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Carbonic anhydrases (CAs) are a family of metalloenzymes that can catalyze the
reversible interconversion of CO2/HCO3

−, ubiquitously present in both prokaryotes and
eukaryotes. In the present study, a CA II (designated as HdhCA II) was sequenced and
characterized from the mantle tissue of the Pacific abalone. The complete sequence
of HdhCA II was 1,169 bp, encoding a polypeptide of 349 amino acids with a NH2-
terminal signal peptide and a CA architectural domain. The predicted protein shared
98.57% and 68.59% sequence identities with CA II of Haliotis gigantea and Haliotis
tuberculata, respectively. Two putative N-linked glycosylation motifs and two cysteine
residues could potentially form intramolecular disulfide bond present in HdhCA II. The
phylogenetic analysis indicated that HdhCA II was placed in a gastropod clade and
robustly clustered with CA II of H. gigantea and H. tuberculata. The highest level of
HdhCA II mRNA expression was detected in the shell forming mantle tissue. During
ontogenesis, the mRNA of HdhCA II was detected in all stages, with larval shell formation
stage showing the highest expression level. The in situ hybridization results detected
the HdhCA II mRNA expression in the epithelial cells of the dorsal mantle pallial, an area
known to express genes involved in the formation of a nacreous layer in the shell. This
is the first report of HdhCA II in the Pacific abalone, and the results of this study indicate
that this gene might play a role in the shell formation of abalone.

Keywords: Haliotis discus hannai, carbonic anhydrase, qRT-PCR, ontogenesis, in situ hybridization

INTRODUCTION

Carbonic anhydrases (CAs) are zinc ion-containing metalloenzymes that can catalyze the essential
hydration of CO2 through the simple chemical reaction: CO2 + H2O � HCO3

− + H+ (Lindskog
and Silverman, 2000). CAs play an essential role in multiple physiological processes such as pH
regulation, electrolyte balance, ionic transportation, carboxylation or decarboxylation reactions,
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biocalcification, and tumorigenicity (Supuran, 2008, 2011;
Alterio et al., 2009). CAs are important components of the
CO2-concentrating mechanisms in different groups of algae.
They could increase the rate of photosynthesis (Qu et al.,
2018). In erythrocytes, CA is a superabundant enzyme that
plays an indispensable role in CO2 transport by catalyzing the
dehydration of plasma HCO3

− ions (Geers and Gros, 2000;
Henry and Swenson, 2000; Perry and Gilmour, 2006). The
cytosolic CA in gill may contribute to provide counter ions for
maintaining pH balance and ionic regulation in fish (Henry and
Swenson, 2000; Marshall, 2002). In mollusk, CA seems to be
contributed to shell formation via catalyzing the hydration of
CO2 (Nielsen and Frieden, 1972). This enzyme has been shown
to be an effective catalyst in the calcification mechanism of coral
(Rahman and Oomori, 2010).

Carbonic anhydrase isozymes were isolated in the erythroid
cells of mammals and have been subsequently identified in
most organisms (Meldrum and Roughton, 1933; Rudenko et al.,
2015). Eight evolutionarily distinct families of CAs, including
α, β, γ, δ, ζ, η, θ, and ι, have been reported in unicellular
and multicellular organisms (Zolfaghari et al., 2020). Their
amino acid residues share no significant identities and seem
to be evolved independently from distinct inherited genes
(Krishnamurthy et al., 2008; Bertucci et al., 2009; Del Prete
et al., 2015; Supuran and Capasso, 2015; Kikutani et al., 2016).
Among these families, α-CA is widely distributed in animals
and plants (Aspatwar et al., 2010). α-CA exhibits the highest
catalytic activity in the hydration reaction than β- and η-CA.
On the contrary, γ-, δ-, and ζ- CA isozymes possess the lowest
enzymatic efficiencies (Capasso and Supuran, 2015; Supuran and
Capasso, 2015). In mammals, 16 isoforms of α-CA isozymes have
been explored, of which 13 are catalytically effective and 3 are
non-catalytic due to the absence of one or more functionally
active histidine amino acid residues (Sly and Hu, 1995; Tashian
et al., 2000). The functions of each isozyme vary pursuant
to their molecular sequences, kinetic attributes, sensitivities
to inhibitors, tissue distributions, and subcellular localizations
(Hewett-Emmett, 2000; Lehtonen et al., 2004).

