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ARTICLE INFO ABSTRACT

Background: Although many prognosis-predicting molecular scores for breast cancer have been developed, they
are applicable to only limited disease subtypes. We aimed to develop a novel prognostic score that is applicable to
a wider range of breast cancer patients.

Methods: We initially examined The Cancer Genome Atlas breast cancer cohort to identify potential prognosis-
related genes. We then performed a meta-analysis of 36 international breast cancer cohorts to validate such
genes. We trained artificial intelligence models (random forest and neural network) to predict prognosis pre-
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Brg?]/:t cancer cisely, and we finally validated our prediction with the log-rank test.
Prognosis Findings: We identified a comprehensive list of 184 prognosis-related genes, most of which have been not exten-

Scoring system sively studied to date. We then established a universal molecular prognostic score (mPS) that relies on the ex-
Al pression status of only 23 of these genes. The mPS system is almost universally applicable to breast cancer
Personalized medicine patients (log-rank P < 0.05) in a manner independent of platform (microarray or RNA sequencing).
Interpretation: The mPS system is simple and cost-effective to apply and yet is able to reveal previously unrecog-
nized heterogeneity among patient subpopulations in a platform-independent manner. The combination of mPS
and clinical stage stratifies prognosis even more precisely and should prove of value for avoidance of overtreat-
ment. In addition, the prognosis-related genes uncovered in this study are potential drug targets.
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1. Introduction

Cancer is the leading cause of death in developed countries, with
breast cancer being one of the most prevalent cancer types in women
[1]. Given the long latency and relatively young age of onset for breast
cancer, the ability to predict prognosis would be of great value with re-
gard to selection of the optimal therapy for each patient and avoidance
of overtreatment [2].

Methods to better stratify individuals at high risk for breast cancer
development have been a focus of research interest for more than a de-
cade [3]. Patients have been categorized on the basis of clinical informa-
tion, with sorting based on TNM (tumour, node, metastasis) stage and
the Nottingham Prognostic Index (NPI) [4] having been the most widely
accepted clinical classification systems for breast cancer. Although these
systems have proved to be of use, overall prognosis can differ markedly
even for patients at the same clinical stage [5-7].

Recent technological advances have allowed the development
of various molecular prognostic indicators, some of which are
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recommended in American Society of Clinical Oncology guidelines.
The Oncotype Dx 21-gene recurrence score (RS) is the best-validated
prognostic assay for breast cancer and estimates the risk of recurrence
within 10 years after diagnosis [8-10]. Other useful tools including
MammaPrint [11] have been summarized in a recent review [12]. How-
ever, these tools are not necessarily universal, given that they are re-
stricted to specific platforms and to subsets of patients based on
criteria such as hormone receptor, menopause and nodal status [13].
In addition, none of the tests developed to date are sufficiently fine-
tuned to predict overall survival (OS). These limitations are attributable,
at least in part, to the fact that no complete atlas of prognosis-related
genes has been available, with only limited numbers of genes having
been extensively investigated in this regard [14]. This situation high-
lights the need for unbiased comprehensive approaches to unveil and
list all prognosis-related molecules, with a next generation of molecular
profiles being anticipated as a result of the application of large-scale se-
quencing to tumour genomes and transcriptomes [15-17].

We have now developed a novel framework for the prediction of the
prognosis of breast cancer patients (Fig. 1). We first examined all
protein-coding genes for their relation to OS in breast cancer patients.
We then validated 184 prognosis-related genes by meta-analysis of
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Research in context
Evidence before this study

Cancer is the leading cause of death in developed countries, with
methods to better stratify susceptible individuals being actively
pursued. Recent technological advances have allowed us to de-
velop various molecular prognostic indicators for cancer. How-
ever, such indicators for breast cancer are not universal, given
that they are restricted to specific platforms and subsets of pa-
tients base on criteria such as hormone receptor, menopause and
nodal status.

Added value of this study

We integrated statistical and artificial intelligence (Al)—based
methods to develop mPS, a universal molecular prognostic score
that is able to precisely predict overall survival (OS) and disease
free survival of breast cancer patients on the basis of the binary ex-
pression status of only 23 genes.

