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Abstract

The analysis of pathological images, such as cell counting and nuclear morphological mea-

surement, is an essential part in clinical histopathology researches. Due to the diversity of

uncertain cell boundaries after staining, automated nuclei segmentation of Hematoxylin-

Eosin (HE) stained pathological images remains challenging. Although better performances

could be achieved than most of classic image processing methods do, manual labeling is

still necessary in a majority of current machine learning based segmentation strategies,

which restricts further improvements of efficiency and accuracy. Aiming at the requirements

of stable and efficient high-throughput pathological image analysis, an automated Feature

Global Delivery Connection Network (FGDC-net) is proposed for nuclei segmentation of HE

stained images. Firstly, training sample patches and their corresponding asymmetric labels

are automatically generated based on a Full Mixup strategy from RGB to HSV color space.

Secondly, in order to add connections between adjacent layers and achieve the purpose of

feature selection, FGDC module is designed by removing the jumping connections between

codecs commonly used in UNet-based image segmentation networks, which learns the rela-

tionships between channels in each layer and pass information selectively. Finally, a

dynamic training strategy based on mixed loss is used to increase the generalization capa-

bility of the model by flexible epochs. The proposed improvements were verified by the abla-

tion experiments on multiple open databases and own clinical meningioma dataset.

Experimental results on multiple datasets showed that FGDC-net could effectively improve

the segmentation performances of HE stained pathological images without manual interven-

tions, and provide valuable references for clinical pathological analysis.
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Introduction

As one of the golden standards in clinic, analysis of stained tissue section images plays an

important role in histopathological diagnosis [1]. Hematoxylin-Eosin (HE) staining is the

most commonly used techniques in dealing with pathological paraffin sections, especially in

analysis of tumor tissue microscopic images [1, 2], in which the nucleus is stained hyacinthine

by alkaline hematoxylin, while the cytoplasm is stained red by acidic eosin. As the characteris-

tic changes of normal cells after cancerization are mostly reflected in nuclei, the statistical

results of the number, size and morphology of nuclei and other indicators can be used for can-

cer grading [3], which is critical for the formulation of treatment plans for patients [4].

In most of pathological image processing workflows, cell segmentation and quantification

are necessary steps for precise cell structures and distributions, and eventually quantify statisti-

cal results for final identification [5]. However, HE stained images always have no obvious

color differences or clear borders between different parts of numerous cells, which causes diffi-

culties in manual or automated pathological image analysis in practice [6]. Meanwhile, colors

of HE stained images may have differences between various acquisition conditions such as

time, light and contrast [7], and a variety of diseases, organs, positions, and stages also have

quite different cell morphologies in acquired pathological images [8]. Therefore, construction

of the common and representative feature space of cell morphologies in an efficient way

becomes the main concern of automated HE stained image segmentation.

As shown in Fig 1, the HE-stained pathological images vary a lot in terms of organs and

imaging qualities, which need a general automatic segmentation strategy in practice. Many

previous cell segmentations methods were based on traditional image processing, such as

threshold determination [10], contour evolution model construction [11], and seed point

marking [12], which located cell boundaries by iterative operation of pre-set features to certain

terminal conditions. With the development of machine learning, classic learning-based meth-

ods such as K-means clustering [13], fuzzy C-means clustering [14] and Support Vector

Machine (SVM) [15] have been applied to image segmentation, in which pixels or small

patches are classified into different categories. Due to the diversity of nuclear morphology, the

inhomogeneity of staining and the variability of dye quality, machine learning based methods

always rely on well-designed local feature sets, and are difficult to include high representative

features and lack of neighborhood receptive fields. Meanwhile, manual labeling is essential in

supervised learning methods, which cannot meet efficiency requirements in clinic, and for

unsupervised learning, the stability of automatic pixelwise samples selection is still a challeng-

ing step in training due to diversities discussed above.

