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A B S T R A C T   

Background: Protozoal pathogens pose a considerable threat, leading to notable mortality rates 
and the ongoing challenge of developing resistance to drugs. This situation underscores the urgent 
need for alternative therapeutic approaches. Antimicrobial peptides stand out as promising 
candidates for drug development. However, there is a lack of published research focusing on 
predicting antimicrobial peptides specifically targeting protozoal pathogens. In this study, we 
introduce a successful machine learning-based framework designed to predict potential anti
protozoal peptides effective against protozoal pathogens. 
Objective: The primary objective of this study is to classify and predict antiprotozoal peptides 
using diverse negative datasets. 
Methods: A comprehensive literature review was conducted to gather experimentally validated 
antiprotozoal peptides, forming the positive dataset for our study. To construct a robust machine 
learning classifier, multiple negative datasets were incorporated, including (i) non-antimicrobial, 
(ii) antiviral, (iii) antibacterial, (iv) antifungal, and (v) antimicrobial peptides excluding those 
targeting protozoal pathogens. Various compositional features of the peptides were extracted 
using the pfeature algorithm. Two feature selection methods, SVC-L1 and mRMR, were employed 
to identify highly relevant features crucial for distinguishing between the positive and negative 
datasets. Additionally, five popular classifiers i.e. Decision Tree, Random Forest, Support Vector 
Machine, Logistic Regression, and XGBoost were used to build efficient decision models. 
Results: XGBoost was the most effective in classifying antiprotozoal peptides from each negative 
dataset based on the features selected by the mRMR feature selection method. The proposed 
machine learning framework efficiently differentiate the antiprotozoal peptides from (i) non- 
antimicrobial (ii) antiviral (iii) antibacterial (iv) antifungal and (v) antimicrobial with accuracy 
of 97.27 %, 93.64 %, 86.36 %, 90.91 %, and 89.09 % respectively on the validation dataset. 
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Conclusion: The models are incorporated in a user-friendly web server (www.soodlab.com/ 
appred) to predict the antiprotozoal activity of given peptides.   

1. Introduction 

Protozoal infections pose a profound threat to both human and animal health and have serious repercussions on the global 
economies (https://www.cdc.gov/parasites/about.html). These pathogens belong to the category of neglected tropical diseases and 
can lead to considerable mortality rates in endemic regions. For example, a notable proportion of deaths are attributed to Plasmodium, 
a parasitic protozoan responsible for Malaria (https://www.who.int/news-room/fact-sheets/detail/malaria). Another protozoan 
disease named Leishmaniasis is caused by Leishmania donovani and is responsible for an estimated 0.9 to 1.6 million cases each year 
(Leishmaniasis-PAHO/WHO|Pan American Health Organization). African Trypanosomiasis and Chagas disease caused by Trypano
soma species are other protozoan diseases that are a major concern in the endemic areas. In addition to the parasitic ones, free-living 
protozoa are also capable of causing diseases in humans. For instance, Acanthamoeba is a free-living unicellular pathogenic protozoan 
and is known to cause severe diseases of the eyes and central nervous system [1]. Another free-living flagellate pathogenic protozoa, 
Naegleria fowleri causes primary amoebic meningoencephalitis (PAM) that is prevalent both in developed and developing countries [2]. 
This water-borne amoeba has a mortality rate of 97 % since its emergence [3]. Protozoal pathogens are transmitted either directly or 
indirectly through contaminated food and water. Some pathogens are transmitted through vectors that carry the infection from an 
infected human to healthy ones [4]. Some of the factors like unhygienic living conditions, climate, and malnutrition lead to the 
frequent incidents of protozoal infections in various parts of the world [5,6]. Since protozoal pathogens are unicellular eukaryotes, 
hence they share common features with the mammalian systems. Therefore, some of the drugs targeting protozoa have been shown to 
cause severe toxicity in humans [7]. Compounding this issue, protozoal pathogens continue to develop novel means to evade host 
immunity and antiprotozoal drugs [8–12] leading to the emergence of drug resistance. Therefore, the identification of new drugs and 
novel druggable pathways is required to curb the rising menace of protozoal diseases. 

Antimicrobial peptides are produced by various organisms and are one of the essential tools of the immune system. They are 
considered to be the first line of defence against several microbes. Naturally occurring antimicrobial peptides are active against a broad 
class of microorganisms including bacteria, virus and fungi [13,14]. They are short molecules (<100 amino acids long) [15] and are 
soluble in the aqueous environment [16] thereby making them an attractive drug candidate. Gramicidin is one of the antimicrobial 
peptides that has been successfully used in clinical settings as an alternative to antibiotics [17]. Another peptide commonly known as 
nisin has been shown to inhibit bacterial pathogens [18]. In addition to their antibacterial nature, several studies have successfully 
identified and characterized highly potent anti-protozoal peptides. These peptides act by disrupting protozoan cell membranes [19], 
cellular metabolism [20], and inducing cell death pathways [21–23]. Since these peptides are effective against protozoal pathogens, 
they can be used as one of the alternative approaches to curb these pathogens. However, the successful development of therapeutic 
peptides requires high throughput experimentations that are both time and resource-intensive. Recent advances in computational drug 
discovery have significantly expedited the drug discovery process [24], including the identification of potential bioactive peptides 
[25]. Therefore, we sought to build machine-learning based prediction models to classify antiprotozoal peptides from a diverse class of 
negative peptides including from highly diverse (non-antimicrobial peptides) to highly homologous (antiviral, antibacterial, anti
fungal, and antimicrobial) peptides. However, a comprehensive literature survey uncovered limited reports on the characterization of 
antiprotozoal peptides. Consequently, we conducted an extensive literature mining and curating of existing antimicrobial databases to 
assemble a positive dataset comprising experimentally validated antiprotozoal peptides. 

Once the positive and negative datasets were curated, feature extraction was performed using the pfeature algorithm [26]. We 
explored two popular feature selection approaches including the Support Vector Classification with L1 regularization (SVC-L1) and 
minimum Redundancy Maximum Relevance (mRMR) to identify highly relevant features. Additionally, we conducted experiments 
with five different classifiers including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), Logistic Regression 
(LR), and XGBoost (XGB) to classify antiprotozoal peptides from each negative dataset. To facilitate the scientific community in 
predicting the antiprotozoal activity of peptides, we have developed a user-friendly web server where users can simply provide a list of 
peptides. The algorithm will then predict the antiprotozoal activity of the input peptides thereby enabling users to choose the most 
promising peptides for further validations. The novelty of the present study includes: (i) To the best of our knowledge, this is the first 
report that aims to use machine learning approaches for the classification of antiprotozoal peptides from non-antiprotozoal ones (ii) 
Inclusion of multiple negative datasets to make robust machine learning models and (iii) Inclusion of two feature selection tools to 
identify highly relevant and non-redundant features. 

2. Related work 

The advent of harnessing machine learning-based approaches for analysis of the copious amount of biological data has paved a new 
path for identifying and developing biopeptides. The prerequisite of drug discovery and development is the identification and vali
dation of target molecules with required bioactivity [27]. Therefore the drug development pipeline becomes a very long process and 
the journey from lab to bedside can take decades. However, the process can be accelerated by using machine learning-based ap
proaches [28]. Apart from the drug molecules, machine learning-based approaches have also been used successfully to predict and 
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design bioactive peptides which can induce Interferon-gamma (IFN gamma) [29], Interleukin-4 [30], Interleukin-10 [31], 
Interleukin-17 [32] and Interleukin-13 [33]. 