Implications of all the available evidence

We have revealed all OS-related genes for breast cancer, with
these genes being potential drug targets. We also developed an
Al-based prognosis-prediction score that is applicable to almost
all subsets of breast cancer patients. We anticipate that this unbi-
ased approach will not only facilitate appropriate treatment selec-
tion for breast cancer patients but also provide molecular insight
into the complex nature of this disease.

one of the largest breast cancer cohorts ever assembled. We next ap-
plied artificial intelligence (Al)-based methods to develop mPS, a uni-
versal molecular prognostic score that is able to precisely predict OS
and disease free survival (DFS) of breast cancer patients on the basis
of the binary expression status of only 23 genes. Unlike existing tools,
mPS was found to be applicable to almost all breast cancer subtypes.
We also show that mPS can stratify patients even at the same clinical
stage, emphasizing the importance of the combination of mPS with con-
ventional staging systems.

2. Materials and methods
2.1. Study design and cohorts

We performed a retrospective integrated analysis of 40 independent
breast cancer cohorts, all published previously. The initial analysis was con-
ducted with The Cancer Genome Atlas (TCGA) breast cancer cohort (discov-
ery cohort) given that this is the best-characterized cohort available. We
then performed a meta-analysis (random effects model) to validate the
identified prognosis-related genes in a large combined multicenter valida-
tion cohort consisting of 36 international breast cancer data sets (Supple-
mentary Table S1) that include 5696 patients with early-stage (IA, IIA, IIB)
breast cancer (Fig. 1, Step 1), as previously described [18].

For establishment of the molecular prognostic score (mPS), we
adopted another breast cancer data set, the METABRIC (Molecular Tax-
onomy of Breast Cancer International Consortium) breast cancer cohort
[19,20]. We used half of the METABRIC cohort as the source of a training
set (METABRIC training cohort) for Al-based machine learning (Fig. 1,
Step 2) and neural network methods (Fig. 1, Step 3) [21] to develop mPS.

We then validated mPS with the other half of the METABRIC cohort
(METABRIC test cohort). We also used two independent breast cancer
cohorts (the microarray-based public data set GSE86166 [22] and the
RNA-sequencing-based ongoing data set GSE96058 [23]) for further
validation of mPS.

Inclusion criteria and clinicopathologic information for the various
cohorts are provided in the original papers. Integrative Cluster for the
METABRIC cohort and the 12-chemokine gene expression score for
GSE86166 were calculated by the providers and included in the public
data sets [19,22].

2.2. Gene list

For comprehensive analysis of all protein-coding genes, we obtained
a complete list of human genes from the HUGO Gene Nomenclature
Committee (HGNC).

2.3. Identification of 184 prognosis-related genes

We downloaded public data from cBioPortal with the CGDS-R pack-
age and Web APIs as well as from GEO (https://www.ncbi.nlm.nih.gov/
geo). For all human protein-coding genes, we first examined the poten-
tial utility of each gene as a prognostic marker with the TCGA breast
cancer discovery cohort, and we then validated potential markers by
meta-analysis with the 36 international breast cancer cohorts. We
adopted a preprocessing pipeline previously described [24]: For
Affymetrix data, we applied the MAS5 method [25] for normalization
before log, conversion for preprocessing, whereas non-Affymetrix
data were downloaded as they were deposited in the public databases.
For each cohort, we stratified the patients into two groups (high or low
expression level for a particular gene) and calculated an integrated haz-
ard ratio (HR) by meta-analysis (Fig. 1, Step 1). We defined a prognosis-
related gene as a gene whose 95% confidence interval (CI) for the HR
does not cross 1 after meta-analysis.

24. Generation and validation of the mPS scoring system

The combining of several machine learning approaches, so-called
“ensemble learning,” has been shown to improve prediction perfor-
mance. In particular, combination of an Al-based machine learning algo-
rithm known as random forest with a neural network was found to be
effective in many machine learning tasks, including those with tran-
scriptome data [26]. We therefore applied these two approaches to
build the mPS system (Supplementary Fig. S1). For the development
and subsequent validation of mPS, we used the METABRIC cohort.