Fig 1. Sample HE stained images from different organs in MoNuSeg [9] dataset, in which high quality stained

images are shown in the first row, and the second row contains low quality samples.

https://doi.org/10.1371/journal.pone.0273682.g001
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With its high precision and automatic extraction of deep features, Convolutional Neural

Networks (CNNs) are widely used in current image segmentation including pathological anal-

ysis. Based on the main structure of CNN, Fully Convolutional Network (FCN) [16] uses

deconvolution layers to upsample the convolution feature image, and restore it to the same

size of the input image to predict the category of each pixel and complete the segmentation. As

the improvement of FCN, UNet [17] includes more high resolution and classification features

produced in convolutions as supplements to the upsampling directly, which highly improves

the resolutions in the image restoration stage. To enhance the feature expression abilities of

pathological image, researchers proposed multiple ways including the introduction of residual

module, a multi-scale feature extraction module, attention mechanism, and the multi-model

combination way. Li et al. [18] added a cascade residual fusion module in the decoder stage of

UNet to improve detection performance in the decoding process. Zeng et al. [19] proposed

RIC-UNET by adding optimization methods such as residual module, multi-scale perception

and attention mechanism to segment the nucleus more accurately. Pan et al. [20] proposed a

cavity depth separable convolution AS-UNet, in which the cavity convolution module was

combined by cascade and parallelism, which could extract and combine multi-scale features

and had better perception ability for larger or smaller nuclei. Wan et al. [21] used an improved

vacuum-pyramid pooling UNet (ASPP-UNet) to capture multi-scale nuclear features and

obtain their context information without reducing the spatial resolution of feature maps. Saha

et al. [22] also added spatial pyramid pooling and trapezoidal long and short-term memory

modules into UNet network to obtain Her2Net to retain more encoder information in

decoder.

Some researchers used multi-branching and multi-model stacking methods to improve

nuclear segmentation performance based on UNet structure. Navid et al. [23] proposed a spa-

tial awareness network (SpaNet) to capture spatial information in a multi-scale manner. Dou-

ble-headed and single-headed structures were designed to predict the nucleus pixel and its

centroid. Zhao et al. [24] decomposed HE stained images and constructed a triple UNet net-

work with RGB branches, HE branches and segmentation branches. The features extracted

from RGB and HE branches were then fused to the segmentation branch to learn better repre-

sentations. Kang et al. [25] designed a two-stage learning framework by stacking two UNets,

and added nuclear boundary prediction to transform the original binary segmentation task

into a two-step task, in which the first step was to estimate the kernel and its rough boundary,

and the second step was to output the final fine segmentation result. In addition, Pan et al.

[26], in the stage of training set making, adopted the sparse reconstruction method to initially

remove the background and highlight the nuclear region.

Considering that the nucleus is stained blue and purple, the cytoplasm is stained red, and

the unstained Extra Cellular Space (ECS) appears white, the difficulty of pathological image

segmentation lies not in the recognition of the boundary between the cell body and the ECS,

but in the recognition of the boundary between the nucleus and the cytoplasm. Therefore, the

segmentation model design should be optimized to fully consider the recognition of the

nucleus boundaries. In addition, the convolution is difficult to obtain global features of the

input image due to its limited receptive field, and the relationship between feature channels of

the same layer cannot be obtained due to its singleness and locality. Therefore, proper exten-

sion of receptive fields and information transfer between adjacent layers needs to be consid-

ered in designing network architectures. In this paper, we propose a fully automated

processing pipeline to analyze HE stained images without human intervention. The main con-

tribution of our unsupervised approach includes a Full Mixup training sample generation

strategy based on asymmetric labels and HSV color transform, a dynamic training workflow

and a newly designed FGDC network architecture with proper extension of receptive fields
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and information transfer between adjacent layers, which identifies the boundaries between the

nucleus and cytoplasm with high accuracy and effectiveness. The rest of the paper is organized

as follows. In Section 2, we firstly describe the HE stained images from separate sources, and

then the training sample and label generation, modules design, and dynamic training of

FGDC-net. In Section 3, comparative experimental results are presented to show the improve-

ments of the proposed methods which covers both quantitative and qualitative evaluations on

multiple datasets. Finally, conclusions and further improvements are discussed in the last

Section.

