
Ecology and Evolution. 2022;12:e9189.	 		 	 | 1 of 10
https://doi.org/10.1002/ece3.9189

www.ecolevol.org

Received:	8	March	2022  | Revised:	18	July	2022  | Accepted:	20	July	2022
DOI: 10.1002/ece3.9189  

R E S E A R C H  A R T I C L E

Projected bioclimatic distributions in Nearctic Bovidae signal 
the potential for reduced overlap with protected areas

Christian John  |   Eric Post

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2022	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

Department	of	Wildlife,	Fish,	and	
Conservation	Biology,	University	of	
California,	Davis,	California,	USA

Correspondence
Christian	John,	Department	of	Wildlife,	
Fish,	and	Conservation	Biology,	University	
of	California,	1	Shields	Ave.,	Davis,	CA	
95616,	USA.
Email:	cjohn@ucdavis.edu

Funding information
National	Aeronautics	and	Space	
Administration,	Grant/Award	Number:	
80NSSC19K1359

Abstract
Assumptions	 about	 factors	 such	 as	 climate	 in	 shaping	 species'	 realized	 and	poten-
tial	distributions	underlie	much	of	conservation	planning	and	wildlife	management.	
Climate	and	climatic	change	 lead	 to	shifts	 in	species	distributions	 through	both	di-
rect	 and	 indirect	 ecological	 pressures.	Distributional	 shifts	may	be	particularly	 im-
portant	 if	range	overlap	is	altered	between	interacting	species,	or	between	species	
and	protected	areas.	The	cattle	family	(Bovidae)	represents	a	culturally,	economically,	
and	ecologically	 important	 taxon	 that	occupies	many	of	 the	world's	 rangelands.	 In	
contemporary	North	America,	five	wild	bovid	species	inhabit	deserts,	prairies,	moun-
tains,	 and	 tundra	 from	Mexico	 to	Greenland.	Here,	we	aim	 to	understand	how	 fu-
ture	climate	change	will	modify	environmental	characteristics	associated	with	North	
American	bovid	species	relative	to	the	distribution	of	extant	protected	areas.	We	fit	
species	distribution	models	for	each	species	to	climate,	topography,	and	land	cover	
data	 using	 observations	 from	 a	 citizen	 science	 dataset.	 We	 then	 projected	 mod-
eled	distributions	to	the	end	of	the	21st	century	for	each	bovid	species	under	two	
scenarios	of	anticipated	climate	change.	Modeling	results	suggest	that	suitable	hab-
itat	will	shift	 inconsistently	across	species	and	that	such	shifts	will	 lead	to	species-	
specific	variation	in	overlap	between	potential	habitat	and	existing	protected	areas.	
Furthermore,	projected	overlap	with	protected	areas	was	sensitive	to	 the	warming	
scenario	under	consideration,	with	diminished	realized	protected	area	under	greater	
warming.	Conservation	priorities	and	designation	of	new	protected	areas	should	ac-
count	for	ecological	consequences	of	climate	change.
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1  |  INTRODUC TION

Elevational	and	latitudinal	shifts	in	species'	ranges	constitute	widely	
documented	 ecological	 responses	 to	 climate	 change	 (Büntgen	
et al., 2017; Chen et al., 2011;	Williams	 &	 Blois,	2018).	 Through	
both	 direct	 (e.g.,	 thermal	 stress)	 and	 indirect	 (e.g.,	 temperature-	
mediated	natural	enemy	activity)	mechanisms,	climate	shapes	spe-
cies	 distributions	 across	 local,	 regional,	 and	 global	 scales	 (Araújo	
&	 Luoto,	2007).	 As	 ongoing	 human	 pressure	 further	 shapes	 con-
temporary	species	distributions	 (Faurby	&	Araújo,	2018;	Laliberte	
&	Ripple,	2004),	 identifying	 factors	associated	with	 species	pres-
ence	 and	 measuring	 how	 these	 factors	 will	 change	 lends	 insight	
on	 how	 potential	 species	 distributions	 may	 shift	 in	 the	 coming	
decades.	Effective	conservation	planning,	therefore,	relies	on	well-	
defined	forecasts	of	the	change	in	species	distribution	(Rodríguez	
et al., 2007).	Yet,	for	many	species,	the	extent	to	which	future	dis-
tributions	will	overlap	with	existing	protected	areas	remains	unre-
solved	(IPBES,	2019).