Additionally, use of machine-learning approaches for the prediction of antimicrobial peptides have been extensively investigated 
[34–36]. Several groups have developed machine learning models to predict the antiviral [37,38], antibacterial [39,40] and antifungal 
peptides [41,42] that constitute the subset of the antimicrobial peptides. Indeed various researchers have used machine learning-based 
approaches to successfully classify natural products having antimalarial activity [43], predict possible synergism among the anti
malarial drugs [44], classify malaria from other diseases [45], and improve malaria diagnosis [46]. However, to the best of our 
knowledge, no reports were found that aimed to use machine learning-based approaches to classify and predict the antiprotozoal 
peptides. This gap in the antiprotozoal peptide field prediction is summarized in Table 1 and prompted us to undertake the present 
study. 

3. Materials and methods 

We leveraged machine learning to classify antiprotozoal peptides from a diverse set of peptides including (i) non-antimicrobial (ii) 
antiviral (iii) antibacterial, (iv) antifungal, and (v) antimicrobial (excluding antiprotozoal) peptides. The major steps in this study 
include dataset preparation and pre-processing, feature extraction, feature selection, internal and external validation, building models, 
and design of a web-based prediction tool. 

3.1. Dataset preparation and pre-processing 

3.1.1. Original dataset 

3.1.1.1. Positive dataset. A positive dataset consisting of experimentally validated antiprotozoal peptides targeting free-living as well 
as parasitic protozoa was manually curated from the research articles and existing antimicrobial databases including APD3 [51], 
DRAMP3 [52], ParaPep [53] and DBAASP [54]. Only those peptides that had linear conformation and contain natural amino acids 
were included in the positive dataset. We removed all the identical peptides and other peptides having length less than eight amino 
acids or greater than one hundred amino acids. We were thus successful in creating a positive dataset consisting of 275 experimentally 
validated antiprotozoal peptides for this study. 

3.1.1.2. Negative datasets. The inclusion of multiple negative datasets has been reported to provide robustness to the study [38]. The 
negative datasets used in this study included (i) non-antimicrobial peptides (non-AMP), (ii) antiviral peptides, (iii) antibacterial 
peptides, (iv) antifungal peptides, and (v) antimicrobial peptides excluding antiprotozoal peptides. All these negative datasets were 
obtained from recent studies [55,56] and were found to be highly unbalanced as compared to the positive dataset. The non-AMP 
dataset comprised 6773 peptides, while there were 2001 peptides in the antiviral dataset, 3981 peptides in the antibacterial 

Table 1 
Gap areas in the antiprotozoal prediction research.  

Authors Year Target organism Bioactive Compound 
Database Against Target 
Organism 

Aim/Drawbacks/Gap Area 

Gulsen et al. [47] 2022 Protozoa Secondary Metabolites  • Focus on screening antiparasitic secondary metabolites secreted from 
bacteria. 

•Screening done from the supernatants of 22 bacterial species only. 
Mswahili et al. 

[48] 
2021 Plasmodium 

falciparum 
ChEMBL and PubChem •Focus only on predicting antimalarial bioactivities, against Plasmodium 

falciparum, not considering other species of Plasmodium and potential 
protozoal targets. 
•Considering only two databases for antimalarial drugs 

Liu et al. [49] 2020 Plasmodium 
falciparum 

ChEMBL •The aim was to develop classification models to predict the antimalarial 
activity of compounds against Plasmodium falciparum, not considering other 
species of Plasmodium and other protozoans. 
•Used a single database to extract compounds having antimalarial activity. 

Moranga et al. 
[45] 

2020 Plasmodium 
species 

NA •The aim was to develop a machine learning models for malaria detection 
using hematological parameters, not considering other protozoal disease. 
•Primarily focus on Ghanaian children, affect the applicability of developed 
models in diverse settings 

Danishuddin 
et al. [50] 

2019 Plasmodium 
falciparum 

ChEMBL •The aim was to build classification models for predicting antimalarial 
activity of compounds against only Plasmodium falciparum. 
•Used only a single database to collect experimentally verified compounds. 

Egieyeh et al. 
[43] 

2018 Plasmodium 
falciparum 

ChEMBL, PubChem, manual 
curation from literature 

•The paper aims to predict anti-plasmodium bioactivity of new natural 
compounds using machine learning classification model. 
•Included one protozoal parasite only. 

Mason et al. [44] 2018 Plasmodium 
falciparum 

NA •The authors build machine learning models to identify novel combination of 
antimalarial drug that act synergistically against Plasmodium falciparum. 
•Considered only one species of Plasmodium.  
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dataset, 2732 peptides in the antifungal dataset, and 2384 peptides in the antimicrobial dataset. In negative datasets, we retained only 
those peptides that had a length ranging from 8 to 100 amino acids. 

3.1.2. Binning approach 
The presence of a limited number of experimentally validated antiprotozoal peptides raised concerns about potential class 

imbalance. To construct robust models that are not influenced by the majority class, we performed under-sampling by employing 
binning approach [57], leading to the balancing of the positive and negative datasets. This approach entails establishing several empty 
bins according to peptide length. Peptides within the range of 8–25 amino acids were placed in the first bin, while those spanning from 
26 to 50 amino acids were sorted in the second bin. The third bin included peptides with lengths between 51 and 75 amino acids, and 
the final bin was designated for peptides ranging from 76 to 100 amino acids. The negative datasets exhibited a higher abundance of 
sequences, resulting in a significantly greater number of sequences in each bin compared to the corresponding bins of the positive 
dataset. To handle this imbalance problem, we randomly select the peptides from each bin of the negative dataset, ensuring that the 
number of peptides is equivalent to the corresponding bin in the positive dataset. This process was repeated for all the above 
pre-defined bins. The peptides from each bin of the negative dataset were then combined to give a final negative dataset. This approach 
was repeated for each negative dataset to ensure an equal number of peptides compared to the positive class. The process of addressing 
class imbalance using the binning approach is described in Fig. 1. 

3.2. Feature extraction 

The Pfeature algorithm, extensively employed for extracting peptide features, served as the basis for our experiments [33,58,59]. 
Utilizing fifteen descriptors from the composition-based module of the Pfeature algorithm, we computed features for all the peptides. 
Each descriptor yields a distinct set of features for a peptide sequence. Consequently, a total of 9151 features were extracted for each 
peptide sequence. The fifteen descriptors of the composition-based feature module are described as follows. 

3.2.1. Amino acid composition (AAC) 
This descriptor computes the frequency of each amino acid in a peptide/protein sequence. Since there are 20 naturally occurring 

amino acids, thus this module yields 20 features for a sequence. Amino acid composition for each residue can be calculated using the 
following equation 

AACi =
Ni

L
, i ϵ {A,C,D,….Y}

where Ni is the count of amino acid i in the given peptide sequence and L represents the length of sequence. 

3.2.2. Dipeptide composition (DPC) 
This descriptor considers the coupling of adjacent amino acids and their positional information. DPC yields 400 features for a 

peptide sequence and can be computed usisng the following equation: 

DPCi,j =
Di,j

L − 1
, i, j ϵ {A,C,D,….Y}

where Di,j represents the number of dipeptide consisting amino acid of type i and j in a peptide sequence and L is length of a sequence. 

Fig. 1. Outlines the creation of five pairs, each with balanced positive and negative dataset. The positive dataset contains 275 experimentally 
validated antiprotozoal peptides. Various negative datasets consisting of (i) non-antimicrobial peptides (Non-AMP) (ii) antiviral peptides (iii) 
antibacterial peptides (iv) antifungal peptides and (v) antimicrobial peptides (excluding antiprotozoal peptides), were included. Balanced datasets in 
each pair were generated by randomly selecting 275 peptides from negative dataset using the bin strategy. AMP* indicates antimicrobial peptides 
excluding antiprotozoal peptides. 
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3.2.3. Tripeptide composition (TPC) 
With 20 types of natural amino acid residues, there are 8000 (20*20*20) possible tripeptide combinations. TPC is 8000-dimen

sional feature vector and the frequency of each tripeptide in a peptide sequence can be computed using the following equation 

TPCi =
Ti

L − 2  

where TPCi represents the tripeptide composition of tripeptide i while Ti and L denote the number of tripeptides of type i and the length 
of the protein sequence, respectively. 