Materials and methods

Public and own clinical datasets

To deal with the diversities of HE stained images more efficiently and robustly, three datasets

were used in the training and testing of the proposed framework, which include open two

multi-organ datasets of Kumar [8] and MoNuSeg [9], and HE stained images of meningioma

from our clinical research [27].

Kumar and MoNuSeg datasets. Two datasets were publicly released for testing algo-

rithms that accurately segment nuclei, in which the Kumar dataset consisted 30 HE stained

pathological images acquired from 18 different hospitals, and the MoNuSeg dataset was down-

loaded from Medical Image Computing and Computer Assisted Intervention (MICCAI) 2018

Multi-Organ Pathological Image Nuclear Segmentation Challenge. Distribution of each organ

and division in training of the two datasets are shown in Table 1.

Own clinical meningiomas dataset. As the second highest brain cancer risk, the overall

incidence of meningioma increased by 4.6% annually in 2004–2009, and remained stable from

then [28]. World Health Organization (WHO) provides a three-point overall cancer risk scale

including (I) benign, (II) atypic, and (III) anaplastic or malignant meningioma, in which both

the level II and III are collectively known as high-grade meningioma [29]. The tissue samples

collected in the experiments were histological sections of high grade and low grade meningio-

mas, were all from clinical cases of Fujian Medical University Union Hospital (Ethical approval

No. 2019KJTYL024). In the dyeing image acquisition stage, the macroscopic tissue sections

were segmented to obtain microscopic tissue sections, and HE staining was performed using

standard histological methods.

In order to ensure the comprehensiveness and diversity of the original images, images of

multiple cases from clinic were included for the training process. First, there were totally 60

cases of meningiomas blindly chosen on a patient level, in which 30 cases are from high-grade

and other 30 cases are low-grade. Second, one original image was randomly selected from each

case, so we had 60 original images in our own dataset. Then, 10 images from each grade of

cases were randomly selected as the test set, and there were totally 20 images for test. Finally,

Table 1. Sample images from multiple datasets for image segmentation.

Breast Liver Kidney Prostate Bladder Colon Stomach Brain Lung Meningioma

High Low

Kumar Train 4 4 4 4 0 0 0 - - - -

Test 2 2 2 2 2 2 2 - - - -

MoNuSeg Train 6 6 6 6 2 2 2 0 0 - -

Test 2 0 3 2 2 1 0 2 2 - -

Ours Train - - - - - - - - - 20 20

Test - - - - - - - - - 10 10

https://doi.org/10.1371/journal.pone.0273682.t001
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the remaining 40 images including half high-grade and half low-grade images formed the

training set. The ratio between the training and test datasets is 2:1, and the image quantity dis-

tribution of the final dataset is also shown in Table 1.

Golden standards generation of labeling. In practice, one 1536×2048 meningioma path-

ological image averagely contains about 800 nuclei that need to be labeled, so a total of about

16,000 nuclei needs to be labeled in 20 training images. In clinical medical analysis, MaZda

[30] software (V4.6) is often used to label nuclei inside the Regions of Interest (ROI) in patho-

logical images. After labeling, the labeling results were sent to pathologist to evaluate the qual-

ity of labeling and feedback those unreasonable labeling for correction. The correction-

feedback process continued until the error rate of mistaken labeled nuclear pixels in each

image was less than 5%, which was an empirical value suggested by our pathologists and made

the labeling results dependable as the golden standards for the following training and

validations.

Automatic generation of training sample patches and labels

Binary image label maps are essential for the training of image segmentation networks, in

which small patches containing nuclei are randomly selected from original images to generate

their corresponding pseudo labels. In our previous research, we have proposed a reliable train-

ing sample generation method in an unsupervised manner based on K-means clustering

results, and a plain Full Mixup strategy to enhance the training sets by adding up two patches

and their label maps [27].

Construction of patches and corresponding pseudo labels. Nevertheless, considering

that the image patches of the training sample is too small to have enough local receptive fields,

it is difficult to determine the category of pixels when a selected image patch belongs to the

same type of cell structure. Simply increasing the size of the patches will also greatly reduce the

number of samples that can be selected. To solve this, the receptive field of training sample

patches are enlarged by using the padding operation based on the original size, and the size of

label map remains unchanged.