We first applied data from half of the METABRIC cohort (training set,
n = 952) to a random forest classifier. Expression levels of the 184
newly identified prognosis-related genes (designated X) and the sur-
vival status [designated t, alive (0) or deceased (1)] at 10 years after di-
agnosis for each patient in the METABRIC training set (n = 952) were
thus entered into the random forest classifier. We generated this
model with the use of the Python-based scikit-learn library and with de-
fault parameters with the exception of n_estimators (= 500) and
max_depth (= 10). After stratified 10-fold cross validation (CV = 10),
we selected 23 genes on the basis of feature importance values (cutoff
= 0.0075). These 23 genes could account for OS of the patients, with
13 and 10 genes being associated with a poor OS if their expression
level is higher or lower than the median, respectively.

The expression status (X) of the 23 genes was first transformed to
“Gene_Score” (S) on the basis of the expression level (above or below
the median) and integrated HR for each gene with the following step
function:

Gene_Score matrix Gene_Expression

Low High
Integrated HR <1 1 0
>1 0 1

We then built and trained a dense neural network system (Supple-
mentary Fig. S1). In each hidden node, we exploited ReLU (rectified
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Step 2

Step 1

Complete Atlas
of Prognostic Genes

All protein-coding genes .

Kaplan-Meier plot

Discovery cohort:
TCGA breast cancer
Fig. 2, Fig. S2

Training set:
METABRIC

Feature Extraction
by Machine Learning

184 genes

Random forest

training cohort (n =952)

Step 3

Parameter Calculation with
Neural Network Approach

—p» 23 extracted genes

Definition of functions

] Gradient descent method
Fig. S1

Training set: N
METABRIC Fig. $1

Meta-analysis
Fig. 2

Validation cohort: Fig. S2
36 international cohorts (n =5696)

184 genes

Table S3

Step 4 Clinical Utility of mPS

Generalizability

METABRIC test cohort (n =952)

GSE86166 cohort (n =366)
GSE96058 cohort (n =2969)

Age, Race

Fig. 3

Clinical stage

Cross validation

Feature extraction

23 genes

Subpopulations of METABRIC
test and TCGA cohorts

Intrinsic subtype
Histopathology Fig. $5-S11

training cohort (n =952)

Builiding a prognostic score

mPS = > (Gene_Score x Gene_Weight)

* Fig. 3
Table 1

MPS Fig. s3, 54
Table S4

Application potential

Whole METABRIC and TCGA cohorts
Fig. 5, Fig. $12

Fig. 4
Table 2

Fig. 1. Study overview. All protein-coding genes were tested for their potential as prognosis-related genes with the use of the TCGA breast cancer cohort and 36 independent multicenter
data sets (Step 1). Machine learning with the random forest approach reduced the number of validated genes to 23 (Step 2). A versatile prognostic score, designated mPS, was established
with the use of a neural network approach (Step 3). Finally, the utility of mPS was validated in various settings (Step 4).

linear unit) as an activation function. In the output layer, we created two
nodes (a; and ay, for alive and deceased, respectively). We applied a
softmax function to each node, and designated y, (probability of
death; that is, the a; node) as Y. We utilized cross entropy error as a
loss function (E) and optimized the value of each weight with Adam
method (learning rate, 0-001; epochs, 1000). After the training, we
used the weights of the nodes (“Gene_Weight”) to calculate mPS (sum-
mation of Gene_Score x Gene_Weight for all 23 genes). We used the
Python-based Keras library for this neural network training.

For validation, we used the other half of the METABRIC cohort
(METABRIC test set) and the independent cohorts GSE86166 and
GSE96058. Within each cohort, we converted expression level to binary
status (above or below the median), which was then converted to
Gene_Score by the above-mentioned step function.

The cutoff criterion (median value) was study specific and calculated
for each cohort independently.

2.5. Statistics

Kaplan-Meier plots were constructed with the use of R (survival
package). The median value was used as the cutoff between low

and high expression levels of each gene. For mPS validation, we
truncated the survival data at 10 years unless indicated otherwise.
We computed OS from the date of diagnosis to the date of death
from any cause. For most of the data (Figs. 3-5 and Supplementary
Figs. S5-S11), survival outcomes were compared with the log-rank
test. For the survival analysis shown in Fig. 2 and Table 2, the HR
and its 95% CI were calculated by Cox regression analysis after
proper evaluation of the assumptions of the Cox regression models
with the use of the survival package. Statistical significance was de-
termined at a two-sided P value of 0-05, with the exception of the
TCGA discovery cohort, for which we adopted 0-01 as the cutoff
criterion.