3.2.4. Atom & bond composition (ATC & BTC) 
This module computes different type of atom and bond composition in a peptide sequence. Atomic composition refers to the 

fraction of Carbon, Hydrogen, Nitrogen, Oxygen and Sulphur atoms present in a peptide sequence. For bond composition, a total 
number of bonds (including aromatic bonds), hydrogen bonds, single bonds, and double bonds are considered. These are nine 
dimensional feature vectors and can be described using the following equation: 

ATCi =
Ai

N  

BTCi =
Bi

N  

where ATCi represents the atomic composition of atom type i, with Ai denoting the number of atoms of type i and N representing the 
total number of atoms in a peptide sequence. Similarly, BTCi represents the bond composition for bond type i, where Bi is the number of 
bonds of type i, and N is the total number of atoms in a peptide sequence. 

3.2.5. Distance distribution of residue (DDOR) 
This descriptor calculates the distribution of residue based on their distance from the N-terminal, C-terminal, and the inter- 

distances between identical residues in the given peptide sequence. DDOR is 20 dimensional feature vector and computed using 
the following equation 

DDORi =
(RNT)

2
+
∑N

j=1
(
Rj
)2

+ (RCT)
2

(L − Fi) + 1  

where DDORi and Fi represent the distance distribution and frequency of residue type i, RNT and RCT are the residue distance from the 
N-terminal and C-terminal respectively, N is the total number of inter-residue distances for type I, R is the inter-distance between 
residue type i, and L is the total length of the peptide sequence. 

3.2.6. Residue repeat information (RRI) 
RRI counts the number of consecutive runs of each amino acid type in a peptide sequence. It is a 20 dimensional feature vector 

which can be computed using the following formula. 

RRIi =
∑N

j=1
(
Rj
)2

∑N
j=1Rj  

where RRIi and N represent the residue repeat information, and a maximum number of occurrences of residue i, respectively and Rj 
indicates the number of repeats in occurrence j for residue type i. 

3.2.7. Shannon Entropy at peptide/protein Level (SE) 
This descriptor computes the Shannon entropy of a peptide sequence by using the following expression 

H(X) = −
∑20

i=1
pi log2pi  

where X refers to any peptide sequence while i corresponds to an amino acid in the sequence. The SE yield 1 feature for a peptide 
sequence. 

3.2.8. Shannon Entropy at residue Level (SER) 
This descriptor compute the Shannon entropy of 20 natural amino acid residues in a sequence. It computes 20 features for a given 

peptide sequence by using the following equations 

pi =
ci

L  

Hi = pi log2pi 
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Where Ci and Hi represents the count and entropy of residue i in the sequence, L denotes the total length of the sequence. 

3.2.9. Shannon Entropy of physiochemical property (SEP) 
This module calculates the Shannon entropy of a specific physiochemical property in a peptide and contributes 25 features for a 

peptide sequence. It can be computed by using the following formula 

Hi = − pi log(pi) − ( 1 − pi)log( 1 − pi)

where pi is ri/l. 
Hi denotes the Shannon Entropy of a particular physiochemical property, l is the length of the sequence and has ri instances of a 

property present in the sequence. 

3.2.10. Conjoint Triad descriptors (CTD) 
This scheme was initially presented by Ref. [60] where all twenty amino acids were divided into seven groups on the basis of their 

dipoles and volumes of the side chains: group 1 (A,G,V), group 2 (I,L,F,P), group 3 (Y,M, T,S), group 4 (H,N,Q,W), group 5 (R,K), group 
6 (D,E), group 7 (C). The peptide sequence is analysed by calculating the frequency of three consecutive amino acids, resulting in 
output vectors with a dimension of 343. This can be illustrated using an example where a peptide sequence is denoted by binary vector 
(Si, Fi) and Si represents extracted feature space whereas Fi corresponds to the frequency vector. The values of Fi are related to the 
peptide length. To resolve this issue, a parameter ’di’ is introduced to normalize fi for each peptide sample, and it can be expressed as: 

di =
fi − min

{
f0,f2,…., f342

}

max
{

f0,f2,…., f342

}

3.2.11. Composition-enhanced transition distribution (CeTD) 
Composition, enhanced Transition, Distribution (CeTD), describes the pattern of amino acid distribution along the peptide 

sequence, on the basis of their physicochemical or structural properties. This analysis encompasses seven physiochemical properties: 
secondary structure, polarity, hydrophobicity, normalized van der Waals volume, polarizability, charge, and solvent accessibility. The 
Composition feature in CeTD, describes the percentage of a particular physiochemical property for each residue, the transition feature 
calculates the frequency of amino acids with one property followed by amino acids in another property, and the distribution feature 
characterizes the percentage of the peptide sequence containing fractions of amino acids with a specific property at varying chain 
lengths. The CeTD generates 189 vector for a peptide sequence. 

3.2.12. Pseudo amino acid composition (PAAC) 
This descriptor considers the sequence order correlation of any two residues in the peptide or protein sequence. In PAAC, λ rep

resents the highest tier of correlation in the sequence, and in this study, λ was set to 3 reflecting the correlations up to three residues. 
Thus PAAC yields 23 dimensional feature vector for a peptide sequence. 

3.2.13. Amphiphilic pseudo amino acid composition (APAAC) 
APAAC is the modified version of PAAC and generates 29 features for a peptide sequence. The set of correlation factors (2 λ) in 

APAAC reflects distinct hydrophilicity and hydrophobicity distribution pattern along a peptide sequence. 

PC =
fc

∑20
r=1fr + w

∑2λ
j=1τj

(1< c< 20)

PC =
wτu

∑20
r=1fr + w

∑2λ
j=1τj

(21< u< 20+2λ)

where w is the weighting factor. 

3.2.14. Quasi-sequence order (QSO) 
QSO captures the order based sequence information of a peptide sequence and generates 46 vectors. It computes the distance 

matrix between the 20 amino acids by using the Schneider-Wrede physiochemical distance matrix and Grantham chemical distance 
matrix. The following equation is used to calculate the quasi-sequence-order for each residue 

Xr =
fr

∑20
r=1fr + w

∑nlag
d=1τd

r = 1,2,…….20  

Xd =
wτd − 20

∑20
r=1fr + w

∑nlag
d=1τd

d = 21,22,…..30 + nlag  

Where fr represents the normalized occurrence of residue type r, w is a weighting factor and nlag is the maximum value of the lag. 
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3.2.15. Sequence order coupling number (SOCN) 
This module yields 6-dimensional feature for a peptide sequence. It uses the Grantham and Schneider dissimilarity matrices to 

compute the d-th rank SOCN via the following equation. 

τd =
∑N− d

i=1

(
di,i+d

)2 d= 1,2, 3,……, nlag  

Where di, i + d represents the distance between the two amino acids at positions (i) and (i + d), (nlag) is the maximum value of the lag, 
and (N) represent the length of the protein or peptide sequence. 

3.3. Feature selection 

Relevant features are a prerequisite for building a robust machine learning model. For any machine learning classifier, a small 
sample size with a high dimension of features results in building an overfitted model with poor generalization capabilities. The high 
dimensional attributes of the peptide sequences extracted from Pfeature algorithm may contain irrelevant and redundant features 
which may degrade the performance of the machine learning model. Therefore, it becomes necessary to retain only those features that 
are more discriminatory in nature. Feature selection thus becomes a crucial step in constructing an efficient machine learning model 
thereby improving the performance measures and reducing model complexity. Several studies have employed diverse feature selection 
methods to identify relevant features from different datasets like proteome data [61], transcriptome data [62], metabolome data 
[63–65], and metaproteome data [66]. In order to select the subset of non-redundant features that contribute toward an efficient 
machine learning model and classification of peptides with high confidence, two feature selection methods: SVC-L1 and mRMR were 
investigated in this study. 