As shown in Fig 2, eligible label patches are firstly selected, which are marked as green

boxes in the binary pseudo label map generated by clustering of original image pixels, where

Fig 2. Construction of sample patches and corresponding pseudo labels for training.

https://doi.org/10.1371/journal.pone.0273682.g002
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three colors in the clustering map represent different tissue structures including nuclei, cyto-

plasm and ECS. Then the expanded image blocks after padding are captured as training sam-

ples, which are marked as red boxes in the original image. The padding factor is set as N
2

based

on the label patch size of N×N, and there is a certain size difference between the training sam-

ple and its label patch. Since the training process is guided by the labels, the asymmetric model

of FGDC-net focuses its attention on the central regions of the sample corresponding to its

label, which plays a certain effect similar to the attention mechanism in effect.

Mixup of image patches in HSV color spaces. Since the training sets we constructed are

composed of the most well-stained nuclei from different images, the lack of lightly stained

nuclei results in weak generalization ability in dealing with different source datasets. In our

previous work, a plain Full Mixup strategy was used to solve this by merging images with dif-

ferent weights and directly superimposes the labels of the images.

However, when the images come from different hospitals with different dyeing conditions,

a large variation of images usually cause big differences between the mixed images and normal

pathological images. For example, images of column one and two are from different sources

and the mixed image has very light blue nuclei in the zoomed ROI of mixed image patch in

column three, which may cause missing detection in the following segmentation. Common

normalization cannot solve this problem as shown in the right-most histograms of blue pixels

of nuclei, which have quite similar mixing result as the originals.

HSV color space [31] is composed according to the intuitive features of colors, Hue, Satura-

tion and Value. Unlike three channels in RGB color space, HSV only uses Hue to control the

variety of colors. Therefore, the range of color distribution changes in HSV space is much

smaller than that in RGB space after performing the mixing operation. After normalization,

the RGB images are firstly converted into HSV space as illustrated in the third row and then

the blended HSV image is transformed back to RGB as the zoomed image in the same row

shows. As illustrated in the distribution histograms of blue color of nuclei, more concentrated

distribution of blue nuclei pixels can be found in mixed HSV-based image, suggesting the

HSV-based Full Mixup generates high quality image patches for training the network. Com-

parisons between different mixing strategies are shown in Fig 3.

Structure of feature global Delivery Connection Network

After the generation of training samples and labels, the segmentation network structure is also

improved with the idea of attention mechanism. As shown in Fig 4, an asymmetric segmenta-

tion network named FGDC-net is proposed based on the size of automatically captured image

Fig 3. Comparison between mixing based on RGB and HSV space.

https://doi.org/10.1371/journal.pone.0273682.g003
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sample patches of training set. As discussed above, a training patch is four times larger than its

corresponding label map. Therefore, by getting through FGDC-net, the output of segmenta-

tion result only contains the central region of the input image patch, which has the same size

as its corresponding pseudo label. The sizes of input (amber) and output (green) layers of

FGDC-net are not equal, so as to increase the local receptive field of the central region to be

segmented. In addition, FGDC-net abandons the jumping connections between codecs com-

monly used in UNet structures and uses FGDC modules instead to learn the relationships

between feature channels at each layer and pass information selectively, which are illustrated

as arrows of information flows in Fig 4.

FGDC module. The convolution operation is difficult to obtain the global features of the

image because of its limited receptive field, and the relationship between feature channels of

the same layer cannot be obtained due to its singleness and locality. In order to compensate for

the disadvantages of convolution operation and increase the connections between adjacent

layers, FGDC module is designed to use sigmoid-like gating to assign weights to intra-layer

feature channels of each layer to achieve feature screening, and Fig 5 illustrate the implementa-

tion details.

In Fig 5, three continuous FGDC modules in a fragment of the network are marked as dark

and light blue blocks. Assuming Fl is the input feature map with size of, and Sl is the output of

Fig 4. Workflow of image segmentation through FGDC-net.

https://doi.org/10.1371/journal.pone.0273682.g004

Fig 5. Information transmission flows in FGDC modules.

https://doi.org/10.1371/journal.pone.0273682.g005
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FGDC module in the l-th layer, the average pooling (AP) and input information of the l-th

layer il are calculated as below.