2.6. Data availability

All the data analyzed in this study are open to the public and can
be downloaded from cBioPortal (http://www.cbioportal.org) and
GEO (https://www.ncbi.nlm.nih.gov/geo). A Web-based tool we cre-
ated in this study is freely available at our github page (https://
hideyukishimizu.github.io/mPS_breast).
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3. Results
3.1. Limitation of hypothesis-driven approaches

Since the initial discovery of the cancer-causing Src gene, tremen-
dous advances have been made in the field of oncogenes. Given that
MYC plays many important roles related to cancer development [27],
we hypothesized that the expression of MYC might be associated with
OS in cancer patients. Breast cancer patients in the TCGA cohort [28]
were divided into two groups (low and high expression level) on the
basis of the median mRNA abundance for MYC, and the difference in sur-
vival outcome between the two groups was assessed. Unexpectedly, OS
did not differ between the two groups (Fig. 2a). Similarly, the mRNA
level for MKI67, which is frequently examined in clinicopathologic stud-
ies [29], was not related to OS in the TCGA breast cancer cohort (Fig. 2b).

3.2. Computational elucidation of all prognosis-related genes

We therefore examined the relation between mRNA abundance for
all protein-coding genes and OS with the TCGA breast cancer data set
as a discovery cohort. Although the expression of most (18,894) genes
was not associated with OS, a high expression level of 117 genes includ-
ing TMEMG65 (Fig. 2c) and PGK1 (Supplementary Fig. S2a) was related to
reduced survival. Conversely, the OS of patients with a low expression
level of 169 genes including ENOSF1 (Fig. 2d) and BEND5 (Supplemen-
tary Fig. S2b) was poorer than that of those with a corresponding high
level of expression. We thus identified a total of 286 OS-related genes
in the TCGA discovery cohort, with the complete list of these genes
and their log-rank P values being provided in Supplementary Table S2.

We next subjected these 286 potential prognostic genes identified
with the TCGA discovery cohort to validation by meta-analysis of com-
bined multicentre breast cancer cohorts (Supplementary Table S1) [18],
revealing that 184 of these genes were also prognosis-related genes in
the validation data set (Fig. 2e). TMEM65 and RILPL2 were the most
promising prognosis-related genes, with the highest and lowest HRs, re-
spectively, in this multicentre validation cohort (Supplementary Fig. S2,
c and d). It is of note that these two genes were not adopted by the
MammaPrint or Oncotype Dx 21-gene RS systems. Indeed, most of the
validated prognosis-related genes have not been well characterized to
date with regard to their relation to basic or clinical oncology, with
TMEMG65 and RILPL2 apparently not having been studied at all in this
field. These results thus revealed the promise of our computer-based
comprehensive approach to uncovering previously uncharacterized,
yet important genes in breast cancer. The complete list of validated
prognosis-related genes with their estimated HRs is provided in Supple-
mentary Table S3.

3.3. Al-based development of a molecular prognostic score

We examined whether these 184 newly identified prognosis-related
genes might suffice to predict the survival rate of breast cancer patients
at 10 years. We used a third breast cancer data set, METABRIC [19,20], to
build a molecular prognostic score system as described in detail in the
Materials and methods section and Supplementary Fig. S1.

In brief, we first applied data from half of the METABRIC cohort
(training set, n = 952) to a machine learning algorithm known as a ran-
dom forest classifier and thereby selected 23 genes. We optimized the
weight for each gene with a neural network algorithm. We thus built
a molecular prognostic score (mPS) that is calculated by summation of

Table 1

The 23 genes necessary and sufficient for calculation of mPS. For genes in red, patients
with a high level of expression (above the median) are assigned a score of 1. Conversely,
for genes in blue, patients with a low level of expression (below the median) are assigned
a score of 1. None of the 23 genes are included in existing indicators of relapse-free sur-
vival such as Oncotype and MammaPrint.