3.3.1. SVC-L1 feature selection 
The L1-norm or L1 regularization adds a penalty equal to the sum of the absolute values of the coefficients to the loss function hence 

shrinking some parameters to zero. As a consequence, some variables do not play a role in the decision model, hence L1-norm helps to 
select a subset of features in a model. L1-norm in the formulation of the Support Vector Machine helps to select a subset of features. 
SVC-L1 is a linear model which is penalized by the L1 norm [67,68]. Let 

{
yi,xi

}n
i=1 be the data being considered, where yi ϵ {1, − 1} is 

the response variable, for the corresponding instance xi =
(
x0,x1,…,xp

)
, x0 = 1 with respect to the intercept term. The SVM can be 

expressed as the following regularization problem: 

min
1
n

∑n

i=1
max

(
0,
(
1 − yixi

Tβ
))

Where max
(
0,
(
1 − yixi

Tβ
))

is the hinge loss function, β ¼ (β0, β1,…, βp
)

and λ is the regularization parameter. 
By using L1 regularization, some features are forced to be excluded, hence building the model with only the relevant features. This 

encourages sparse models and helps to eliminate features that are redundant. This method helps reduce the complexity of the machine 
learning model. 

3.3.2. mRMR feature selection 
For effective feature selection, it is imperative that the relevant features that are selected are most discriminative to distinguish the 

positive and the negative class. However, the presence of redundant features can deteriorate the performance of the decision model. 
Hence, it becomes necessary to select the relevant as well as non-redundant features that help improve the effectiveness of the decision 
model. The mRMR is a feature selection method that chooses those features that are maximally relevant to the target class (c) while 
being minimally redundant with the chosen subset of features(S) [69]. Given two features, i and j, with marginal probabilities, p(i) and 
p(j), and joint probabilities p(i, j), the mutual information (I(i, j)) is given by: 

I(i, j)=Σp(i, j)log
p(i, j)

p(i)p(j)

In order to select a feature subset that satisfies both the minimal redundancy and maximum relevance simultaneously, mRMR method 
is denoted as 

Max { Relevance – Redundancy }

or
max{ Relevance/Redundancy }

where 

Relevance=
1
|s|

∑

iϵS
I(i, c)
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Redundancy=
1
|s|2

∑

i,j ϵS
I(i, j)

3.4. Machine learning classifiers 

3.4.1. Decision tree 
Decision tree-based classifier is a prediction method which resembles a tree structure and a set of rules. The training data is 

repeatedly partitioned using some splitting criterion till all records in a partition belong to a single class. The splitting criterion de
creases the entropy of the dataset set with each split. The information gain, gain ratio and entropy are the common splitting criterion 
used in building decision trees. At every node, an appropriate feature with the most suitable split point is chosen that minimizes the 
cost function. The leaf nodes make the final predictions. A test sample is predicted by navigating the tree as per the split conditions and 
reaching a leaf node with the predicted target class. 

3.4.2. Random forest 
Random forest algorithm is an ensemble of decision trees where each tree is formed from a different training set and hence each has 

a different performance. Prediction in random forest method is based on the collective decision of the participating decision tress and 
hence shows improved performance as compared to when only a single decision tree is modelled. Random forest relies on the majority 
vote of predictions from each tree and predicts the final target class accordingly. Increased number of trees in the random forest 
prevents the problem of overfitting. 

3.4.3. Support vector machine 
The support vector machine classifier [70] determines a decision boundary that maximizes the margin between the hyperplanes 

passing through the support vectors of the two classes, where samples of a given class are on either side of the hyperplanes. 
The optimization problem is represented as: 

min
1
2
‖w‖

2  

st. yi(wtxi + b)≥1 for i=1, 2……..n  

where, xi is the ith (i = 1⋯n) input sample of m dimension, yi is either 1 or − 1, each indicating the positive or negative class to which 
the sample xi belongs. w is the normal vector to the hyperplane separating the training samples of the two classes and b is the bias. Non- 
linear decision boundaries are determined by the SVM using the appropriate kernel function. 

3.4.4. Logistic regression 
Logistic regression predicts the probability of the target variable using the logistic function f(z) defined as: 

f(z)=
1

1 + e− z  

where 

z= β0 + β1x.,1 + β2x.,2 + … + βrx.,r  

x.,i are the independent variables and βi are coefficients that are estimated using the maximum likelihood estimation. 

y=
{

1 f(z) > threshold
0 f(z) < threshold  

y is the predicted binary classification label. 

3.4.5. XGBoost (Extreme gradient boost) 
The XGBoost is an ensemble of decision tree models where each tree is included one at a time to the ensemble to improve the 

prediction errors made by prior models. It uses a gradient descent algorithm and improves upon the errors of previously built models. 
Overfitting is controlled in XGBoost with the help of regularization parameters to select features based on the weak and strong features 
in the decision tree. Both random forest and XGBoost generally decrease the variance, while XGBoost is instrumental in improving the 
bias. 

3.5. Internal and external validation 

To train, test, and evaluate our prediction models, we performed the 10-fold cross-validation and external validation technique. As 
per the standard protocol, the entire dataset from each pair was split in a ratio of 80:20 to obtain 440 peptides that formed the internal 
validation dataset whereas 110 peptides formed the external validation dataset. The selection of optimum hyperparameters is crucial 
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for building the robust and effective models [42,71–73]. We then performed 10-fold cross-validation on the training dataset using 
optimal hyperparameters. In this process, the entire training dataset was divided into ten equal parts where nine parts comprise the 
training data and one part forms the testing data. Each of the ten parts has an equal number of positive and negative sequences. This 
process is then iterated ten times so that each part of the data can be used as testing data. The robustness and generalizability of the 
trained model were evaluated using the external validation dataset. 

3.6. Evaluation parameters 

For a binary class problem, we label the class under consideration as the positive class (P) (anti-protozoal peptides in the given 
problem) and the other class as the negative class (N). The number of positive samples correctly predicted by the classifier is referred to 
as TP (true positives). The number of negative samples predicted correctly by the classifier is referred to as TN (true negatives). The 
term false positive (FP) refers to the number of negative samples predicted as positive by the classifier (which is misclassification). The 
false negative (FN) refers to the number of positive samples that the classifier predicted as negative (which too is misclassification). A 
successful machine learning model maximizes the TN and TP and minimizes the FP and FN. It is important to note that in an 
experiment, the total positive samples, P = TP + FN. The total negative samples can be represented as N = TN + FP. The complete set of 
samples is thus T + N = TP + FN + TN + FP. 

In this study, well-established threshold-dependent and independent parameters were used to check the efficiency of our prediction 
models. The most commonly used threshold-dependent parameters used are accuracy, sensitivity and specificity. We used the standard 
threshold independent parameter i.e. Area under Receiver Operating Characteristics (AUCROC) to measure the performance of a 
machine learning model. 

Accuracy is a measure of the total correct predictions by a decision model. It can be defined as the percentage of true positives and 
true negatives over the total number of observations. 

Accuracy=(correct predictions) / (total samples)

Fig. 2. The proposed framework for the design of APPRED: The balanced dataset was divided into 80:20 as training and testing data. The 15 
descriptors from compositional module of Pfeature was used to compute the features of peptide sequence. Feature selection tool either mRMR or 
SVC-L1 was used to select non-redundant and discriminatory features from the pool of 9151 features. 10-fold cross validation was performed on 
training dataset using five machine learning classifier. External validation was carried out on testing and independent dataset. Abbreviations: mRMR, 
minimum redundancy maximum relevance; ML, Machine Learning; DT, Decision Tree; RF, Random Forest; SVM, Support Vector Machine; LR, 
Logistic Regression; XGB, eXtreme Gradient Boosting. 
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Accuracy=(TP+TN) / (TP+ FN+TN+ FP)

Sensitivity is the metric that helps to measure the true positive rate (TPR). It identifies how well the model predicts the positives 
correctly. This is the ratio of true positive and the actual number of positives in the observations. If the number of true positives is high 
and the false negatives is low, it results in high sensitivity. 

