

vector cf. In order to normalize the importance of patches to the range [0,1] and obtain 

attention weight αp, we apply sigmoid function as follows:

αp = 1
1 + exp −hp

Tc f
(2)

If a patch representation is similar to context vector, their inner product will give a large 

value, and sigmoid output will be closer to 1. On the other hand, if a patch representation is 

very different from context vector, then their inner product will be close to zero, and the 

sigmoid output will also be close to zero (meaning that given patch is not important to detect 
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the AU). Therefore, patch level context vector cf can be interpreted as the high level 

representation of fixed query “What are the informative patches to predict a specific AU?” It 

is randomly initialized and learned during training. Finally, we obtain face encoding v as a 

weighted sum of patch encodings ep as:

v = ∑
p

αpep (3)

Note that, it is typical to use softmax activation function for normalization in attention 

mechanisms employed in many NLP tasks. One such task is neural machine translation, 

where the network is trained to attend to one word (or a few words, but not to the others) to 

obtain the corresponding translation of the word. Output of softmax function can be used to 

represent a categorical distribution. In our case, we aim to allow multiple patches to 

contribute to predict a specific AU. Therefore, instead of softmax, we used sigmoid 

activation function which allows for multiple selection with a collection of Bernoulli random 

variables.

3.4. AU Detection

Face encoding v is a high level representation of the face that is used for AU detection. To v 
we apply ReLU for non-linearity and have a fully connected layer to predict the occurrence 

of AUs. We train individual networks for each AU. We apply sigmoid function and use 

weighted binary cross-entropy loss as follows:

L = − ylog y wpos − 1 − y log 1 − y (4)

where y denotes actual AU occurrence, ŷ denotes predicted AU occurrence. wpos is the 

weight that is used for adjusting positive error relative to negative error.

4. EXPERIMENTS

4.1. Dataset

BP4D is a manually FACS annotated database of spontaneous behavior containing 2D and 

3D videos of 41 subjects (23 female and 18 male). Following previous research in AU 

detection, only 2D videos are used here. In BP4D, well-designed tasks initiated by an 

experimenter are used to elicit varied spontaneous emotions. Each subject performs eight 

tasks. In total there are 328 videos of approximately 20 s each that have been FACS 

annotated manually. This results in about 140,000 valid, manually FACS annotated frames. 

We include 12 AUs that occurred in more than 5% of the frames. Positive samples are 

defined as ones with intensities equal to or higher than A-level, and the remaining ones are 

negative samples. We visualize the co-occurrence matrix of AUs computed using Jaccard 

index in Figure 3. It can be observed that AU6, AU7, AU10, AU12, and AU14 co-occur 

frequently.

4.2. Network

In 2D-CNN, we employ 32, 64, and 64 filters of 5 × 5 pixels in three convolutional layers 

with a stride of 1. After convolution, rectified linear unit (ReLU) is applied to the output of 
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the convolutional layers to add non-linearity to the model. We apply batch normalization to 

the outputs of all convolutional layers. The network contains three maxpooling layers that 

are applied after batch normalization. We apply max-pooling with a 2 × 2 window such that 

the output of max-pooling layer is downsampled with a factor of 2. At the output of the fully 

connected layer of static encoder, we obtain an encoding of size 1 × M, where M = 60.

In 3D-CNN, we select the patch sequence length T = 20. We employ 32, 64, and 64 filters of 

5 × 5 × 5 pixels in the first two convolutional layers and 2 × 5 × 5 pixels in the final 

convolutional layer with a stride of 1. 3D convolutional layers are followed by ReLU and 

batch normalization layers. The first two batch normalization layers are followed by 

maxpooling layers with a 2 × 2 × 2 window, while the last batch normalization layer is 

followed by a maxpooling layer with a 1 × 2 × 2 window. At the output of the fully 

connected layer of dynamic encoder, we obtain an encoding of size 1 × M, where M = 60.