Symbol Gene ID  Full name Score  Score Weight
(high) (low)
FOXM1 2305 Forkhead box M1 1 0 3.424
CPT1A 1374 Carnitine palmitoyltransferase 1A 1 0 3.399
GARS 2617 Glycyl-tRNA synthetase 1 0 2.539
MARS 4141 Methionyl-tRNA synthetase 1 0 2312
UTP23 84,294  UTP23, small subunit processome 1 0 2311
component
ANLN 54,443  Anillin actin binding protein 1 0 2.225
HMGB3 3149 High mobility group box 3 1 0 2.202
ATP5F1B 506 ATP synthase F1 subunit beta 1 0 1.934
APOOL 139,322 Apolipoprotein O like 1 0 1.754
CYB561 1534 Cytochrome b561 1 0 1.594
GRHL2 79,977  Grainyhead like transcription 1 0 1.526
factor 2
ESRP1 54,845  Epithelial splicing regulatory 1 0 1.485
protein 1
EZR 7430 Ezrin 1 0 1.372
RBBP8 5932 RB binding protein 8, 0 1 3.095
endonuclease
CIRBP 1153 Cold inducible RNA binding 0 1 3.083
protein
PTGER3 5733 Prostaglandin E receptor 3 0 1 2.802
LAMA3 3909 Laminin subunit alpha 3 0 1 2.601
OARD1 221,443 O-acyl-ADP-ribose deacylase 1 0 1 2.008
ANKRD29 147,463 Ankyrin repeat domain 29 0 1 1.886
EGR3 1960 Early growth response 3 0 1 1.836
DIRAS3 9077 DIRAS family GTPase 3 0 1 1.821
MITD1 129,531 Microtubule interacting and 0 1 1.425

trafficking domain containing 1

Laminin subunit beta 3 0 1 1.366
mPS = 3, (Gene_Score x
Gene_Weight)

LAMB3 3914

“Gene_Score” x “Gene_Weight” for all 23 genes, with the potential
value ranging from 0 to 50 (Table 1). Two examples of actual mPS calcu-
lations are presented (Supplementary Fig. S3). For the METABRIC train-
ing cohort, the mean of mPS was 24-22 (interquartile range [IQR] of
15-56-33-60), and its distribution pattern is shown in Supplementary
Fig. S4. The characteristics of mPS groups based on assignment to six
bins are summarized for the METABRIC training cohort in Supplemen-
tary Table S4. The mPS system is well correlated with pathological tu-
mour grade, clinical TNM stage, and the NPI.

3.4. mPS stratifies prognosis of independent cohorts

To study whether mPS can stratify prognosis not only in the
METABRIC training cohort but also in other independent breast cancer
cohorts, we first examined the other half of the METABRIC data set
(METABRIC test cohort). We found that mPS stratifies prognosis in
this test cohort (Fig. 3a). The mPS shows superiority to PAM50 classifi-
cation, which is widely used in clinical settings, with regard to the strat-
ification of prognosis (Fig. 3, a and b). It is also of note that mPS has two
advantages over Integrative Cluster, which was originally proposed by
the provider of the METABRIC data set [19]. The stratification based on
mPS is thus more significant than that based on Integrative Cluster
(Fig. 3, a and c), and mPS is less expensive to apply than Integrative
Cluster, for which whole-genome sequence analysis is required.

Fig. 2. Identification of all prognosis-related genes in the TCGA breast cancer cohort and validation in 36 independent cohorts. (a) Distribution of MYC expression level (RSEM) among
patients in the TCGA breast cancer cohort (left), and Kaplan-Meier curves of OS for these patients based on a MYC expression level higher or lower than the median (right). The HR, its
95% CI, and the log-rank P value are shown. (b) Kaplan-Meier curves of OS for the TCGA cohort based on MKI67 expression level. (c and d) Kaplan-Meier curves of OS for the TCGA
cohort based on TMEMG65 (c) and ENOSF1 (d) expression levels, respectively. The complete list of OS-related genes in this TCGA discovery cohort is provided in Supplementary
Table S2. (e) Logarithm of the integrated HR for all 184 prognosis-related genes in the validation data sets. The complete list of these genes identified by meta-analysis is provided in