Sensitivity=TP / (TP+FN)

Specificity is defined as the percentage of the negatives being correctly predicted by the algorithm. It is referred to as the true 
negative rate (TNR). When the negatives are predicted correctly and the false positives are low, specificity is high. Both sensitivity and 
specificity are separately indicative of the individual classes being predicted well. 

Specificity=TN / (TN+ FP)

The AUCROC score is the area under the ROC curve drawn between the true positive rate (TPR) and false positive rate (FPR) across 
different decision thresholds. The x-axis of a ROC curve is the false positive rate, and the y-axis is the true positive rate. For each 
threshold, higher TPR and the lower FPR are desired, hence classifiers that have higher curves on the top left side are better. The value 
of AUCROC ranges from 0.5 to 1. The higher value of AUCROC suggests that the ML classifier is able to distinguish better among the 
positive and negative classes. 

3.7. Design of web-based prediction tool 

To assist the users in evaluating whether a given peptide might have antiprotozoal properties, we developed a user-friendly web 
server named “APPred”. The frontend of the web server was developed using the HTML, CSS, Bootstrap and Javascript whereas the 
flask framework was used for the backend. The users are prompted to submit a peptide sequence ranging from 8 to 100 amino acids in 
length. The input query is processed, and the output provides a probability score indicating the likelihood of the input sequence 
exhibiting antiprotozoal activity. The users are provided with the option to choose from a range of negative datasets, feature selection 
methods, and machine learning classifiers. The webserver offers two additional features: the design module and the protein scan 

Fig. 3. Comparative analysis of the average amino acid composition between the positive and negative dataset of each pair: (A) antiprotozoal vs 
non-antimicrobial peptides, (B) antiprotozoal vs antiviral peptides, (C) antiprotozoal vs antibacterial peptides, (D) antiprotozoal vs antifungal 
peptides, and (E) antiprotozoal vs anti-microbial peptides excluding antiprotozoal peptides. The X-axis represents amino acids and the Y-axis 
represents the average composition of amino acids in percentage. 
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Table 2 
The performance of machine learning models developed using SVC-L1 and mRMR selected features on training and validation dataset.  

Classifier Feature Selection Sensitivity (mean ± SD) Specificity (mean ± SD) Accuracy (mean ± SD) AUROC (mean ± SD) Sensitivity Specificity Accuracy AUCROC 

Training Dataset Validation Dataset 

Decision Tree SVC-L1 76.81 ± 9.41 76.81 ± 8.49 76.82 ± 6.80 0.83 ± 0.07 85.45 81.82 83.64 0.86 
mRMR 78.63 ± 6.11 80 ± 8.67 79.32 ± 6.13 0.85 ± 0.07 83.64 87.27 85.45 0.93 

Random Forest SVC-L1 82.27 ± 7.45 87.27 ± 8.33 84.77 ± 5.75 0.93 ± 0.04 90.91 90.91 90.91 0.97 
mRMR 85.0 ± 8.14 84.09 ± 5.47 84.54 ± 3.91 0.93 ± 0.02 94.55 90.91 92.73 0.98 

SVM SVC-L1 72.27 ± 10.84 80.45 ± 7.88 76.36 ± 7.55 0.83 ± 0.06 80.0 83.64 81.82 0.90 
mRMR 83.63 ± 6.49 79.09 ± 6.80 81.36 ± 4.7 0.89 ± 0.04 85.45 81.82 83.64 0.92 

Logistic Regression SVC-L1 87.27 ± 6.36 87.73 ± 10.57 87.95 ± 5.38 0.92 ± 0.03 89.09 90.91 90.0 0.95 
mRMR 82.72 ± 11.82 84.09 ± 5.08 83.41 ± 5.09 0.91 ± 0.05 89.09 89.09 89.09 0.96 

XGBoost SVC-L1 88.18 ± 5.82 87.73 ± 10.57 87.95 ± 6.35 0.94 ± 0.04 96.36 90.91 93.64 0.98 
mRMR 87.72 ± 4.56 88.63 ± 9.58 88.18 ± 3.63 0.95 ± 0.02 98.18 96.36 97.27 0.99  

N
. Periw

al et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e36163

12

module. The design module facilitates the generation of single amino acid mutants by systematically mutating one residue of the 
peptide sequence at a time while keeping all other residues constant and then predicting the antiprotozoal activity of the resulting 
mutants. This procedure is repeated for each amino acid in a given peptide. The protein scan module generates all the overlapping 
peptides of the desired length from a given protein sequence and then predicts the antiprotozoal activity of all the generated peptides 
based on the probability score. Users are provided with the option to download and save the results for further analysis. The entire 
workflow of this study is depicted in Fig. 2. 

4. Results 

In this study, we created five negative datasets including non-antimicrobial peptides, antiviral peptides, antibacterial peptides, 
antifungal peptides and antimicrobial peptides (excluding antiprotozoal peptides). We then performed the classification of anti
protozoal peptides (positive dataset) from each negative dataset. For a better interpretation of the results, we created five pairs each 
consisting of the same positive dataset i.e. antiprotozoal peptides alongside a negative dataset selected from the aforementioned 
negative datasets. The five pairs include (i) antiprotozoal and non-antimicrobial peptides, (ii) antiprotozoal and antiviral peptides, (iii) 
antiprotozoal and antibacterial peptides, (iv) antiprotozoal and antifungal peptides and (v) antiprotozoal and antimicrobial (excluding 
antiprotozoal) peptides. 

4.1. Compositional analysis of positive and negative datasets 

We performed compositional analysis of the constituent amino acids for both the positive and negative datasets within each pair. 
Fig. 3 represents distinct amino acid patterns between the positive and negative datasets for each pair, delineating notable differences 
in the sequence composition. The results can be summarized as follows.  

1. Comparative analysis of antiprotozoal with non-antimicrobial peptides (pair 1) revealed that several amino acids including Alanine 
(A), Cysteine (C), Glycine (G), Lysine (K), and Leucine (L) were enriched in antiprotozoal peptides whereas Aspartic Acid (D), 
Glutamic Acid (E), Methionine (M), Asparagine (N), Proline (P), Glutamine (Q), Serine (S), and Threonine (T) were over- 
represented in non-antimicrobial peptides as shown in Fig. 3A.  

2. Fig. 3B illustrates the amino acid composition among antiprotozoal and antiviral peptides (pair 2). It can be observed that amino- 
acids Alanine (A), Phenylalanine (F), Glycine (G), Isoleucine (I), Lysine (K), and Leucine (L) were over-represented in antiprotozoal 
peptides whereas Aspartic acid (D), Glutamic acid (E), Asparagine (N), Proline (P), Glutamine (Q), Serine (S) and Threonine (T) 
were enriched in antiviral peptides.  

3. In Fig. 3C, the frequency of amino acids Alanine (A), Lysine (K), and Methionine (M) was more prominent in antiprotozoal peptides 
whereas Cysteine (C), Glycine (G), Proline (P), Serine (S), and Threonine (T) formed the major constituents of the antibacterial 
peptides (pair 3).  

4. A comparison of antiprotozoal and antifungal peptides (pair 4) revealed that certain amino acids such as Alanine (A), Isoleucine (I), 
Lysine (K), Leucine (L) were prominent constituents of antiprotozoal peptides whereas Cysteine (C), Asparagine (N), Arginine (R), 
and Serine (S) were enriched in antifungal peptides (Fig. 3D).  