APc
l ¼

1

H �W

X
ðFcl ð:ÞÞ; c 2 Cl ð1Þ

il ¼ sðAPl � Kd þ bdÞ; d ¼ Cl ð2Þ

where Fcl and APcl are feature image and the average pooling of c-th channel in the l-th layer

respectively, so is the total average pooling of the whole l-th layer. � means convolution, Kd is a

1× 1 convolution kennel in which d is the number of kennels, b is the bias and σ is a sigmoid

activation function. The gating calculation based on Sl−1 transmitted from the l−1th to l-th

layer is as follows.

gl ¼ sðSl� 1 � Kd þ bdÞ; d ¼ 2Cl� 1 ð3Þ

It needs to be informed that d = 2Cl−1 in encoding, and d ¼ 1

2
Cl� 1 in decoding, and the out-

put of l-th layer Sl is 1 × 1 × Cl in size, which is the product of gl and il after gating.

Sl ¼ gl � il ð4Þ

As the information transmission flows show, FGDC module firstly conducts gated mapping

on the output of the upper layer Sl−1 to obtain the weight of the dimension matching with cur-

rent layer while screening the features. Secondly, the feature map Fl of the local layer is inte-

grated and mapped to obtain the information between neighborhood layers il. Then, the upper

layer information and the local layer information are integrated as the input into ResBlock

module, which contains feature weights of the l-th layer Sl, and is used as the control informa-

tion of the feature results obtained by convolution of this layer.

ResBlock module. As shown in Fig 6, the ResBlock module [32] integrates output infor-

mation Sl of FGDC module with feature map Fl extracted from the l-th layer. Calculations of

residuals are conducted, where represents the residual result and is the output of the ResBlock

module.

F̂l ¼ K 00d � ReLUðFl � K
0

d þ b
0
dÞ þ b

0
d; d ¼ Cl ð5Þ

~Fl ¼ ReLUðF̂l � Sl þ FlÞ ð6Þ

It should be noted that K 0d and K 00d are different convolution kernels with size of 3×3, which

are used in two different convolution processes in Eq (5).

Optimization of training strategy

Except for above improvements in build the training set and the network structure, the train-

ing strategy of the proposed network is also optimized in two main aspects, mixed loss func-

tions and dynamic training with flexible epochs.

Combined loss functions. In order to be suitable for those smaller intact or partial nuclei

in the training sets of image patches, the Binary Cross Entropy (BCE) Loss and Dice loss func-

tions are combined as the optimization objective, which are defined as follows.

Loss ¼ meanðl1; l2; . . . ; lNÞ ð7Þ

where

ln ¼
BCElossn þ Dicelossn

2
ð8Þ
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in which N is the total batch size and n is a n-th batch in the training phase, ln is one training

sample in each batch, yn is its corresponding label, and xn is the predicted result of category

belonging to, which is within the range between 0 and 1 as non-nuclei or nuclei areas.

Dynamic training. To further enhance the generalization ability of the model, a dynamic

training strategy with flexible epoch was proposed previously in our research, in which the

algorithm dynamically modified the probability of Full Mixup by using the feedback of both

Jaccard Similarity (JS) and the Dice Coefficient (DC) indexes of the validation set, and the

number of epochs was determined by the increase of the probability of Full Mixup.

In the dynamic training, if the prediction ability of the model for unmixed images is higher

than that of mixed images, the proportion of mixed images in the training set will be enhanced

by increasing the mixing probability, and vice versa. Then, due to the randomness of the

mixed image, the probability of Full Mixup gradually increases to a certain threshold and the

pre-defined epoch of training will be interrupted, which makes the model adaptively allocate

the number of mixed samples according to the validation set index. The probability-based

adjustment learns the features of both mixed and unmixed image patches, and makes the

model more flexible to the diversity of inputs pathological images acquired from various

conditions.