Carbonic anhydrase II is a secreted and membrane-bound
α-CA that can catalyze carboxylation and decarboxylation
reactions. The typical structure of CA II contains three histidine
(His) residues that can bind to Zn2+ ion, and a proton (H+)
shuttling residue that is responsible for converting a Zn-bound
water molecule to hydroxide ion. In addition, gate-keeping
signature residues (namely, Glu-106 and Thr-199 in human
CA) allow excellent orientation of Zn-bound hydroxide ion to
increase the nucleophilic attack of a substrate (Christianson and
Fierke, 1996; Lindskog and Silverman, 2000). CA II not only
participates in the hydration reaction but also plays an important
role in the osmoregulatory functions of fish (Grosell et al., 2007).

The Pacific abalone is a commercially important molluscan
bioresources in China, Japan, and Korean Peninsula. Haliotis
discus hannai is considered as a popular seafood item worldwide
due to its contents of health beneficial bioactive molecules
(Suleria et al., 2017). Previous studies have characterized cytosolic
CA isozymes in vertebrates and invertebrates (Pongsomboon
et al., 2009; Le Roy et al., 2012; Ali et al., 2015; Pan et al.,
2016; Sumi et al., 2019). However, the characterization and

expression analysis of CA isozymes in Pacific abalone have not
yet been reported. In this study, the complete sequence of CA II
isozyme was first cloned from the mantle of H. discus hannai,
and its spatiotemporal expression was determined using the
molecular assay.

MATERIALS AND METHODS

Animals and Sample Collection
Three-year-old adult male and female Pacific abalone, H. discus
hannai (total body mass: 128.2 ± 0.86 g; shell length:
10.5 ± 0.12 cm) were collected from Jindo Island, South Korea
and transferred to the laboratory, College of Fisheries and Ocean
Science, Chonnam National University (CNU). The tissues from
the cerebral ganglion, mantle, gill, heart, shell muscle, hemocyte,
testis, and ovary were collected, immediately frozen in liquid
nitrogen, and kept at − 80◦C for further RNA isolation. All
experimental embryonic and larval samples were collected as
described previously (Sharker et al., 2020a). The cryosection from
the mantle tissue was prepared following the previous protocol
(Sharker et al., 2020b,c,d). The experimentation was performed
according to the guidelines of the Institutional Animal Care and
Use Committee of CNU (approval number: CNU IACUC-YS-
2020-5).

RNA Extraction and cDNA Synthesis
Total RNA was isolated from different tissues of an experimental
animal using an RNeasy mini kit (Qiagen, Hilden, Germany)
following the kit protocol. The quality of each RNA sample
was evaluated using 1% (w/v) agarose gel electrophoresis and
quantified by spectrophotometry on a NanoDrop R© NP 1000
device (Thermo Fisher Scientific, Waltham, MA, United States).
Subsequently, 1 µg of RNA was transformed into cDNA
employing Superscript R© III cDNA synthesis kit (Invitrogen,
Carlsbad, CA, United States) as per the kit instruction.