5. The amino acids Alanine (A), Glycine (G), Isoleucine (I), Lysine (K), and Leucine (L) were enriched in antiprotozoal peptides 
whereas Cysteine (C), Aspartic acid (D), Glutamic acid (E), Asparagine (N), Proline (P), Aspartic acid (Q), Arginine (R), Serine (S), 
and Threonine (T) were abundant in antimicrobial peptides (pair 5, Fig. 3E). 

Fig. 4. AUCROC curve shows the performance of five models on validation dataset. These models were built to classify antiprotozoal from non-AMP 
peptides using features selected from (A) SVC-L1 and (B) mRMR. The X-axis represents the false positive rate i.e. 1-Specificity while Y-axis rep
resents the true positive rate i.e. Sensitivity. 
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Table 3 
The performance of machine learning models developed using SVC-L1 and mRMR selected features on training and validation dataset.  

Classifier Feature Selection Sensitivity (mean ± SD) Specificity (mean ± SD) Accuracy (mean ± SD) AUROC (mean ± SD) Sensitivity Specificity Accuracy AUCROC 

Training Dataset Validation Dataset 

Decision Tree SVC-L1 73.18 ± 6.57 69.09 ± 11.82 71.14 ± 6.10 0.75 ± 0.06 87.27 83.64 85.45 0.84 
mRMR 74.09 ± 8.63 75.91 ± 9.55 75.0 ± 4.98 0.82 ± 0.05 89.09 83.64 86.36 0.91 

Random Forest SVC-L1 80.91 ± 8.81 78.18 ± 8.81 79.54 ± 5.83 0.89 ± 0.05 2.73 85.45 89.09 0.96 
mRMR 76.36 ± 11.46 82.72 ± 7.27 79.55 ± 4.07 0.88 ± 0.03 92.73 87.27 90.0 0.96 

SVM SVC-L1 77.27 ± 12.36 66.36 ± 9.13 71.82 ± 8.75 0.77 ± 0.07 74.55 72.73 73.64 0.86 
mRMR 73.64 ± 9.71 74.09 ± 10.96 73.86 ± 6.68 0.84 ± 0.07 83.64 80.0 81.82 0.89 

Logistic Regression SVC-L1 80.91 ± 7.27 75.91 ± 10.17 78.41 ± 5.86 0.85 ± 0.06 89.09 85.45 87.27 0.92 
mRMR 73.64 ± 9.49 74.55 ± 8.18 74.55 ± 7.52 0.84 ± 0.04 89.09 81.82 85.45 0.92 

XGBoost SVC-L1 79.55 ± 11.36 82.73 ± 9.19 80.91 ± 6.03 0.87 ± 0.05 87.27 87.27 87.27 0.95 
mRMR 83.18 ± 7.34 81.36 ± 4.75 82.72 ± 5.06 0.89 ± 0.03 94.55 92.73 93.64 0.98  
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4.2. Feature selection 

The selection of relevant features becomes a prerequisite for building a robust machine-learning model. We explored two feature 
selection methods viz: SVC-L1 and mRMR to select highly relevant and non-redundant features. We evaluated the performance of the 
different feature sets extracted from SVC-L1 and mRMR respectively. For each method, we build machine learning based prediction 
models on the top (15, 16, 17,.30) features, respectively, and assess the performance on both training and validation datasets via 
sensitivity, specificity, accuracy, and AUCROC. We identified the feature set with the least number of features, that effectively dis
criminates the positive dataset from the negative dataset with high accuracy. This process was repeated for each pair, revealing that the 
optimum number of features in the feature set varies across pairs. 

4.3. Machine learning-based prediction models 

We developed machine learning-based prediction models with the optimum features using five different classifiers i.e. DT, RF, 
SVM, LR, and XGB. We performed 10-fold cross-validation and external validation on the training and validation dataset respectively. 
We evaluated the performance metrics on the training dataset via average sensitivity, specificity, accuracy, and AUCROC. For each 
experimental dataset pair, we build the five machine-learning models using the optimum features selected by the SVC-L1 and the 
mRMR methods separately. The hyperparameters that were used to build the robust model are described in Supplementary Table 1. 

4.3.1. A. Experimental results of pair 1: antiprotozoal vs non-antimicrobial peptides 
The first set of experiments was performed with antiprotozoal peptides as positive and non-antimicrobial peptides as negative 

dataset (pair 1). We build the models on the top 25 optimum features selected from SVC-L1 and mRMR. 
The following is observed.  

i. During internal validation, we attained the maximum average specificity (88.63 %), accuracy (88.18 %), and AUCROC (0.95) 
using the discriminatory features obtained from mRMR feature selection method in conjunction with the XGB classifier 
(Table 2). However, the maximum average sensitivity (88.18 %) was achieved from the 25 optimum features obtained using 
SVC-L1 feature selection method with XGB classifier.  

ii. During external validation, we achieved 98.18 % sensitivity, 96.36 % specificity, 97.27 % accuracy, and a 0.99 AUCROC using 
features obtained through the mRMR feature selection method combined with the XGB classifier (Table 2).  

iii. The AUCROC curve establishes the superior performance of 25 optimum features selected using mRMR (Fig. 4B) in comparison 
to SVC-L1 (Fig. 4A) leading to the effective classification of antiprotozoal peptides from non-antimicrobial ones. 

4.3.2. B. Experimental results of pair 2: antiprotozoal vs antiviral peptides 
The second set of experiments involved antiprotozoal peptides as the positive dataset and antiviral peptides as negative dataset 

(pair 2). The classification models were built on top 25 optimum features selected from SVC-L1 and mRMR. The following is observed.  

i. For the training dataset, we attained the model’s highest performance, with an average sensitivity of 83.18 %, accuracy of 
82.72 %, and AUCROC of 0.89. This model was built by leveraging the optimum feature selected via the mRMR method in 
conjunction with the XGB classifier (Table 3).  

ii. We achieved 94.55 % sensitivity, 92.73 % specificity, 93.64 % accuracy, and 0.98 AUCROC with the validation dataset. The 
model was built on features selected by mRMR in conjunction with XGB classifier (Table 3). 

Fig. 5. AUCROC curve shows the performance of five models on validation dataset. These models were built to classify antiprotozoal from antiviral 
peptides using features selected from (A) SVC-L1 and (B) mRMR. The X-axis represents the false positive rate i.e. 1-Specificity while Y-axis rep
resents the true positive rate i.e. Sensitivity. 
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Table 4 
The performance of machine learning models developed using SVC-L1 and mRMR selected features on training and validation dataset.  

Classifier Feature Selection Sensitivity (mean ± SD) Specificity (mean ± SD) Accuracy (mean ± SD) AUROC (mean ± SD) Sensitivity Specificity Accuracy AUCROC 

Training Dataset Validation Dataset 

Decision Tree SVC-L1 64.09 ± 11.57 63.18 ± 7.99 63.64 ± 5.47 0.66 ± 0.05 69.09 70.91 70.0 0.67 
mRMR 65.91 ± 7.4 65.91 ± 12.06 65.91 ± 8.07 0.7 ± 0.07 74.55 69.09 71.82 0.79 

Random Forest SVC-L1 64.09 ± 16.82 68.64 ± 7.72 66.36 ± 7.45 0.72 ± 0.06 74.54 69.09 71.82 0.79 
mRMR 72.27 ± 7.17 65.91 ± 10.61 69.09 ± 4.22 0.75 ± 0.05 80.0 81.82 80.91 0.88 

SVM SVC-L1 58.63 ± 8.96 62.72 ± 10.90 60.68 ± 6.59 0.63 ± 0.07 54.54 60.0 57.27 0.61 
mRMR 69.09 ± 11.09 65.0+±1.14 67.05 ± 7.76 0.74 ± 0.09 69.09 72.73 70.90 0.79 

Logistic Regression SVC-L1 66.36 ± 10.20 64.09 ± 7.17 65.22 ± 4.87 0.72 ± 0.04 60.0 70.91 65.45 0.72 
mRMR 68.64 ± 6.88 64.55 ± 9.49 66.50 ± 5.75 0.74 ± 0.06 61.82 72.73 67.27 0.73 

XGBoost SVC-L1 65.45 ± 7.38 68.18 ± 8.86 66.81 ± 4.99 0.72 ± 0.05 74.54 70.91 72.73 0.83 
mRMR 69.55 ± 9.76 69.09 ± 9.04 69.32 ± 5.5 0.75 ± 0.05 85.45 87.27 86.36 0.87  
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iii. The AUCROC curve establishes the superiority of the mRMR feature selection (Fig. 5B) as compared to SVC-L1 feature selection 
method (Fig. 5A) pointing to the efficient and reliable classification of antiprotozoal peptides from the antiviral ones. 