Supplementary Table S3.
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Fig. 3. mPS precisely stratifies prognosis of breast cancer patients. (a) Kaplan-Meier curves of OS according to mPS for the METABRIC test cohort. (b) Kaplan-Meier curves of OS according to
PAMS5O0 classification for the METABRIC test cohort. We omitted one patient whose PAM50 classification was not available. (c) Kaplan-Meier curves of OS for the METABRIC test cohort
according to Integrative Cluster, which was proposed by the provider of the METABRIC data set. (d) Kaplan-Meier curves of OS according to mPS for the public data set GSE86166.
(e) Kaplan-Meier curves of OS for the GSE86166 data set according to the 12-chemokine gene expression score proposed by the provider of the data set. (f) Kaplan-Meier curves of OS

according to mPS for the public data set GSE96058.
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Fig. 4. mPS is applicable to most breast cancer subsets. (a) Kaplan-Meier curves according to mPS for OS of patients with claudin-low tumours in the METABRIC test cohort. (b) Kaplan-
Meier curves according to mPS for OS of premenopausal patients (<50 years of age) in the METABRIC test cohort. (c) Kaplan-Meier curves according to mPS for OS of patients in the
METABRIC test cohort with ILC. (d and e) Kaplan-Meier curves according to mPS for OS of patients in the METABRIC test (d) and TCGA (e) cohorts at clinical TNM stage II. (f) Kaplan-
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Table 2

Univariate and multivariate analyses of OS in the TCGA cohort. The HR relative to the indi-
cated reference (ref) value, its 95% CI, and P value (those of <0.05 are indicated in bold) for
the Cox hazard model are shown.

Univariate Multivariate
Hazard  95% CI P Hazard  95%CI P
ratio ratio
Age
<50 1 (ref) 1 (ref)
50-70 1.11 0.737-1.681 0.610 1.02 0.655-1.587  0.931
>70 2.59 1.656-4.049  <0.001 2.47 1.541-3.972  <0.001
Gender
Female 1 (ref) 1 (ref)
Male 0.84 0.117-6.000 0.859 0.72 0.099-5.185  0.741
Stage
1 1 (ref) 1 (ref)
2 1.91 1.025-3.550  0.042  2.00 1.069-3.732  0.030
3 3.95 2.087-7.491 <0.001 3.8 1.992-7.243  <0.001
4 15.75 7.274-34.088 <0.001 10.64 4.824-23.453 <0.001
mPS
<10 1 (ref) 1 (ref)
10-36 2.62 1.210-5.648 0.015 236 1.086-5.116  0.030
>36 7.76 3.498-17.229 <0.001 545 2.423-12.245 <0.001

Many existing prognostic indicators are able to predict prognosis on
the basis on only one specific platform or pipeline. We overcame this
limitation by changing continuous gene expression values (which may
vary depending on method) to discrete values (high or low relative to
the median), rendering mPS independent of platform. For demonstra-
tion purposes, we analyzed another breast cancer data set, GSE86166,
in which transcriptome profiling was performed by microarray analysis
[22]. We found that mPS stratifies OS into different bins in the same way
as in the METABRIC test cohort (Fig. 3d), showing that mPS is applicable
to both RNA-sequencing-based (METABRIC) and microarray-based
(GSE86166) data sets. In addition, the mPS system is superior to the
12-chemokine gene expression score [22] proposed by the provider of
the GSE86166 data set (Fig. 3, d and e).

We also analyzed GSE96058, an ongoing cohort in Sweden, in which
nearly 3000 breast cancer patients are followed up for up to 7 years [23].
Our mPS system also stratifies these patients into different bins, al-
though the event (death) rate is relatively low in this cohort, likely be-
cause of the shorter follow-up time (Fig. 3f).

Furthermore, mPS stratifies not only OS but also DFS in both the RNA
sequencing-based TCGA breast cancer cohort (Supplementary Fig. S5a)
and the microarray-based cohort GSE86166 (Supplementary Fig. S5b).

Together, these various lines of evidence show that mPS allows the
precise stratification of prognosis into distinct groups in a platform-
independent manner, demonstrating its general applicability. Given
that we developed mPS computationally, these results indicate that
this system concisely reflects transcriptome alterations necessary for tu-
mour progression and that it will therefore be of value not only for clin-
ical oncologists but also for basic biomedical researchers.

3.5. mPS is applicable to most breast cancer subsets

We next investigated the utility of mPS for various subtypes of breast
cancer. Application of the mPS system to each of the PAM50 intrinsic
subtypes revealed that not only estrogen receptor—positive (lumA/
lumB) patients (Supplementary Fig. S6a) but also patients with HER2-
enriched (Supplementary Fig. S6b), claudin-low (Fig. 4a), or normal-
like (Supplementary Fig. S6¢) subtypes are well stratified. Although
the mPS system could not stratify the prognosis of patients with basal-
like tumours into six groups, likely as a result of the malignant nature
of these tumours (most such patients had an mPS of >25), OS tended
to be better in mPS-low (<25) patients than in mPS-high (>25) patients
(Supplementary Fig. S6d).