Cloning and Sequencing of Full-Length
cDNA of CA II
A pair of primer (forward: 5′-GTGGCAGTCTTCCTATCTAC-
3′; reverse: 5′-GCTGCATCATCACCTGCCA-3′) was designed
based on the nucleotide sequence of Haliotis gigantea CA isozyme
(GenBank accession no. AB500104.1). Reverse transcription
polymerase chain reaction (RT-PCR) amplification reactions
were carried out using the following amplification program:
3 min at 95◦C, followed by 35 cycles of 2 min at 94◦C,
1 min at 58◦C, 1 min at 72◦C, with a final extension step at
72◦C for 5 min. The purification was carried out using the
PCR purification kit as per the kit protocol. Subsequently,
the purified fragments were cloned into pTOP Blunt V2
vector (Enzynomics, Daejeon, South Korea) and transformed
into DH5α-competent Escherichia coli cells (Enzynomics).
Then Plasmid DNA from selected clones was isolated
using plasmid miniprep kit (Qiagen, Hilden, Germany) and
sequenced by a sequencing company (Macrogen, South
Korea). Complete sequence of CA II was obtained from
H. discus hannai by rapid amplification of cDNA ends (RACE)
using a Smarter R© RACE cDNA Kit (Clontech Laboratories,
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FIGURE 1 | Nucleotide and amino acid sequence of HdhCA II. The start codon, stop codon (asterisks), and polyadenylation signal (AATAAA) are marked in bold. The
N-terminal signal peptide is underlined. The N-linked glycosylation site is enclosed in a rectangular box. The circles indicate potential phosphorylation sites in the
mature protein. Two cysteine residues (Cys-40 and Cys-247) could potentially form intramolecular disulfide bond and are shaded in gray.

Inc., United States) as per the protocol provided by the
manufacturer. The touchdown PCR was carried out with
25 cycles for 3′-RACE and 30 cycles for 5′-RACE using
gene-specific primers (GSPs) set (antisense primer: 5′-GATT
ACGCCAAGCTTCCATGGCTCCTGTACACGGTTCTTCC-3′,
sense primer: 5′-GATTACGCCAAGCTTCACTTTGTCTGAG
AGCGTCCTGTGGC-3′), a universal primer mix (UPM), and
SeqAmp DNA Polymerase in 50 µL of reaction volume following
the instruction provided by the manufacturer. The resultant PCR
products were purified, ligated into linearized pRACE vector,

transformed into Stellar Competent Cells, and finally sequenced
as described earlier.

Sequence and Phylogenetic Analysis
The nucleotide and amino acid sequence of Pacific abalone CA
II was analyzed with BLAST at the NCBI database. A web-based
tool “SMART” was used for the prediction of CA domain
architecture (Letunic and Bork, 2018). Expert protein analysis
system was used to evaluate the physiochemical properties and
subcellular localization of this gene (Gasteiger et al., 2003).
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TABLE 1 | Amino acid sequence identities of HdhCA II with CA IIs of other gastropod mollusk, eutherian mammals, and piscine vertebrates.

1 2 3 4 5 6 7 8 9

81.15 80.77 62.69 62.65 34.91 30.34 29.13 29.03 1. Human

93.46 60.38 61.09 36.64 30.72 28.99 28.34 2.Mouse

60.77 60.70 34.91 29.10 28.16 27.74 3.Rat

72.76 32.33 30.10 30.07 29.67 4. Zebra fish

32.13 29.97 30.51 29.43 5. Rainbow trout

31.29 29.72 28.75 6. Sea hare

69.16 68.59 7. Green ormer

98.57 8. Giant abalone

9. Pacific abalone

FIGURE 2 | Multiple sequence alignment of HdhCA II and CA IIs of other representative invertebrate and vertebrate species. Three zinc ligand histidine residues and
proton shuttling residues are indicated by arrows and diamond circle, respectively. Amino acid residue in the catalytic site involved in the hydrogen bond formation is
denoted by asterisks. Hdh, H. discus hannai; Hg, H. gigantea; Ht, H. tuberculata; Lg, Lottia gigantea; Ac, Aplysia californica; Hs, Homo sapiens; Dr, Danio rerio; and
Om, Oncorhynchus mykiss.