4.3.3. C. Experimental results of pair 3: antiprotozoal vs antibacterial peptides 
The third set of experiments utilized antiprotozoal peptides as the positive dataset and antibacterial peptides as negative dataset 

(pair 3). Classification models were built using 23 and 25 optimal features selected via SVC-L1 and mRMR respectively, employing five 
different machine learning classifiers. 

The following is observed.  

i. For the training dataset, the model built with mRMR selected optimum features in tandem with XGB classifier achieved the 
maximum average sensitivity (69.55 %), specificity (69.09 %) accuracy (69.32 %), and AUCROC (0.75) (Table 4).  

ii. The performance of the models was assessed on validation datasets, revealing that model built with the XGB classifier using the 
top 25 optimal features selected by mRMR outperformed other achieving 85.45 % sensitivity, 87.27 % specificity, 86.36 % 
accuracy, and 0.87 AUCROC. (Table 4).  

iii. The AUCROC curves provides further evidence supporting the superiority of mRMR feature selection methods (Fig. 6B) over the 
feature selection by SVC-L1 (Fig. 6A). 

4.3.4. D. Experimental results of pair 4: antiprotozoal vs antifungal peptides 
The fourth set of experiments employed antiprotozoal peptides as positive and antifungal peptides as negative dataset (pair 4). We 

build machine learning based prediction models by employing five different machine learning classifiers, using 26 and 25 optimal 
features selected via SVC-L1 and mRMR respectively. 

The following is observed.  

i. The 10-fold cross-validation using the XGB classifier on the mRMR selected optimum features achieved a maximum average 
sensitivity, specificity, accuracy and AUCROC of 75.91 %, 73.18 %, 74.55 % and 0.82 (Table 5).  

ii. During external validation, the performance metrics of all models were evaluated and found that the model that performed well 
in internal validation, demonstrated equally impressive performance on the validation dataset with sensitivity, specificity, 
accuracy and AUCROC are 89.09 %, 92.73 %, 90.91 %, and 0.93 respectively (Table 5).  

iii. The AUCROC curves further provide additional evidence of superiority of model built with mRMR selected features combined 
with the XGB classifier, achieving a score of 0.93 (Fig. 7B), compared to a score of 0.83 obtained with SVC-L1 selected features 
in conjunction with RF classifier (Fig. 7A). 

4.3.5. E. Experimental results of pair 5: antiprotozoal vs antimicrobial peptides 
In the fifth series of experiments, antiprotozoal peptides were used as the positive dataset, while antimicrobial peptides (excluding 

antiprotozoal peptides) as negative dataset (pair 5). We employed five machine learning classifiers on 28 and 25 best features, selected 
via SVC-L1 and mRMR respectively, to build our models. 

The following is observed.  

i. During internal validation, the model built using the XGB classifier on mRMR selected optimum features achieved a good 
performance metrics over the other models, with average sensitivity, specificity, accuracy and AUROC of 77.27 %, 73.18 %, 
73.41 %, 0.79 respectively (Table 6). 

Fig. 6. AUCROC curve shows the performance of five models on validation dataset. These models were built to classify antiprotozoal from anti
bacterial peptides using features selected from (A) SVC-L1 and (B) mRMR. The X-axis represents the false positive rate i.e. 1-Specificity while Y-axis 
represents the true positive rate i.e. Sensitivity. 

N. Periwal et al.                                                                                                                                                                                                        



Heliyon10(2024)e36163

17

Table 5 
The performance of machine learning models developed using SVC-L1 and mRMR selected features on training and validation dataset.  

Classifier Feature Selection Sensitivity (mean ± SD) Specificity (mean ± SD) Accuracy (mean ± SD) AUROC (mean ± SD) Sensitivity Specificity Accuracy AUCROC 

Training Dataset Validation Dataset 

Decision Tree SVC-L1 65.91 ± 8.91 68.18 ± 12.69 67.04 ± 7.82 0.68 ± 0.07 72.73 67.27 70.0 0.75 
mRMR 70.45 ± 8.44 71.36 ± 9.32 70.91 ± 5.16 0.73 ± 0.05 80.0 80.0 80.0 0.85 

Random Forest SVC-L1 69.82 ± 9.27 72.27 ± 5.37 71.54 ± 5.54 0.81 ± 0.05 76.36 69.09 72.72 0.83 
mRMR 75.89 ± 9.33 70.0 ± 10.20 72.95 ± 6.22 0.81 ± 0.07 85.45 83.64 84.55 0.91 

SVM SVC-L1 70.91 ± 7.10 56.81 ± 10.61 63.86 ± 5.96 0.70 ± 0.06 63.64 65.45 64.54 0.72 
mRMR 69.55 ± 8.64 59.55 ± 15.27 64.55 ± 8.14 0.67 ± 0.09 67.28 67.28 67.28 0.69 

Logistic Regression SVC-L1 68.18 ± 8.86 67.27 ± 7.99 67.95 ± 5.69 0.72 ± 0.05 63.64 67.27 65.45 0.74 
mRMR 76.82 ± 8.24 67.27 ± 8.08 72.04 ± 5.38 0.79 ± 0.06 78.18 74.55 76.36 0.81 

XGBoost SVC-L1 71.36 ± 11.5 71.81 ± 7.27 71.59 ± 5.94 0.80 ± 0.06 76.36 70.91 73.64 0.81 
mRMR 75.91 ± 7.34 73.18 ± 9.19 74.55 ± 5.06 0.82 ± 0.04 89.09 92.73 90.91 0.93  
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ii. For external validation, all the trained models were accessed on validation dataset, revealing that the model which demon
strated superior performance during 10-fold cross validation, performed equally well with sensitivity, specificity, accuracy and 
AUCROC of 87.27 %, 90.91 %, 89.09 % and 0.92 respectively (Table 6).  

iii. The AUCROC curves confirms the supremacy of mRMR feature selection methods with the XGB classifier (Fig. 8B) with a score 
of 0.92 as compared to SVC-L1 feature selection with other classifiers (Fig. 8A). 

Thus we can conclude that our proposed machine-learning models were successful in classifying peptides with antiprotozoal ac
tivity from diverse set of the peptides. For training and validation datasets, it was consistently noted that the XGB classifier yielded 
superior performance metrics when utilizing best features selected via the mRMR algorithm. The box plot analysis of optimal features 
revealed that those selected by mRMR were more contrasting and differed in their median value and the interquartile spread across 
positive and negative datasets as compared to the SVC-L1 method (Supplementary Figs. 1–5). This may be attributed to the ability of 
the mRMR algorithm to select the relevant as well as the non-redundant features, a property that is instrumental in building robust 
classification models. 