The mPS system precisely predicted OS not only of patients in their
50s and 60s (Supplementary Fig. S7) but also of younger (Fig. 4b)

patients, showing that mPS is applicable to patients of various ages re-
gardless of menopausal status.

Most breast cancer specimens are classified pathologically as inva-
sive ductal carcinoma (IDC), and we found that the mPS system is able
to stratify the prognosis of IDC patients (Supplementary Fig. S8a). This
system also clarifies distinct subpopulations of invasive lobular carci-
noma (ILC) (Fig. 4c), the second most frequent histological subtype of
breast cancer, as well as of the mixed IDC and ILC (MDLC) subtype (Sup-
plementary Fig. S8b). Although ILC and MDLC differ histopathologically
from IDC [30], the mPS system could thus be applied to all three major
pathological subtypes of breast cancer.

We also found that mPS system is applicable not only for Caucasian
(Supplementary Fig. S9a), but also Black or African American (Supple-
mentary Fig. S9b), and Asian (Supplementary Fig. S9c) patients in the
TCGA cohort, demonstrating that mPS is not race specific.

3.6. mPS is suitable even for patients at the same clinical stage

We further examined whether mPS is also applicable to well-
established TNM tumour stages determined from clinical information.
The mPS system revealed that stage I patients in the METABRIC test co-
hort (n = 246) are heterogeneous, with >90% of individuals with an
mPS of <10 surviving for >10 years whereas only ~70% of patients
with an mPS of >25 survived this long (Supplementary Fig. S10a). This
trend was more prominent for the stage Il patients (n = 395), with
those with an mPS of <5 showing excellent prognosis and those with
an mPS of >45 having the worst prognosis (Fig. 4d). The mPS system
also stratified OS of patients at the same clinical stage in the TCGA co-
hort (Fig. 4e). Even for stage III patients in the METABRIC test cohort
(n = 59), mPS-low (<25) individuals showed a better prognosis than
did their mPS-high counterparts (Supplementary Fig. S10b).

We next evaluated the relation of mPS to NPI, which is calculated on
the basis of the size of the primary tumour, the number of involved
lymph nodes, and the tumour grade [31]. We found that each NPI
group was still substantially heterogeneous with regard to mPS. For ex-
ample, the Moderate Il group was further divided by mPS, with the
prognosis of mPS-low patients being much better than that of mPS-
high patients (Fig. 4f). Similar results were obtained for the other NPI
groups (Supplementary Fig. S11).

We also performed univariate and multivariate analyses (Cox pro-
portional hazards model) with the TCGA cohort and found that mPS
stratifies prognosis independently of age, gender, and tumour stage
(Table 2). We thus conclude that the mPS system further stratifies pa-
tients even at the same clinical stage.

3.7. Combination of mPS with clinical stage

Finally, we propose an integrated classification system that is based
on the combination of mPS and clinical stage and which consists of
seven classes (Fig. 5a). Given that patients with distant metastasis at di-
agnosis (stage IV) are generally inoperable and their mPS therefore can-
not be estimated, they are categorized as class F-II. This integrated score
revealed that patients of class A, which mostly comprise individuals
without distant metastasis and with an mPS of <5, survive longer than
other patients, regardless of clinical stage (Fig. 5b). Moreover, for pa-
tients of class F-I, which largely comprise individuals with an mPS of
>45, OS is poor even for those at stage I. This seven-class system thus
precisely stratifies OS of breast cancer patients.