Multiple sequence alignment was created using Clustal
Omega package (Sievers et al., 2011; Alva et al., 2016). The
Jalview Java alignment editor was employed to edit and
visualize multiple sequence alignment (Waterhouse et al.,
2009). Predictions of the N-linked glycosylation sites and
serine/threonine phosphorylation sites were performed with
NetNGlyc 1.0 server (Chuang et al., 2012) and NetPhosK
3.1 server (Blom et al., 1999), respectively. The N-terminal
signal peptide and disulfide bond were predicted using SignalP
4.1 (Petersen et al., 2011) and CYSPRED (Fariselli et al.,
1999), respectively. To generate a phylogram, vertebrate and
molluscan CAs were curated from NCBI using BLASTP program.
A phylogenetic analysis was conducted with MEGA software
(version 7.0) using bootstrap analysis for 1,000 replicates
(Kumar et al., 2016).

Template Identification and
Three-Dimensional Homology Modeling
of H. discus hannai CA II
Modeler1 was used for the analysis of high-resolution three-
dimensional (3D) homology modeling of H. discus hannai CA
II isozyme by optimally satisfying spatial restraints (Šali and
Blundell, 1993). Human CA II 3D structure (1.07 Å) template
was considered to generate the 3D model of Pacific abalone
CA II. Protein Quality Predictor (Wallner and Elofsson, 2003),
Verify3D (Eisenberg et al., 1997), and ERRAT tools were used
for assessing the stereochemical quality of the predicted protein
model (Colovos and Yeates, 1993). UCSF Chimera program was

1https://salilab.org/modeller/
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FIGURE 3 | Molecular phylogenetic analysis of carbonic anhydrase isoform was constructed using NJ approach with 1,000 bootstrap replications. The scale bar at
the bottom represents the amino acid divergence per site. The numbers in phylogram nodes indicate percentage bootstrap values for the phylogeny. HdhCA II is
highlighted in bold.

used for interactive visualization and analysis of the predicted CA
II 3D structure (Pettersen et al., 2004).

Semiquantitative RT-PCR
A primer set (forward: 5′-GAACAGGGTGTGTGACACG-3′ and
reverse: 5′-GCAGAACGATGTCCGAAATAG-3′) designed from
the cloned sequence was applied to conduct semiquantitative
RT-PCR. Ribosomal protein L-5, RPL-5 (GenBank accession
no JX002679.1) (forward: 5′-TGTCCGTTTCACCAACAAGG-
3′ and reverse: 5′-AGATGGAATCAAGTTTCAATT-3′), was
selected as a reference gene based on its expression stability (Wan
et al., 2011). The PCR amplification conditions were similar to
those described earlier.

Quantitative RT-PCR Analysis
The quantitative RT-PCR (qRT-PCR) was carried out in
triplicates using 2 × qPCRBIO SyGreen Mix Lo-Rox on a
LightCycler R© 96 System (Roche, Germany) in a 20-µL reaction
mixture. Three biological replicates (N = 3) were used for each
tissue and ontogenetic sample. The same gene-specific and RPL-
5 primers used for semiquantitative RT-PCR analysis were used
for qRT-PCR. The PCR amplification programs were subjected
to a predenaturation step at 95◦C for 2 min, followed by 40 cycles
of denaturation at 95◦C for 1 min, annealing at 60◦C for 30 s and
72◦C for 1 min. Relative mRNA expression was assessed using the
2−11CT method.

Statistical Analysis
Data were statistically analyzed using one-way ANOVA followed
by Tukey’s multiple comparisons using SPSS (version 16.0) to
assess whether the means were significantly different. Statistically
significant difference was set at p < 0.05.

In situ Hybridization
Digoxenin (DIG)-labeled RNA antisense and sense probes were
synthesized from the CDS region of CA II sequence by in vitro
transcription as described earlier (Sharker et al., 2020e,f). The
hybridized tissue sections of the mantle were incubated with
a blocking solution at RT for 1 h and then treated with an
antibody at − 20◦C overnight. Subsequently, the tissue sections
were incubated with a labeling mix and kept in a dark place
to attain color. Finally, the slides were examined under a
stereomicroscope.

