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Abstract
The widespread infection caused by the 2019 novel corona virus (SARS-CoV-2) has initiated global efforts to search for 
antiviral agents. Drug discovery is the first step in the development of commercially viable pharmaceutical products to 
deal with novel diseases. In an effort to accelerate the screening and drug discovery workflow for potential SARS-CoV-2 
protease inhibitors, a machine learning model that can predict the binding free energies of compounds to the SARS-CoV-2 
main protease is presented. The optimized multiple linear regression model, which was trained and tested on 226 natural 
compounds demonstrates reliable prediction performance (r2 test = 0.81, RMSE test = 0.43), while only requiring five topo-
logical descriptors. The externally validated model can help conserve and maximize available resources by limiting bio-
logical assays to compounds that yielded favorable outcomes from the model. The emergence of highly infectious diseases 
will always be a threat to human health and development, which is why the development of computational tools for rapid 
response is very important.
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1 Introduction

The corona virus disease of 2019 (COVID-19) caused by 
the 2019 novel corona virus (SARS-CoV-2) that was first 
reported in Wuhan, China, has already reached pandemic 
levels. It is a global health concern that has claimed thou-
sands of lives and requires urgent interventions to control 
the situation. The efficient transmission of the disease as 
well as its ability to kill healthy adults have necessitated 
for the accelerated development of vaccines and drugs that 
can combat the virus (Gates 2020). Several vaccines have 
already been granted emergency use authorization in multi-
ple countries (Terry 2021). However, for developing coun-
tries, vaccine distribution is accompanied by problems in 
supply, storage and logistics (Callaway 2020). The urgency 
of the matter has led to the repurposing of approved drugs to 
be administered for the management of COVID-19 patients 

(Li and de Clercq 2020). Consequently, the World Health 
Organization (WHO) initiated a large global trial called 
Solidarity, which aims to determine if available drugs are 
capable of treating COVID-19 (Kupferschmidt and Cohen 
2020). Another viable strategy for developing antiviral drugs 
against SARS-CoV-2 is searching for natural products that 
can inhibit key processes in the viral life cycle. Natural prod-
ucts are ideal sources to be considered since they are readily 
available and looking into their activities against the virus 
can help identify promising leads much faster. Moreover, 
promising natural products may be derivatized into more 
potent antiviral agents, thereby shortening the design phase 
in the drug discovery process (Rastelli et al. 2020).

The characterization of the SARS-CoV-2 main protease 
(Jin et al. 2020) is a significant step forward for the discov-
ery and development of antiviral drugs since this enzyme 
plays a key role in viral replication and transcription. Studies 
have, therefore, emerged that dock compounds to the bind-
ing site of the SARS-CoV-2 protease to visualize binding 
interactions and determine the binding affinity of the docked 
compounds onto the protein (Aanouz et al. 2020; Das et al. 
2020; Ton et al. 2020). However, docking simulations can 
be hardware-intensive and time consuming, especially if 
the simulations are to be validated by molecular dynamics 
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simulations (Chen 2015). On the other hand, experimen-
tal assays for candidate compounds can be demanding to 
the availability of resources and personnel. Mathematical 
models are key components in the chemical product design 
(CPD) and computer-aided molecular design (CAMD). For 
CPD, models are often used in identifying product candi-
dates which can be further analyzed and prototyped (Zhang 
et al. 2020). For CAMD, models serve as guide on how the 
molecule can be modified or synthesized to reach or enhance 
the desired properties (Mapari and Camarda 2020).

In an effort to accelerate the drug candidate discovery 
workflow for the SARS-CoV-2, a machine learning model 
that predicts the binding free energy of compounds was con-
structed in this study. This model can be utilized to reduce 
dependence of screening endeavors on hardware-demanding 
tasks, such as docking and molecular dynamics simulations, 
as well as for both CPD and CAMD applications. Further-
more, it would allow rapid screening and identification 
of compounds as potential SARS-CoV-2 protease inhibi-
tor. From a CAMD perspective, the model can also guide 
attempts on molecular modifications that can increase the 
binding affinity of lead compounds toward the viral enzyme. 
In addition, the model may catalyze the design of a process 
for the commercial-scale synthesis of identified compounds.