Results and discussions

Building of the training datasets

To enhance the generalization ability of the proposed network, diversified training and testing

datasets from multiple resources were built and divided. For Kumar dataset, training set and

test set were separated according to literature [8]. For MoNuSeg dataset, the original dataset

division of the segmentation challenge was followed [9]. We also splitted the training set and

testing set in a 2:1 fashion for own clinical Meningioma dataset, and the details are shown in

Table 2.

Fig 6. Details of ResBlock module.

https://doi.org/10.1371/journal.pone.0273682.g006
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In order to minimize the influence of uneven dyeing and light sources, and obtain more

available training samples automatically, we randomly captured 32 sub-graphs with the size of

500×500 from each original image for the training sample selection, and allocated training sets

and verification sets with the ratio of 2:1. The numbers of final selected samples from each

dataset are shown in Table 3.

Ablation experiments

To verify the effectiveness of model improvements and optimizations in the network training,

the ablation experiments mainly included two aspects, comparisons between a batch of com-

mon segmentation methods and different levels of training optimizations. In the aspect of

model structure, two main improvements need to be verified. First, the feasibility of feature

global transitive connection of FGDC module was compared with jump connection of Res-

Block module. Second, the effectiveness of training sample padding was verified. For the

improvements in the training, there are three main optimization designs, Full Mixup in HSV

space, mixed loss, and dynamic training strategy. Ablation experiments were firstly performed

on the Meningioma dataset, and Table 4 shows the respective experimental results based on

multiple model structures.

Three commonly used image segmentation evaluation indicators are applied in the experi-

ments for the performance evaluation, including the pixel-level F1-score which is the general

evaluation of both precision and sensitivity. True Positive (TP), False Positive (FP) and False

Negative (FN) of are determined by whether pixels are classified to the right or wrong pre-

dicted categories. Meanwhile, Intersection-over-Union (IoU) which is the same as JS discussed

above, and Aggregated Jaccard Index (AJI) which is based on the connected domain and more

Table 2. Division of original images for training and testing datasets.

Size Training Testing

Kumar 1000×1000 16 14

MoNuSeg 1000×1000 30 14

Meningioma 1536×2048 40 20

https://doi.org/10.1371/journal.pone.0273682.t002

Table 3. Division of original images for training and testing datasets.

Total Training Validation Testing

Kumar 12,000+ 8,000+ 4,000+ 23534

MoNuSeg 14,000+ 10,000+ 4,000+ 23534

Meningioma 17,000+ 11,000+ 5,000+ 110500

https://doi.org/10.1371/journal.pone.0273682.t003

Table 4. Ablation experimental results of multiple network structures.

Model Patch size AJI Pixel-level F1

Validation of global transfer connection 3-layer UNet 48×48 0.4570 0.8237

3-layer FGDC-net 48×48 0.4886 0.8123

Validation of larger sight 4-layer UNet 48×48 0.4732 0.7989

FGDC-net 96×96 0.5058 0.8169

https://doi.org/10.1371/journal.pone.0273682.t004
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precise than IoU are also included. The definitions of the proposed indexes are listed below.

F1 ¼
2TP

2TPþ FT þ FN
ð9Þ

AJI ¼
PN

i¼1
jGi \ SMj j

PN
i¼1
jGi [ SMj j þ

P
F2U jSFj

ð10Þ

As can be seen from Table 4, when the number of layers is the same as that of UNet,

FGDC-net structure is superior to UNet structure in AJI index, while pixel-level F1 is only

slightly different. Based on the definition of AJI, it shows that FGDC-net structure effectively

suppresses FP value, so as to minimize the occurrence of falsely predicted areas in segmenta-

tion results. In addition, although pixel-level F1 does not change significantly after the padding

of training images, the AJI index is further improved by using FGDC-net. The two major

improvements of the network including padding of larger training patches and introducing

FGDC modules bring positive effects on the segmentation ability of the model as shown in the

last row of Table 4.