RESULTS

Identification and Characterization of CA
II From H. discus hannai
The complete cDNA sequence of CA II was isolated and
cloned from the mantle tissue of H. discus hannai and referred
to as HdhCA II (GenBank accession number MT876410).
Its nucleotide sequence was 1,169 bp in length encoding a
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FIGURE 4 | Three-dimensional structure of HdhCA II. The N- and C-termini
are marked with blue arrows. Zn2+ and coordinated three histidine residues
are indicated by blue arrows. The structure was generated using UCSF
Chimera software.

polypeptide of 349 amino acids with the calculated molecular
mass and isoelectric point (pI) of 38.93 kDa and 8.58, respectively
(Figure 1). The protein domain analysis revealed that HdhCA II
(from 50Y to 344C) showed similarity with a potential CA isoform
II. Its coding region comprised a predicted signal peptide (18
amino acids) followed by a cleavage site between Ala18 and Asp19.
The cloned sequence contained two N-linked glycosylation sites
and eight phosphorylation sites at positions 49S, 55S, 67T, 137S,
142S, 150T, 202S, and 319S. Two cysteine residues (Cys-40 and Cys-
247) in this sequence are likely to form intramolecular disulfide
bond for the enzyme biosynthesis.

The protein BLAST analysis demonstrated that the predicted
CA II sequence shared the highest identities with H. gigantea and
Haliotis tuberculata CA II. The alignment of fish and mammalian
vertebrate CA sequences revealed that the cloned Pacific abalone
CA II sequence shared 29.03%, 28.34%, and 29.67% sequence
identities with human (Homo sapiens, NP_000058.1), mouse
(Mus musculus, NP_033931.4), and zebra fish (NP_954685.1,
Danio rerio) CA II, respectively (Table 1).

The in silico analysis indicated that this protein might be
an extracellular (secreted) protein. The active site amino acid
residues in CA domain of Pacific abalone and other cytoplasmic
CAs of vertebrates and invertebrates are highly conserved
(Figure 2). The three histidine residues predicted to form Zn2+ in
the active site are also conserved in all CA isoforms. The histidine
residue (94H) important for proton shuttling is also conserved

in molluscan CAs. In addition, several other highly conserved
amino acids are found in this cloned sequence.

The phylogenetic analysis was performed using CAs of
representative species of vertebrates, and molluscan with
the neighbor joining (NJ) method to infer evolutionary
connections. The phylogenetic tree showed two major clades: (1)
cytosolic CAs in vertebrates and (2) secreted and membrane-
bound CAs in mollusk. The CA II of H. discus hannai
was placed in the molluscan clade and phylogenetically
clustered with H. gigantea CA II with a high bootstrap
value (Figure 3).

To predict the 3D model of CA II, the crystal structure
of human CA II (PDB 4Q08) was selected based on the high
identities of several amino acid signatures (Figure 4). The
evaluation results of this predicted model were as follows: ProQ,
LG score of 2.780 (value > 1.5 indicates very good model), and
MaxSub sore of 0.585 (value > 0.5 indicates a very good model);
Verify3D: 3D/1D profile score of 89.34%; and ERRAT quality
factor of 92.94%.

Expression Analysis of HdhCA II mRNA
The tissue-specific expression profile of CA II was analyzed by
qRT-PCR. The mantle tissue exhibited the highest level of HdhCA
II mRNA expression than other tested tissues (Figure 5). The
expression of HdhCA II mRNA among cerebral ganglion, heart,
shell muscle, and hemocyte showed no significant differences.
A significantly lower expression was found in gonadal tissues
(i.e., testis and ovary). The supporting data are shown in
Supplementary Figure 1.