2  Methodology

2.1  Dataset

The list of compounds and their binding free energy (BFE) 
towards the SARS-CoV-2 main protease (PDB ID: 6LU7) 
were taken from Yan et al. (2020), and Gentile et al. (2020). 
The first set of compounds are from Chinese Patent Drugs 
which have established their role in treating respiratory dis-
eases in China. The second set of compounds are marine nat-
ural products with an excellent binding with the target pro-
tein SARS-CoV-2 MPro. In total, there are 226 compounds 
that were converted into their corresponding SMILES for-
mat. Thereafter, their corresponding 230 chemical descrip-
tors were calculated using the “rcdk” R package (Guha 
2007). These molecular descriptors are the independent vari-
ables or predictor variables, while the binding free energy is 
the dependent variable or outcome variable. The resulting 
data set serves as the input features for the regression mod-
els. The dataset is available in the supporting information.

2.2  Reduction of molecular descriptors

Filtering of the molecular descriptors was first done by set-
ting thresholds for variance, Pearson correlation, and % of 
zero values. Through the r function “nearZeroVar”, predic-
tors with near zero variance or less than 10% unique values 

were removed. These are descriptors with only 1 or 2 values 
all throughout the data set. Next, highly correlated predictors 
were removed, wherein variables with at least 0.90 Pearson 
correlation coefficient were eliminated. A built-in R function 
called "cor" was used. The last threshold was set for % of 
zero values wherein variables with at least 75% zero values 
were removed.

The resulting dataset was further subjected to lasso 
regression as the feature selection method. Lasso (Least 
Absolute Selection and Shrinkage Operator) regression 
imposes constraints on the sum of the absolute values of 
the model parameters resulting to the shrinkage of some 
coefficients to zero. Thus, variables with strong associations 
with the outcome variable are identified. Sixty percent of 
the data was used to train the model followed by tenfold 
cross-validation using the “caret” package (Kuhn 2008). 
Lasso regression was performed using the package “glm-
net”. Diagnostic tests were performed using the R package 
“olsrr” (Hebbali 2017).

2.3  Selection of appropriate machine learning 
algorithm for regression

Using “caret” package in R, the data set was subjected to 
the create regression models based on the following algo-
rithms: support vector regression (SVR), classification and 
regression trees (CART), random forest, and multiple linear 
regression (MLR). Model performance was evaluated using 
the coefficient of determination (R2), and the root mean 
square error (RMSE).

2.4  External validation

The optimized regression model was externally validated 
using studies that employed Autodock Vina as the docking 
platform and the 6LU7 protease as the receptor. The binding 
free energies of compounds from these studies were pre-
dicted using the optimized regression model. Compounds 
that appeared in the training and testing sets were excluded 
in the external validation set.

3  Results and discussion

3.1  Reduction of molecular descriptors

The starting data are composed of 226 natural products 
compounds. Each compound has 230 molecular descrip-
tors, which are the independent variables or predictors. 
Upon removing predictors that did not meet the Pearson 
correlation, variance, and % zero values threshold, the 
molecular descriptors were reduced to 29. Feature selec-
tion with data splitting and tenfold cross-validation were 
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used to come up with fewer and better sets of predictor vari-
ables. Smaller number of predictors is desirable to have a 
simple model and to prevent overfitting. 137 compounds 
were grouped as the training set, and the remaining 89 com-
pounds as the test set. Lasso regression narrowed down the 
molecular descriptors to WTPT.2 (molecular ID/number of 
atoms), VAdjMat (vertex adjacency information magnitude), 
MDEC.23 (molecular distance edge between all secondary 
and tertiary carbons), MDEC.33 (molecular distance edge 
between all tertiary carbons), and FMF (fraction of size of 
Murcko framework versus the size of the whole molecule). 
In the training data, lasso regression had an R2 of 0.838 
and RMSE of 0.518. For the testing data, the R2 was 0.743 
and the RMSE was 0.578. The regression model has a good 
coefficient of determination  (R2) values in the training and 
testing sets denoting that the selected molecular descriptors 
are able to explain more than 70% of the binding free ener-
gies (Fig. 1).

3.2  Examination of lasso regression assumptions

To further assess the set of variables selected by lasso 
regression for model building, diagnostic tests were run 
using the "olsrr" package. Figure 2 shows the diagnostic 
plots generated. The model was linear (Fig. 2a) and had nor-
mally distributed residuals indicated by the bell shape curve 
centered at 0 (Fig. 2b). Normality of residuals was further 
assessed using the Shapiro–Wilk test. Lasso regression had a 
test statistic of 0.9932 and a p value of 0.3913. The p value is 
greater than 0.05, meaning the null hypothesis is not rejected 
and thus, lasso regression has normally distributed residuals. 
The residual plots of the model as seen in Fig. 2c had a scat-
tered pattern indicating homoscedasticity. However, some of 
the data points were very far from the 0-line suggesting that 
there were outliers. Using the outlier and leverage plot in 
Fig. 2d, the influential points had been pinpointed. Breusch 
Pagan test was also performed to further justify the homo-
scedasticity. In the lasso regression model, the chi square 
test statistic was 0.00548, which was very small, and the p 
value for the chi square statistic was 0.941, far greater than 
0.05. Thus, the null hypothesis was not rejected, and the 

lasso regression model was considered homoscedastic. In 
Table 1, the variance inflation factor (VIF) of all variables 
were less than 5 and their tolerance were all greater than 
0.10. This means that there was no severe multicollinearity 
in the variables of the lasso regression model. 