Evaluation of the predictive value of mPS revealed that OS of patients
of classes A and B in the METABRIC cohort was not affected by cytotoxic
chemotherapy (Fig. 5¢), suggesting that such patients should not be
subjected to such treatment so as to avoid possible adverse events. For
more severe cases (classes C to F-II), however, patients who received cy-
totoxic chemotherapy showed a poorer prognosis compared with those
who did not in this data set (Supplementary Fig. S12a), probably be-
cause patients with faster disease progression are more likely to receive
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Fig. 5. Combination of mPS with clinical stage for facilitation of treatment selection. (a) Proposed classification of breast cancer patients on the basis of both mPS and clinical stage.
(b) Kaplan-Meier curves according to class based on mPS and clinical stage for OS in patients of the combined TCGA and METABRIC cohorts. (¢) Kaplan-Meier curves for patients of
class A or B in the METABRIC cohort according to whether they received cytotoxic chemotherapy or not. Only patients with available stage information are included.

chemotherapy (Supplementary Fig. S12b). Collectively, these data sug-
gest that mPS is also informative with regard to the avoidance of over-
treatment in certain classes of patients.

4. Discussion

In this study, we have delineated a complete atlas of prognosis-
related genes for breast cancer and developed a computational frame-
work and new prognostic prediction score designated mPS that is appli-
cable to almost all subsets of breast cancer patients. The mPS system is
simple and cost-effective to apply and yet is able to reveal previously
unrecognized heterogeneity among patient subpopulations in a
platform-independent manner. We also provide a Web-based tool
(https://hideyukishimizu.github.io/mPS_breast) that allows clinicians
to estimate prognosis of patients and select an optimal therapy.

Unfortunately, we were unable to compare the performance of mPS
with that of other representative tools including MammaPrint and
Oncotype Dx 21-gene RS, given that these are commercial products
and the formulas for their calculation have not been disclosed. However,
we demonstrated the superiority of mPS relative to PAM50 classifica-
tion (Fig. 3, a and b), which is routinely applied in hospitals, as well as
to two recently proposed prognostic indicators [19,22] with their own
data sets (Fig. 3, a and c-e). Our method is likely to outperform previous
scores because mPS stratifies patients at the same clinical stage (Fig. 4,
d-f) as well as those with estrogen receptor-negative subtypes of breast
cancer (Fig. 4a), unlike existing methods.

There are numerous protocols for preservation of tumour samples,
RNA extraction, and analysis of expression status, which hindered us

from establishing one universal cutoff for each of the 23 genes in the
present study. We aimed to build a “platform-independent” score that
can be calculated from data obtained by any method once the necessary
protocols and distribution patterns obtained with these protocols are
established. Comparison of these protocols and development of a robust
and precise method to examine the expression levels of the 23 genes,
followed by the performance of pilot studies to test the distribution pat-
terns, are remaining challenges that must be addressed before mPS can
be applied in the clinical setting.

Other limitations of our study include the fact that all analyses were
performed in a retrospective manner. Although the total number of pa-
tients analyzed (n = 11,893), including the ongoing cohort GSE96058
[23], is among the largest of those previously examined, prospective
studies will be needed to validate our findings.

The best-characterized gene among the 23 prognosis-related genes
identified in the present study is FOXM1. A PubMed search for
“FOXM1 breast cancer” identified ~180 papers. The FOXM1 protein
functions as a transcriptional activator. It is phosphorylated in M
phase of the cell cycle and up-regulates the expression of several
proliferation-related genes including those for cyclin B1 and Skp2, the
latter of which plays an essential role in cell cycle progression by medi-
ating the ubiquitin-dependent degradation of the cyclin-dependent ki-
nase inhibitors p21, p27, and p57 [32]. The prognostic value of FOXM1
for solid tumours as identified by meta-analysis is also documented in
a recent review [33]. In contrast, most of the 23 prognosis-related
genes (GARS, UTP23, HMGB3, ATP5F1B, CYB561, EZR, CIRBP, PTGER3,
LAMA3, OARD1, ANKRD29, MITD1, and LAMB3) have not been studied
in relation to breast cancer, given that PubMed searches for “GENE
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breast cancer” identified fewer than 10 publications for each gene, with
there being no published papers at all for five of these genes (UTP23,
CYB561, OARD1, ANKRD29I, and MITD1). Both basic and clinical studies
will be necessary for further elucidation of the fundamental mecha-
nisms responsible for the effects of the 23 genes on which mPS is
based and for the development of novel drugs to prolong OS of breast
cancer patients.

We expect that application of mPS will not only facilitate selection of
therapeutic strategies on the basis of the precise prediction of personal
prognosis, but also contribute to further understanding of the basic biol-
ogy of breast cancer and thereby inform the development of new ther-
apeutic approaches.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.07.046.
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