To investigate the functional role of HdhCA II during
ontogenetic development of the Pacific abalone, the expression
patterns of CA II mRNA transcript in different stages of
development were determined using the qRT-PCR assay. The
results of the analysis revealed that HdhCA II mRNA was
expressed throughout the early developmental stages in a
ubiquitous fashion (Figure 6). The HdhCA II mRNA levels were
relatively low in multicellular stages until gastrula. The expression
level was highest in the shell formation stage compared with other
examined stages.

The in situ hybridization (ISH) was carried out using the
mantle tissue sections to elucidate the functional role of HdhCA II
mRNA in the shell formation of H. discus hannai. The HdhCA II
mRNA hybridized signal was found in epithelial cells of the dorsal
mantle pallial, an area known to express genes involved in the
nacreous layer synthesis of the shell (Figures 7A–C). However,
the negative control (sense probe) showed no hybridization
signal (Figure 7D).

DISCUSSION

Carbonic anhydrases play an important role in many
physiological processes by catalyzing the hydration reaction.
In mollusks, CAs have been previously identified in Tridacna
squamosa (Ip et al., 2017), Mytilus galloprovincialis (Perfetto
et al., 2017), and H. tuberculata (Le Roy et al., 2012). To date,
the identification and biomolecular characterization of CA II
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FIGURE 5 | HdhCA II mRNA expression (means ± SD, N = 3) in different
tissues of Pacific abalone is based on quantitative real-time PCR (qRT-PCR).
The expression pattern of HdhCA II mRNA in all tissues is calibrated by the
expression in the cerebral ganglion (1). Different characters in vertical bar
indicate significantly (p < 0.05) different.

isoform from the Pacific abalone have not yet been reported.
For the first time, the complete sequence of CA II was cloned
from the mantle tissue of H. discus hannai and the molecular
properties of this protein with its expression profile were
determined in this study. An 18-amino-acid NH2-terminal
signal sequence was found in the CA II isozyme followed
by a cleavage site, suggesting that HdhCA II might be an
extracellular secretory protein (Figure 1). The N-terminal
signal sequence is a key characteristic of CA secretory protein
(Aldred et al., 1991). A secretory CA has been cloned from
the scleractinian coral, Stylophora pistillata, and this CA
is localized in calicodermis, which is responsible for the
precipitation of the skeleton (Moya et al., 2008). One CA
isoform was isolated from the sea urchin embryo and described
as an extracellular secreted protein (Karakostis et al., 2016).
The cloned sequence of HdhCA II also possesses several
key features including phosphorylation sites and N-linked
glycosylation sites. These phosphorylation sites are crucial for
several signal transduction cascades (Ali et al., 2016). Two
potential N-linked glycosylation motifs were found in HdhCA
II, suggesting that HdhCA II might be a glycoprotein. Two
cysteine residues found in HdhCA II might form disulfide link
that is crucial for stabilizing its protein structure and regulating
biological functions of this protein (Kadokura et al., 2004;
Inaba et al., 2006).

The amino acid sequences encoded by HdhCA II displayed
high identities in the functional site of the CA domain (Figure 2).
The molecular structure of HdhCA II isozyme contained
important functional sites, such as zinc binding ligand, proton
shuttling ligand, substrate associated pocket, and Thr-199 loop
site, which are known to be involved in the enzymatic activity
of this protein (Esbaugh and Tufts, 2006). The active site
of CA contained a hydrophobic pocket (i.e., the catalytically

FIGURE 6 | HdhCA II mRNA expression (means ± SD, N = 3) in different
ontogenetic stages of the Pacific abalone. The expression levels of HdhCA II
mRNA in various stages are calibrated by its expression in the two-cell stage
(1). Different letters indicate significantly (p < 0.05) different.

productive site) that could interact with a non-polar CO2
substrate (Liang and Lipscomb, 1990) and facilitate its reaction
with highly nucleophilic Zn2+-bound OH− (Alterio et al., 2012).
The hydrophobic binding pocket residue and histidine residues
that could bind with a catalytic zinc ion were conserved in CA
II of H. discus hannai (Figure 2). This suggests that HdhCA II
is a functionally active CA. It has been well established that
the proton-shuttling residue (His-64) is responsible for the
efficient proton transfer and the high catalytic rate of CO2
hydration in CA II of human (Supuran, 2008). A site-specific
mutation (His-64 replaced by alanine) results in 20- to 30-
fold decrease in the catalytic activity of CA II (Tu et al.,
1989). This residue is also conserved among different species
of abalone CA II.