In summary, lasso regression exhibited linearity, homo-
scedasticity, normality, and had no severe multicollinearity. 
All of the assumptions of linear regression were met. Thus, 
WTPT.2, VAdjMat, MDEC.23, MDEC.33, and FMF are the 
molecular descriptors that were used in predictive model.

3.3  Selection of machine learning algorithm

Four machine learning algorithms were compared to find 
the best predictive model, multiple linear regression (MLR), 
support vector regression (SVR), classification and regres-
sion trees (CART), and artificial neural networks (ANN). 
For each machine learning algorithm, two models were 
generated. Both had the same predictor variables namely: 
WTPT.2, VAdjMat, MDEC.23, MDEC.33, and FMF. The 
first model entries made use of all 226 compounds in the 
data set. The second model entries utilized a refined data set 
composed of 203 compounds. In the refined data set, 23 out-
liers, high leverage, and outlier and high leverage data points 
were removed based on the outlier and leverage diagnostic 
plot in Fig. 2d. All models exhibited satisfactory predictive 
ability in terms of the r-squared and the RMSE for both 
training and test sets as shown in Table 2. In determining the 
best model, comparing the training set performance alone 
may be misleading because of overfitting. This was the case 
with the CART model, which had an exemplary performance 
in the training set. However, when it was run in the testing 
set, it was not able to perform at the same exemplary level. 
This suggests that the CART model was overfitted. Upon 
examination of the model performances, the refined multiple 
linear regression model stood out. It had a good performance 
in the training set, and the best performance in the testing 
set. Furthermore, it had the most consistent RMSE. MLR is 
easy to implement and has a strong theoretical foundation. 
Out of the four machine learning algorithms, MLR is the 
simplest and the only one considered as interpretable (Kaur 

Fig. 1  Narrowing down the 
number of molecular descrip-
tions by applying thresholds and 
feature selection to achieve a 
parsimonious model
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et al. 2020). SVR, CART, and ANN are all black box mod-
els, which have input-to-output implementations that are not 
fully explainable (Rudin 2019). Thus, MLR was deemed as 
the best model.
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Fig. 2  Results of diagnostics performed on the lasso regression 
model using the “olsrr” package. a The actual vs predicted values 
plot shows if the model is linear and how well the data points fit the 
regression line. b Residual histogram checks if the residuals are nor-

mally distributed. c The residual plot shows if the model is homosce-
dastic. d Outlier and leverage plot detects the observations influenc-
ing the model. Blue points are normal, red points are leverages, green 
points are outliers, and pink points are both outliers and leverages

Table 1  Computed VIF and 
tolerance for each of the five 
molecular descriptors selected 
by lasso regression

Variance inflation factor (VIF) 
and tolerance are metrics to 
detect multicollinearity

Variables Tolerance VIF

WTPT.2 0.260 3.842
VAdjMat 0.501 1.996
MDEC.23 0.538 1.859
MDEC.33 0.762 1.313
FMF 0.303 3.303

Table 2  Summary of prediction performance of the machine learning 
models

Model
Training Set Testing Set

R2 RMSE R2 RMSE

MLR 0.841 0.500 0.750 0.562

Ref_MLR 0.841 0.458 0.806 0.430

SVR 0.894 0.409 0.774 0.536

Ref_SVR 0.868 0.419 0.726 0.504

CART 0.975 0.207 0.755 0.559

Ref_CART 0.974 0.194 0.717 0.512

ANN 0.882 0.431 0.763 0.548

Ref_ANN 0.865 0.426 0.778 0.455

Gray-shaded rows used the original dataset composed of 226 com-
pounds. White rows used the refined dataset composed of 203 com-
pounds
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3.4  The predictive regression model

The refined MLR model assumed the form of:

Larger values of WTPT.2, VAdjMat, MDEC.33, and FMF 
would make the Binding Free Energy (BFE) more nega-
tive and, thus, more favorable to bind with the SARS-CoV-2 
MPro. Out of the five predictor variables, WTPT.2 had the 
greatest contribution to the model because it had the largest 
coefficient. WTPT.2 is dependent on molecular ID, which 
is unique for each molecule yet conveys structural signifi-
cance. This underscores the importance of molecular struc-
ture which is consistent with the accepted knowledge about 
host–guest interaction.