Temporal window length varies in the range [10, 24] in previous AU detection studies (Chu 

et al., 2017; Li et al., 2017). To be consistent with previous work, we selected patch 

sequences of length T = 20 within that range. The CNN architecture used in this study has 

been shown to be successful in previous studies (Cohn et al., 2018; Onal Ertugrul et al., 

2019a,c). Two differences from previous work may be noted. One is the size of input 

images. Previously, we used holistic face images of size 200×200. Here we use local facial 

patches of size 100 × 100. The other difference results from the smaller input size. Because 

input size was reduced by 50%, we reduced the number of filters by 50% from 64, 128, and 

128 filters to 32, 64, and 64 filters. The number of convolutional layers remained the same.

We obtain a patch encoding ep of size 1 × 120, for each frame, which is obtained by 

concatenating 1×60 dimensional outputs of static and dynamic encoder outputs. In patch 

attention layer, we use the weight matrix Wf of size 120 × 120 and face level context vector 

cf as 1 × 120. Attention layer output is a face encoding v of size 1 × 120, for each frame.

4.3. Training

We trained our architecture with mini-batches of 50 samples for 10 epochs. We used 

stochastic gradient descent (SGD) optimizer. Our models were initialized with learning rate 

of 1e-3, with a momentum of 0.9. In order to keep variability in the data, we used all of the 

available frames and did not subsample training frames to generate balanced dataset. For 

each AU, we assign wpos to the ratio between the number of training frames excluding the 

AU and containing the AU. We perform a subject independent three-fold cross-validation for 

BP4D dataset. Our folds include the same subjects as in Zhao et al. (2016a).

4.4. Evaluation Measures

We evaluate network performance on two metrics: F1-score and area under the receiver 

operator characteristics curve (AUC). F1-score is the harmonic mean of precision (P) and 

recall (R) 2RP
R + P . It is widely used in the literature and therefore enables comparison with the 

many approaches that have used it to report their performance. Because F1-score is highly 

attenuated by imbalanced data (Jeni et al., 2013), however, results for less frequent AUs 

must be considered with caution. AUC has the advantage of being robust to imbalanced data 
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but has been reported less frequently in the literature. It supports more limited comparisons 

with other approaches.

4.5. Threshold Tuning

For each AU, our model predicts a value between 0 and 1, denoting the probability that the 

specified AU is present in the frame. In order to binarize the output, we take threshold τ = 

0.5 and then evaluate the performance of D-PAttNet. Although during training we employed 

a weighted loss based on the baserates of AUs, it does not totally solve class imbalance 

problem. Optimal threshold τ may be different for different AUs and may not be equal to 

0.5. We optimized the threshold τ ∈ [0.1, 0.9] on training set and evaluate the test 

performance in D-PAttNettt.

5. RESULTS

5.1. Performance Comparison With the State-of-the-Art

We compare the performance of D-PAttNet with the following state-of-the-art approaches:

Linear SVM (LSVM) is based on training an SVM classifier using the SIFT features 

obtained from the frames without considering patch learning.

Joint patch and multilabel learning (JPML) (Zhao et al., 2016a) simultaneously 

selects a discriminative set of patches and learn multi-AU classifiers. It uses SIFT 

features obtained from patches.

Deep region and multilabel learning (DRML) (Zhao et al., 2016b) combines region 

learning and multilabel learning for AU detection.

Network combining CNN and LSTM (LSTM) (Chu et al., 2017) employs CNN to 

model spatial information and LSTM to model temporal dynamics in a sequential 

way for multilabel AU detection.

Adversarial Training Framework (ATF) (Zhang et al., 2018) is a CNN-based 

framework in which AU loss is minimized and identity loss is maximized to learn 

subject invariant feature representations during the adversarial training.

Finetuned VGG Network (FVGG) (Li et al., 2018) is the model obtained after 

finetuning the pretrained VGG 19-layer model.

Network with enhancing layers (E-Net) (Li et al., 2018) is the finetuned VGG 

network with enhancing layer which forces the network to pay more attention to AU 

interest regions on face images.

Enhancing and Cropping Network (EAC Net) (Li et al., 2018) is a pretrained CNN 

model with enhancing (E-Net) and cropping (C-Net) layers. E-net forces the network 

to attend more to AU interest regions based on a predefined attention map while C-

Net crops facial regions around detected landmarks and applies upscaling and 

convolutional layers in the cropped regions.
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Deep Structured Inference Network (DSIN) (Corneanu et al., 2018) is a deep 

network which performs patch learning to learn local representations and structure 

inference to model AU correlations.