In order to evaluate the effectiveness of three major optimizations in the network training,

the ablation experiments based on FGDC-net model is shown in Table 5, in which BCELoss is

applied as the loss function when mixing loss is not used. Similarly, when the dynamic training

was not adopted, the training period epoch was set to a fixed number of 400 and the mixed

probability was set as 0.5.

As shown in Table 5, after HSV Mixup operation was performed on the training samples,

the performance of the model was significantly improved, indicating the HSV Mixup opera-

tion helps the network to better identify the nuclei with lighter staining, thus greatly improves

the segmentation accuracy. Besides, since the participation of DiceLoss in the mixing loss, the

attention mechanism of the proposed model is enhanced to detect and predict smaller nuclei,

which improves the segmentation performances including AJI and F1 comparing to simply

using BCELoss. The last row shows that dynamic training strategies further improve the gener-

alization ability of the model with flexible probabilities of Full Mixup of training patches and

the related changing of epochs.

Comparison of results on open datasets

The optimized algorithm with FGDC-net structure and improved training strategies was fur-

ther verified on the open-source datasets of Kumar and MoNuSeg. A batch of classic methods

based on different machine learning strategies including supervised learning, weakly super-

vised learning, and unsupervised learning methods from literatures were included in Tables 6

and 7 respectively.

Table 6 includes several classical supervised learning models, as well as the results of weakly

supervised and unsupervised learning models, and most of current weakly supervised and

Table 5. Ablation experimental results of multiple training strategies.

HSV Mixup Mixed loss Dynamic training AJI Pixel-level F1

0.4036 0.7094
p

0.5093 0.8073
p p

0.5258 0.8211
p p p

0.5675 0.8462

https://doi.org/10.1371/journal.pone.0273682.t005
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unsupervised learning models have lower performances than supervised deep learning models.

However, due to the scarcity of labeled of segmented pathological image samples, weakly

supervised and unsupervised learning models are the inevitable trend of network develop-

ment. For our algorithm on Kumar dataset, AJI reaches 52.38%, which was better than the

previous best CNN3 50.83%. F1 reached 76.55%, not much different from FCN,

MASK-RCNN and CNN3. Generally, the proposed model belongs to the category of unsuper-

vised learning, our method achieves best overall performances except for Pixel-level F1 index,

which is slightly lower than that of FCN model. Based on the proposed algorithm, the sample

segmentation results of different organs from all three datasets are shown in Fig 7, where the

original image is shown in the top left of each organ block, and three local ROIs are randomly

selected as orange, blue and yellow windows from the original image, and the last column in

each organ block shows four zoomed areas with detailed nuclei boundaries marked as green

lines.

The comparison results of MoNuSeg dataset between multiple methods are shown in

Table 7. Similar to that of Table 6, the only difference is there is leak of literature on unsuper-

vised learning methods in MoNuSeg dataset at present. For our method on MoNuSeg dataset,

the pixel-level F1 index reaches 77.15%, which is more than that of classic FCN, DB-UNet, and

SegNet. Another segmentation IoU index of our algorithm is also better than the previous best

DB-UNet by more than two percents. The results show that FGDC-Net could effectively

improve the segmentation effect of HE staining pathological images, and Fig 7 shows the par-

tial segmentation results.

Table 6. Comparison experimental results on Kumar dataset.

Method AJI Pixel-level F1 IoU

Supervised learning FCN [33] 0.3556 0.7809 ——

Mask-Rcnn [33] 0.5002 0.7470 ——

CNN3 [8] 0.5083 0.7623 ——

Weakly supervised learning Qu et al.(5%) [34] 0.4941 0.7540 ——

Pseudo EdgeNet [35] —— —— 0.6136

Unsupervised learning SIFA [36] 0.3924 0.6880 ——

CyCADA [37] 0.4447 0.7220 ——

Mihir et al. [38] 0.5354 0.7477 ——

DDMRL [39] 0.4860 0.7109 ——

Ours 0.5238 0.7655 0.6202

https://doi.org/10.1371/journal.pone.0273682.t006

Table 7. Comparison experimental results on MoNuSeg dataset.