WTPT.2 is a weighted path descriptor equal to molecular 
ID/ number of atoms. The molecular ID is based on Randic’s 

B̂FE = −2.2378(WTPT.2)−1.1727(VAdjMat) + 0.00028(MDEC.23)

−0.0122(MDEC.33)−1.5875(FMF) + 5.1811.

molecular IDs (Randic 1984). Molecules with longer chains 
and more ring structures would have larger molecular IDs, 
but their number of atoms would also increase. So, the value 

of WTPT.2 is more or less steady. VAdjMa is the vertex 
adjacency information magnitude with the formula 1 + log2 
(m), wherein m is equal to the number of heavy–heavy 
bonds. A bond is considered a heavy–heavy bond if it is 
between two non-hydrogen atoms. Larger molecules would 
have a greater number of m, but this increase in m imparts 
a very slow increase in VAdjMat because of the logarithm 
function. MDEC.23 and MDEC. 33 are both based on the 
molecular distance edge (MDE) operators of Liu et  al. 
(1998). MDEC.23 calculates the MDE between all second-
ary and tertiary carbons, while MDEC.33 calculates the 
MDE between all tertiary carbons. Consequently, branched 

Table 3  Results of the external 
validation. References for the 
reported BFE: compounds 1–7 
(Farabi et al. 2020), compounds 
8–17 Khaerunnisa et al. 2020, 
compounds 18–30 Prasanth 
et al. 2020

CAS no. Compound name Reported BFE Predicted BFE Difference % error

1 154-23-4 Catechin − 7.24 − 7.19 − 0.05 0.68
2 39728-80-8 Zingerol − 5.40 − 5.52 0.12 2.19
3 539-86-6 Allicin − 4.03 − 3.65 − 0.38 9.41
4 520-18-3 Kaempferol − 8.58 − 7.21 − 1.37 16.01
5 480-41-1 Naringenin − 7.89 − 7.17 − 0.72 9.10
6 22608-11-3 Demethoxycurcumin − 7.99 − 7.21 − 0.78 9.73
7 4670-05-7 Theaflavin − 9.00 − 8.77 − 0.23 2.51
8 480-10-4 Astragalin − 8.80 − 7.99 − 0.81 9.25
9 21637-25-2 Isoquercitrin − 8.70 − 7.97 − 0.73 8.40
10 482-36-0 Hyperoside − 8.60 − 8.02 − 0.58 6.73
11 81-27-6 Sennoside A − 8.30 − 8.80 0.50 6.08
12 1415-73-2 Aloin A − 8.20 − 7.89 − 0.31 3.76
13 38953-85-4 Isovitexin − 8.00 − 7.93 − 0.07 0.85
14 3463-92-1 Carpaine − 7.90 − 8.04 0.14 1.80
15 529-92-0 Cusparine − 7.90 − 7.70 − 0.20 2.58
16 54983-96-9 Piperitol − 7.80 − 8.00 0.20 2.54
17 520-36-5 Kaempferol − 7.80 − 7.17 − 0.63 8.05
18 6750-60-3 Spathulenol − 6.60 − 6.54 − 0.06 0.85
19 83-48-7 Stigmasterol − 7.10 − 7.46 0.36 5.03
20 925213-53-2 Subamolide A − 5.50 − 6.11 0.61 11.05
21 530-57-4 Syringic_acid − 5.50 − 5.53 0.03 0.58
22 21453-69-0 Lirioresinol B − 7.40 − 7.75 0.35 4.74
23 12798-57-1 Procyanidin-B5 − 7.70 − 8.81 1.11 14.41
24 607-80-7 Sesamin − 7.60 − 8.32 0.72 9.54
25 485-19-8 Reticuline − 7.00 − 7.27 0.27 3.86
26 65230-04-8 Anhydrocinnzeylanine − 6.60 − 7.16 0.56 8.56
27 523-80-8 Apiole − 5.40 − 6.25 0.85 15.78
28 499-75-2 Carvacrol − 5.30 − 5.27 − 0.03 0.60
29 87-44-5 Caryophyllene − 6.20 − 6.33 0.13 2.15
30 23953-63-1 Carpacin − 5.40 − 6.16 0.76 14.04
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and substituted molecules would have a higher MDEC. 
FMF is a ratio of the heavy atoms in the Murcko framework 
and the heavy atoms in the molecular structure (Yang et al. 
2010). The Murcko framework is composed of ring struc-
tures and linker atoms connecting cyclic moieties with each 
other (Bemis and Murcko 1996). Aliphatic molecules do not 
have a Murcko framework so their FMF is 0. Cyclic and aro-
matic structures are then favorable structures to increase the 
FMF. Therefore, based on the interpretations of the model’s 
molecular descriptors, large hydrophobic molecules, specifi-
cally substituted cyclic molecules would have a high affinity 
with the SARS-CoV-2 main protease (PDBID: 6LU7).