The results of phylogenetic analysis indicated that CA II gene
of H. discus hannai was evolutionarily closer to H. gigantea
CA II (Figure 3). Previous studies reported that the CA II of
H. tuberculata (htCA2) is placed in the molluscan CA clade
and more closely linked to CA II isoform of H. gigantea
(Le Roy et al., 2012).

The homology modeling of HdhCA II was performed using
the 3D homology structure of human CA II with a resolution
of 1.07 Å as template (Figure 4). The Zn2+ coordinated with
three conserved histidine residues comprise the zinc-binding site
(Christianson and Alexander, 1989). The evaluation results also
supported the structural conservation of the cloned HdhCA II
gene, with amino acids in favorable positions.

The expression of HdhCA II mRNA was detected in all
tested tissues with mantle as the site of highest expression
(Figure 5) which is in agreement with the previous report
(Le Roy et al., 2012; Ip et al., 2017). The expression analysis
suggests that HdhCA II could involve in mantle function such
as shell formation. HdhCA II might also involve in acid–base
regulation, ion transport, and modulation of ionic concentration
(Miyashita et al., 2012).
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FIGURE 7 | The localization of HdhCA II mRNA in the mantle tissue of Pacific abalone detected by ISH. (A) The positive hybridization signals were detected in the
epithelial cells of the dorsal mantle pallial (MP), (B) the medium magnification of A, (C) the higher magnification of A, and (D) the negative control section showed no
hybridization signals. The positive signals are marked with black arrowheads. Scale bar, 100 µm. OF, outer fold; MP, mantle pallial.

The temporal expression profile of HdhCA II during
ontogenesis revealed that HdhCA II mRNA was expressed
throughout the early developmental stages, with shell formation
stage having the highest level (Figure 6). This result of analysis
suggests that HdhCA II plays an important role during larval shell
formation. Previous studies have reported that the functional
inhibition of CA in Paracentrotus lividus and Heliocidaris
tuberculata can prevent the deposition of calcium carbonate in
the larval skeleton formation (Zito et al., 2015).

The expression of HdhCA II mRNA in the mantle tissue was
examined with ISH using an antisense CA II mRNA as a probe.
The gene distributed in the mantle can speculate the participation

of these genes in the biomineralization process during shell
formation (Suzuki and Nagasawa, 2013). The expression of genes
at the mantle edge and mantle pallial have participated in the
synthesis of prismatic and nacreous layers, respectively (Takeuchi
and Endo, 2006; Inoue et al., 2010). The expression patterns of
HdhCA II transcript were detected in the epithelium layer of the
mantle and mantle pallial (Figure 5). The mantle can secrete
biomineralization protein in outer epithelial cells to modulate
shell formation (Jablonski, 1990; Werner et al., 2013). Based on
the in situ results of the present study, we speculated that HdhCA
II might be involved in the shell formation by catalyzing the
hydration of CO2.
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CONCLUSION

This is the first study of molecular characterization and
expression of HdhCA II mRNA in different tissues and
developmental stages of the Pacific abalone. HdhCA II was
highly expressed in the mantle tissue implying that it might
be participated in the shell formation process. The expression
patterns of HdhCA II during larval developmental stages imply
that this enzyme is involved in the shell germination of abalone.
The ISH results demonstrated that the signals were found in the
mantle epithelial cells, indicating that this gene might be essential
for the shell formation by controlling the regular deposition of
CaCO3. The findings of our current research could help us to
understand the functional role of CA in the shell formation of
abalone or be useful for the development of aquaculture methods
in this abalone species.
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