5. Interpretation of the best predictor model in each pair via lime/SHAP analysis 

Comprehending the biological relevance of extracted features can pose a challenge, as machine learning models are often 
considered “black boxes’’ due to their intricate mechanisms. Shapley Additive Explanation Algorithm (SHAP) and Local Interpretable 
Model-agnostic Explanations (LIME) are employed to evaluate the contribution of each feature to the model [74,75] SHAP is a global 
interpretation method that measures the contribution of each feature by aggregating its Shapley values. We assessed the impact of each 
feature on the best predictor model output by analysing SHAP values for each feature in the validation dataset through density scatter 
plot. LIME analysis elucidates how individual features contribute to predictions by assuming that complex models have explainable 
relationships in the local space of the dataset. It simplifies models through feature matrix permutations and constructs a similarity 
matrix to measure distances between query and perturbed sequences, also evaluating model significance per instance. LIME and SHAP 
analysis for one pair (antiprotozoal vs non-antimicrobial peptides) are shown in Fig. 9A and B respectively. However, the analysis for 
other pairs are illustrated in the Supplementary Figs. 6–9. 

6. Conclusions 

Apart from causing morbidity and mortality, protozoal pathogens are also getting immune to the existing drugs. The increasing 
immunity to the available drugs as well as the dearth of efficacious treatment against protozoan diseases highlights the urgent need for 
the identification of antiprotozoal regimens [76]. Therefore there is a need for the development of new therapeutics against these 
pathogens. 

In this quest, several molecules including nanobodies [77] and nanotraps [78] have been reported to be effective against a wide 
range of micro-organisms. Additionally, computational methods and fragment-based drug design approaches have been used to 
identify new antimicrobial agents [79]. 

Apart from this new generation of antimicrobials, antimicrobial peptides form a class of naturally occurring compounds that have 
been shown to inhibit a broad range of micro-organisms. The fact that some of the peptides targeting Hepatitis [80,81], Influenza [82, 
83], and Human Immunodeficiency Virus-1 [84–86] are in the preclinical or clinical phase further attests to their importance. It 
motivates toward designing and testing antiprotozoal peptides. 

Therefore, we undertook a systematic approach and designed this study to leverage machine learning-based approaches to predict 
antiprotozoal peptides. To build a robust dataset for the proposed work, we performed extensive manual curation of experimentally 

Fig. 7. ROC curve shows the performance of five models on validation dataset. These models were built to classify antiprotozoal from antifungal 
peptides using features selected from (A) SVC-L1 and (B) mRMR. The X-axis represents the false positive rate i.e. 1-Specificity while Y-axis rep
resents the true positive rate i.e. Sensitivity. 

N. Periwal et al.                                                                                                                                                                                                        



Heliyon10(2024)e36163

19

Table 6 
The performance of machine learning models developed using SVC-L1 and mRMR selected features on training and validation dataset.  

Classifier Feature Selection Sensitivity (mean ± SD) Specificity (mean ± SD) Accuracy (mean ± SD) AUROC (mean ± SD) Sensitivity Specificity Accuracy AUCROC 

Training Dataset Validation Dataset 

Decision Tree SVC-L1 61.36 ± 8.19 67.27 ± 10.84 64.54 ± 6.68 0.68 ± 0.07 63.64 70.91 67.27 0.71 
mRMR 65.45 ± 9.58 67.73 ± 10.05 66.59 ± 4.2 0.68 ± 0.08 70.91 74.55 72.73 0.78 

Random Forest SVC-L1 69.09 ± 8.33 76.36 ± 8.33 72.73 ± 6.89 0.80 ± 0.07 76.36 80.0 78.18 0.86 
mRMR 72.27 ± 6.57 74.09 ± 10.17 73.18 ± 5.55 0.81 ± 0.05 83.64 83.64 83.64 0.89 

SVM SVC-L1 68.18 ± 10.56 64.54 ± 9.27 66.36 ± 3.77 0.70 ± 0.06 65.45 65.45 65.45 0.69 
mRMR 71.36 ± 7.89 70.0 ± 6.80 70.68 ± 5.12 0.76 ± 0.05 74.55 78.18 76.36 0.82 

Logistic Regression SVC-L1 74.55 ± 7.10 68.18 + 10.56 71.36 + 5.94 0.77 ± 0.07 72.72 74.55 73.64 0.82 
mRMR 70 ± 11.35 73.18 ± 8.49 72.05 ± 5.38 0.79 ± 0.05 76.36 81.82 79.09 0.83 

XGBoost SVC-L1 72.73 ± 7.61 69.55 ± 10.77 72.95 ± 6.46 0.80 ± 0.07 78.18 83.64 80.91 0.88 
mRMR 77.27 ± 9.96 73.18 ± 10.25 73.41 ± 6.75 0.79 ± 0.07 87.27 90.91 89.09 0.92  
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verified antiprotozoal peptides to create a positive dataset. It has been reported that including multiple negative datasets leads to the 
generation of efficient models [38]. Thus we included five different negative datasets in this study. For the sake of simplification, we 
created five pairs of the datasets with each pair consisting of the same positive dataset i.e. antiprotozoal peptides and different negative 
data. The pfeature algorithm was used to compute 9151 features of the peptide sequences. Two feature selection tools viz. SVC-L1 and 
mRMR were then used to identify the relevant and non-redundant features. To avoid overfitting of models, we evaluated the per
formance of the different feature sets extracted from SVC-L1 and mRMR and found that the optimum features vary from pair to pair. 
We observed that the XGB classifier exhibited superior performance with optimal features selected through the mRMR algorithm in 
both the training and validation datasets. The results demonstrate that we were able to classify antiprotozoal peptides from all negative 
datasets in an efficient way. The box plot analysis revealed that features selected by mRMR for classifying antiprotozoal peptides 
exhibited greater diversity and contrast compared to those chosen by SVC-L1, potentially enhancing the model efficiency. Specifically, 
mRMR-selected features predominantly comprised combinations of two or three enriched amino acids, whereas SVC-L1 features 
mainly consisted of single enriched amino acids. Besides conducting external validation, we tested the efficacy of our top-performing 
model on an independent dataset (Supplementary Table 2). Surprisingly, our model demonstrated impressive performance (Supple
mentary Table 3), instilling confidence in its capability to effectively generalize to unseen data provided by the user. 

To facilitate the research in this field, we developed a webserver “APPred” where the users can ascertain whether the query peptide 
possesses antiprotozoal properties or not. The peptides with the best-predicted scores can then be validated in the wet lab for their 
antiprotozoal properties. 

Fig. 8. ROC curve shows the performance of five models on validation dataset. These models were built to classify antiprotozoal from AMP peptides 
using features selected from (A) SVC-L1 and (B) mRMR. The X-axis represents the false positive rate i.e. 1-Specificity while Y-axis represents the true 
positive rate i.e. Sensitivity. 

Fig. 9. (A) SHAP and (B) LIME analysis of robust model for classifying antiprotozoal from non-antimicrobial peptides.  
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Challenges and future prospects 

In the present study, machine learning models were used to classify antiprotozoal peptides from other classes of peptides including 
non-antimicrobial, antiviral, antibacterial, antifungal and antimicrobial peptides. As with any good model, each new piece of infor
mation appears to raise a number of unanticipated and intriguing questions. We acknowledge one of the lacunae of this study is the 
limited number of experimentally validated peptides spanning all the protozoal pathogens. Therefore, to make a model more robust, 
we require a greater number of positive instances to elucidate with great accuracy. Unfortunately, that has not been completely 
achieved in the present study due to the non-availability of the data. 

Additionally, our future aim is to make a multiclass model for peptides from diverse protozoal pathogens. The proposed study could 
not achieve this because the majority of the experimentally validated peptides belonged to 2–3 protozoal pathogens only. For instance, 
around 43.2 % of the experimental antiprotozoal peptides peptide pool belonged to the Leishmania species whereas 21.30 % and 21.90 
% of the peptides were against Trypanosoma species and Plasmodium species respectively. Consequently, more studies are required to 
further validate and characterize the peptides against other protozoal pathogens to enable us to make a multiclass model. 
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