Method AJI Pixel-level F1 IoU

Supervised learning FCN [40] 0.3510 0.7460 0.4935

UNet++ [41] —— 0.7453 0.5892

deeplabv3+ [42] —— 0.7185 0.5619

DB-UNet [43] —— 0.7421 0.6016

SegNet [44] —— 0.7526 ——

Weakly supervised learning BoundingBox [45] —— 0.7372 0.5839

Self-loop(20%) [46] —— 0.7711 ——

SSL(10%) [47] 0.5501 —— ——

Ours 0.5512 0.7715 0.6297

https://doi.org/10.1371/journal.pone.0273682.t007
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Conclusions

In this paper, a fully automated pipeline based on Feature Global Delivery Connection Net-

work to locate precise nuclear boundaries in HE-stained pathological images is proposed. To

achieve the deep learning-based image segmentation in a fully automatic way, the framework

is further enhanced in each stage of the pipeline, including the automatic training sample gen-

eration, the new segmentation module structural design, and a flexible training strategy. First,

the unsupervised training sample selection method generates extended image patches and

their corresponding binary label maps, in which the certain size difference between original

patches and their labels leads to the asymmetric model design of FGDC-net, and improves the

segmentation performance by the attention mechanism. Meanwhile, by mixup of image

patches in HSV color spaces, higher quality image patches with better nuclei pixels distribu-

tions are generated for the network training, which further improves the effectiveness of the

unsupervised deep learning with higher efficiency than the supervised methods. Second, the

proposed FGDC module abandons the jumping connections between codecs, which achieves

feature selection by learning the relationships between feature channels at each layer and pass

information selectively. The asymmetric design of FGDC-net also forms an attention mecha-

nism by increasing the local receptive field of the central region to be segmented. Third, the

probability of mixing different image patches for the training is constantly adjusted by the

combination of both BCE and Dice loss functions, and the epoch of training is also affected.

Fig 7. Samples segmentation results of multiple organs from three datasets.

https://doi.org/10.1371/journal.pone.0273682.g007
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These dynamic training strategies fully consider both mixed and unmixed samples, and further

improve the generalization ability of the model.

Comparing to existing state-of-the-art supervised, weakly supervised and unsupervised

learning methods dealing with pathological image segmentation, the proposed method shows

better overall performances considering both efficiency and accuracy. Our unsupervised seg-

mentation algorithm does not require human participation in constructing the training set,

replacing the most time- and labor-intensive outlining and labeling parts of traditional deep

learning, and significantly improving the efficiency of image analysis by automatically generat-

ing reliable labels for model training. The optimized method improves the accuracy of the

unsupervised method to 0.7655 and 0.7715 on the publicly available datasets Kumar and MoN-

uSeg respectively. It is further demonstrated that the presented algorithm significantly

improves the training sample production efficiency while achieving a certain degree of

improvement in segmentation accuracy.

Meanwhile, the proposed FGDC-net is designed to optimize the information transfer

between codecs, which filters and integrates the shallow information and then control the

importance of each layer feature as a form of weight. The modules further selectively integrate

deep features and improves feature representation while preserving the information exchange

between encoder and decoder. Experimental results show that the proposed segmentation

method can achieve high segmentation accuracy on both clinical and public available datasets,

provide more accurate feature indicators related to pathological images for cancer analysis and

diagnosis, and will promote the application of automatic quantitative pathological image anal-

ysis technology in clinical aid diagnosis.

To further improve the effectiveness of deep learning on pathological image researches, it

will be an inevitable trend towards weak and unsupervised development because of the scarcity

of HE and other stained pathological images and labeling in deep learning. In the future, the

construction of fuzzy neural network model for medical image analysis will be further studied

to improve the efficiency of deep learning from both sample generation and network training.

While solving the problem of low efficiency and subjectivity of manual drawing, the network

optimization training is realized efficiently and controllable. Furthermore, the histological and

microscopic structure of individual cells was accurately measured according to the indepen-

dent cell boundary, and the correlation analysis between morphological characteristics and

pathological classification will be carried out to explore the cytological mechanism corre-

sponding to tumor lesions, and to establish a pathological imaging diagnosis and treatment

model reflecting pathological heterogeneity.
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