Joint AU detection and face alignment (JAA) (Shao et al., 2018) is a deep learning 

based joint AU detection and face alignment framework in which multi-scale shared 

features for the two tasks are learned firstly, and high-level features of face alignment 

are extracted and fed into AU detection.

Patch-attentive deep network (PAttNet) (Onal Ertugrul et al., 2019b) is a CNN-

based approach which jointly learns local patch representations and weights them 

with a learned attention mechanism for AU detection.

F1-score performances for the state-of-the-art approaches and D-PAttNet are given in Table 

1. We also report results with Only3D-PAttNet, which includes only 3D CNN component of 

the D-PAttNet. Note that, for DSIN and D-PAttNet, superscripttt denotes the results after 

tuning the threshold. For fair comparison, we excluded the studies which do not follow 

three-fold protocol (Tősér et al., 2016).

Results reflect that, D-PAttNet and D-PAttNettt give the best F1-score for 6 of 12 AUs (For 

D-PAttNet AU6, AU7, AU12, and AU23 and for D-PAttNettt AU15 and AU24). For the 

remaining 6 AUs (AU1, AU2, AU4, AU10, AU14, and AU17), D-PAttNettt gives the second 

best result. For four of the AUs (AU1, AU10, AU14, and AU17) for which D-PAttNet or D-

PAttNettt did not perform the best, DSINtt show the best F1-score. On average, our method 

outperforms all of the comparison approaches and provides 2.1% absolute improvement over 

PAttNet.

Since F1-score is affected by the skew in the labels and some action units are highly skewed, 

we also compute AUC results, which are not affected by the skew. Only a few studies report 

AUC values. In Table 2, we compare the performance of D-PAttNet with the state of the art 

approaches using AUC. D-PAttNet gives an average AUC of 73.4% over all AUs. For each 

AU, AUC is above 64%. D-PAttNet gives superior performance compared to all of the 

approaches reporting AUC for 9 of the 12 AUs except for AU14, AU15, and AU24. For 

these three AUs, the maximum AUC is obtained for PAttNet.

Comparison of variants of PAttNet approach reflects that D-PAttNet which combines 2D 

CNN with 3D CNN outperforms PAttNet, which only has 2D CNN. Both variants give much 

better performance compared to using Only3D-PAttNet, which only has 3D CNN. D-

PAttNet gives the best F1-scores for all AUs and the best AUC values for all but three AUs.

For the comparisons between D-PAttNet and other two variants (PAttNet and Only3D-

PAttNet) we performed significance tests as given in Table 3. For each set of comparisons 

we controlled for Type I error using Bonferroni correction. With experiment-wise error of 

0.05 and 12 comparisons in each set, a p of 0.004 is the critical value for significance. For 

AU7, AU10 and AU14 D-PAttNet significantly outperforms PAttNet when F1 scores are 

compared. When AUC values are compared, D-PAttNet performs significantly better for 

AU1, AU6, and AU7. Moreover, D-PAttNet outperforms Only3D-PAttNet for all AUs except 
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for AU1 when F1 scores are compared. When AUC is used, it is significantly better for 

AU12, AU15, and AU24.

5.2. Performance Comparison of Using Sigmoid and Softmax Functions for Attention in 
Variants of Patch-Attentive Deep Networks

In this section, we compare the AU detection results of using our proposed attention function 

sigmoid and conventional activation function softmax to weight the contributions of patches. 

We compare these functions for (i) PAttNet approach which has 2D CNN to model static 

information, (ii) Only3D-PAttNet approach which has 3D CNN to model dynamic 

information, and (iii) D-PAttNet approach which combines static and dynamic information 

using 2D CNN and 3D CNN. We compare F1-scores and AUC values in Tables 4, 5, 

respectively. We also performed significance tests for the comparisons between sigmoid & 

softmax in given Table 6.