This model trend was consistent with the properties of 
the SARS-CoV-2 main protease active site. It is composed 
of four subsites: S1, S1′, S2, and S4 (Yang et al. 2005). The 
S1 pocket is capable of both hydrogen bonding and accom-
modating bulky rings like lactam structures. S1’ houses 
a cysteine residue. S2 subsite is characterized as a deep 
hydrophobic pocket that can accommodate large residues. 
S4 is also a hydrophobic pocket but smaller than S2. Thus, 
hydrophobic interactions at the active site play a significant 
role in binding, explaining why the model predicted a more 
favorable binding with cyclic substituted molecules.

3.5  External validation

The performance of the MLR model was further assessed by 
conducting external validation, as summarized in Table 3. 
The model performed well, wherein the difference between 

the actual and predicted values ranged from − 1.37 to 1.11; 
while the percentage errors were between 0.58 and 16.01%. 
As shown in Fig. 3, the bulk of the externally validated data 
had only ± 0.75 difference from the actual BFE. The results 
of the external validation highlighted the robustness of the 
formulated model, since the compounds used for validation 
came from three independent studies (Farabi et al. 2020; 
Khaerunnisa et al. 2020; Prasanth et al. 2020), with differ-
ences in the manner in which the docking simulations were 
conducted.

A QSAR model for SARS-CoV-2 main protease inhibi-
tor, built on 40 compounds, reported that the topological 
surface area, molecular weight, XLogP, hydrogen bond 
donors, hydrogen bond acceptors descriptors were needed 
to create the model that exhibited r2 test = 0.753 (Islam et al. 
2020). Another model, constructed from 25 compounds, uti-
lized solute hydrogen bond acidity, mordred autocorrela-
tion, molecular distance edge, and two fingerprint descrip-
tors: unsaturated non-aromatic heteroatom-containing ring 
size 6, and O=C–C–C–C–C–N, this model had r2 = 0.944 
(Amin et al. 2021). Thus, the presented regression model 
introduces new variables that can predict the binding inter-
action of compounds with the viral enzyme. Furthermore, 
the multiple linear regression model built in this study was 
formulated using at least 200 compounds. Some of the rel-
evant MLR models have so far utilized 100 compounds or 
less (Amin et al. 2021; De et al. 2020; Ghosh et al. 2021; 
Kumar and Roy 2020). Deep learning and other machine 
learning models can screen bigger number of compounds, 

Fig. 3  Distribution of dif-
ferences between actual and 
predicted BFE
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but they lack interpretability, which highlights the simplic-
ity, transparency and interpretability of MLR models. The 
key point of the MLR model is the formulated equation of 
the line, which contains all the information needed to predict 
and explain the results. The MLR model therefore has trans-
parency in the model building steps and interpretability of 
the results, both of which are not present in black box mod-
els. The parsimonious machine learning model built in this 
study is targeted towards chemical product design (CPD) 
and computer-aided molecular design (CAMD) applications. 
The model can be used to guide attempts on molecular modi-
fications that can increase the binding affinity of lead com-
pounds toward the viral enzyme. In addition, the formulated 
regression model may catalyze the design of a process for 
the commercial-scale synthesis of identified compounds.

4  Conclusion

A multiple linear regression that can accurately pre-
dict the binding free energies of compounds towards the 
SARS-CoV-2 main protease was presented. During the 
model building process, the performances of MLR, SVR, 
CART, and ANN were compared. The one with the best 
performance was the MLR model with an r2 test = 0.81 
and RMSE test = 0.43. The regression model utilized five 
topological descriptors, WTPT.2, VAdjMat, MDEC.23, 
MDEC.33, and FMF, and was thoroughly validated. Based 
on the model, large, substituted, cyclic molecules have high 
affinity towards the SARS-CoV-2 main protease. Moreover, 
since the outcome of the model is an estimate of the bind-
ing free energy, systematic molecular modifications can be 
carried out to increase the affinity of the candidate com-
pounds to the target protein. The parsimony and reliability 
of the formulated regression model can potentially acceler-
ate the discovery and development of protease inhibitors.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13721- 021- 00326-2.
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