Comparison of the softmax and sigmoid rows of each approach in Table 4 shows that using 

softmax instead of sigmoid for both PAttNet and D-PAttNet causes a drop in the F1-scores 

for all AUs. Decreases in F1 are significant for all AUs except for AU24. For Only3D-

PAttNet, sigmoid function performs similarly to softmax. We observe similar results for 

AUC values in Table 5. Decreases in AUC are significant for four AUs namely, AU4, AU12, 

AU15, and AU17. When we force the network to attend one or a few patches, it cannot learn 

proper facial representation. These results are consistent with the assumption that even if 

AUs relate to specific facial regions, co-occurring nature of AUs causes the contribution of 

other facial regions to detect specific AUs. When softmax attention function is used, D-

PAttNet leads to a 2.4% increase in the average F1-score (see Table 4), and a1.7% increase 

in the AUC (see Table 5). Similarly, using patch dynamics provides a 1.5% improvement in 

the average F1-score (see Table 4) and a 0.7% improvement in the average AUC (see Table 

5).

5.3. Patch Attention Analysis

We visualize the attention maps formed using the learned attention weights of D-PAttNet 

with sigmoid attention, D-PAttNet with softmax attention, PAttNet with sigmoid attention, 

and PAttNet with softmax attention in Figure 4. We obtain an attention map for each sample 

and then average these maps to obtain the presented attention maps. In all maps, entries can 

take values between [0,1]. Cells with black color denote that the corresponding patch has 

high attention weight (is significant) to detect the corresponding AU for all of these folds 

whereas cells with white color denote that the related patch is not significant to detect the 

corresponding AU in any of the folds. Multiple patches contribute with varying weights to 

detect AUs.

5.3.1. Comparison of Sigmoid and Softmax Attention—We can compare the 

attention maps obtained using sigmoid (Figures 4A,C) and softmax (Figures 4B,D) 

attention. As expected, we obtain denser maps with sigmoid attention for both PAttNet and 

D-PAttNet since softmax tends to select sparse entries. Moreover, we observe larger number 

of black or dark gray entries in the attention maps obtained using sigmoid meaning that 

models learned for different folds agree on the significance of corresponding patches to 
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detect related AUs. On the other hand, attention maps obtained using softmax attention do 

not have black entries and have a few dark gray entries. This indicates an inconsistency 

between the models trained for different folds, each of which learns to detect the same AU 

from different parts of the face.

5.3.2. Comparison of D-PAttNet and PAttNet—When we compare D-PAttNet with 

sigmoid (Figure 4A) and PAttNet with sigmoid (Figure 4C), we observe that for most of the 

AUs, the network learns to attend meaningful patches. In both maps, generally higher 

attention is observed in upper face patches to detect AUs of upper face region (AU1, AU2, 

and AU4). Similarly, higher attention is observed in mouth and lip corner patches to detect 

AUs of lower face region. In both maps, the highest attention is given to patches containing 

eyebrows (P1 for D-PAttNet and P4 for PAttNet) to detect AU1. AU12 is detected mainly 

from patches containing mouth and lip corner regions (P7, P8, and P9 for D-PAttNet and P6, 

P9 for PAttNet).

AU6 (contraction of the orbicularis oculi) raises the cheeks, narrows the eye aperture, and in 

social contexts, such as BP4D, typically occurs together with AU12 (zygomatic major). 

AU12 stretches the lip corners obliquely. Because AU6 and AU12 frequently co-occur and 

lip-corner stretching often is a relatively prominent appearance change, it may not be 

surprising that PAttNet for AU6 (Figure 4C) learns to attend more to patches containing lip 

corner, cheek, and mouth than to ones containing only the eyes. What is unexpected is that 

when patch dynamics are included for AU6 in PAttNet (Figure 4A), eye features become 

more salient (P1). The same effect may be seen with respect to AU7, which also is highly 

correlated with AU12 (P6 in Figure 4A and P8 in Figure 4C). The addition of dynamics in 

this way contributes to the detection of these AUs.

When we compare D-PAttNet with softmax (Figure 4B) and PAttNet with softmax (Figure 

4D), we observe that forcing the classifier to attend sparse facial regions with softmax 

attention causes the network to attend irrelevant patches for some AUs in D-PAttNet. For 

example, to detect eye AUs, AU1 and AU2 the classifier does not attend to any of the eye 

patches. Recall that a black cell represents that the corresponding patch is significant to 

detect specific AUs for all or majority of the input frames. Neither maps for models with 

softmax attention contains black or dark cells. Contrary to the maps obtained with sigmoid 

atention, models with softmax attention do not attend to consistent patches to detect specific 

AUs for different images. Therefore, using softmax function for attention is not a good 

option for D-PAttNet and PAttNet.

6. DISCUSSION AND CONCLUSION

Inspired by the human perception of face and facial actions, we have proposed a dynamic 

patch-attentive deep network called D-PAttNet for AU detection. Analogous to OFA in 

human face perception, we encode local patches in an early stage of the network. Then, 

analogous to FFA, patch-based information is fused at a later stage by means of an attention 

mechanism. Analogous to STS, spatiotemporal dynamics are modeled by 3D-CNN.
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In D-PAttNet, we first apply 3D face registration to remove the variation caused by the 

differences in pose and scale. Then, we crop patches containing important facial parts to 

detect specific AUs. We encode static patch information using 2D-CNN and patch dynamics 

using 3D-CNN and concatenate them to obtain patch encodings. After encoding each patch 

with CNN-based encoders, we weight the contribution of patch encodings using a patch 

attention mechanism. To allow multiple patches to contribute AU detection, we employ 

sigmoidal attention rather than the conventional softmax attention.

D-PAttNet outperforms state-of-the-art approaches on BP4D. Considering patch dynamics in 

D-PAttNet leads to an increase in the AU detection performance compared to its variants 

PAttNet and Only3D-PAttNet. Tuning the decision threshold of classifier further improves 

the detection performance. While D-PAttNet and PAttNet results are closer to each other, 

Only3D-PAttNet results are much worse than these two. Both PAttNet and D-PAttNet 

include a 2D CNN component. Current frame whose AUs are being detected is explicitly fed 

to these models through the 2D CNN component. However, in Only3D-PAttNet, 2D-CNN 

component does not exist. A sequence of frames is given as input to the 3D-CNN 

component but the task is to predict the AU occurrences of the last frame. Therefore, it may 

be more difficult for Only3D-PAttNet model to figure out the problem compared to the other 

variants.

Visualizing attention maps provides interpretation of the significant facial regions to detect 

AUs. Attention maps show that, with the help of sigmoidal attention D-PAttNet chooses to 

attend multiple patches and the most significant patches are meaningful. Softmax attention 

map is much sparser and leads to lower AU detection performance. While the facial regions 

attended in both D-PAttNet and PAttNet are similar, D-PAttNet is more successful to capture 

subtle appearance changes from the dynamics.

A limitation of our work is that we only tested our approach on a single database, BP4D, in 

which non-frontal variation in head pose is relatively limited. The 3D registration in D-

PAttNet may be especially effective in databases that have larger non-frontal variation in 

head pose. More generally, generalizability of models and decision thresholds across 

databases or domains are open research questions. Decreases in classifier performance are 

common in cross-domain settings (Onal Ertugrul et al., 2019a) even when models are 

trained on large databases. Future work should explore cross-domain generalizability of 

models and thresholds in large databases that vary in pose characteristics. Another future 

direction would be modeling spatiotemporal patch dynamics for AU intensity estimation.
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FIGURE 1 |. 
Proposed D-PAttNet approach. (a) A dense set of facial landmarks is estimated and a dense 

3D mesh of the face is reconstructed. (b) Patches containing facial regions related to specific 

AUs are cropped and fed to different CNNs for encoding. For each patch, 2D-CNN is used 

to encode static frame-level information and 3D-CNN is used to encode dynamic, segment-

level information. Patch encoding is obtained by concatenating static and dynamic encoding. 

(c) Patches are weighted by sigmoidal attention mechanism to detect specific AUs. (d) Face 

encodings are fed to a fully connected layer (FC) to detect AUs.
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FIGURE 2 |. 
Cropped patches from 3D registered face images.
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FIGURE 3 |. 
Co-occurrence matrix of AUs computed with Jaccard index.
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FIGURE 4 |. 
Average attention maps for PAttNet with sigmoid attention (A), PAttNet with softmax 

attention (B), D-PAttNet with sigmoid attention (C), and D-PAttNet with softmax attention 

(D). Attention maps are obtained by averaging attention weights of all samples. Attention 

weights are in [0,1]. White color represents no attention (0) and black color represents the 

maximum attention (1).
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