The	 designation	 of	 effective	 protected	 areas	 requires	 bal-
ancing	 the	 immediate	 needs	 of	 imperiled	 species	with	 anticipated	
conditions	 decades	 or	 centuries	 into	 the	 future.	 Although	 the	 es-
tablishment	of	protected	areas	has	increased	dramatically	over	the	
past	 century	 (Watson	 et	 al.,	 2014),	 the	 density,	 area,	 and	 gover-
nance	of	protected	areas	vary	considerably	across	space	(Bingham	
et al., 2019;	UNEP-	WCMW	and	IUCN,	2021).	As	conserved	spaces	
continue	to	be	planned	and	adopted,	formal	analyses	of	interactions	
among	climate	and	geographical	factors	governing	species	distribu-
tions	and	projected	changes	in	them	will	aid	in	the	prioritization	of	
areas	 to	protect	 (Monzón	et	 al.,	2011;	 Scridel	 et	 al.,	2021;	 Sierra-	
Morales et al., 2021).	 Biotic	 interactions	 may	 yet	 further	 control	
species	 distributions,	 especially	 for	 herbivores	 that	 specialize	 on	
particular	food	resources	(e.g.,	Beumer	et	al.,	2019).	Thus,	effective	
conservation	planning	will	take	into	account	not	only	future	change	
in	temperature	and	precipitation,	but	also	shifts	in	vegetation	distri-
butions	and	land	cover	types.

In	North	America,	the	mammalian	family	Bovidae is represented 
by	 five	 extant	 species:	 bighorn	 sheep	 (Ovis canadensis), thinhorn 
sheep	 (Ovis dalli),	 North	 American	 bison	 (Bison bison),	 mountain	
goat	(Oreamnos americanus),	and	muskox	(Ovibos moschatus). These 
species	 constitute	 a	 broad-	ranging	 phylogeographic	 clade	 that	
survived	 marked	 warming	 at	 the	 end	 of	 the	 Pleistocene.	 Today,	
they	occupy	deserts,	 prairies,	 tundra,	 and	 alpine	 zones	 across	 the	
Nearctic	(Castelló,	2016).	The	bovid	species	of	North	America	accu-
mulated	a	legacy	of	hunting,	introduced	disease,	and	human	devel-
opment,	 leading	 to	shifts	 in	abundance,	migratory	propensity,	and	
distributions.

Here,	 we	 fit	 and	 project	 Ecological	 Niche	 Models	 (ENMs)	 for	
Nearctic	bovid	 species	under	 two	scenarios	of	anticipated	climate	
change	generated	using	occurrence	data	from	a	public	database	of	
species	observations.	We	relate	modeled	current	and	future	species	
distributions	to	existing	protected	areas,	with	the	goals	of	identifying	
how	environmental	parameters	may	shift	in	the	coming	decades,	and	
how	well	current	protected	areas	align	with	modeled	distributions.	

We	 discuss	 our	modeling	 results	 in	 the	 context	 of	 other	work	 on	
conservation	and	spatial	variation	in	wild	bovids.

2  |  METHODS

2.1  |  Species presence data

Species	 presence	 data	 were	 downloaded	 from	 the	 Global	
Biodiversity	 Information	 Facility	 (GBIF,	 2022).	 This	 database	 in-
cludes	 species	 presence	 observations	 from	 museum	 collections,	
university	records,	and	citizen	science	contributions.	Presence	data	
were	 extracted	 using	 the	 ‘rgbif’	 library	 in	 R	 v.3.6.1	 (Chamberlain	
et al., 2021),	with	GBIF	taxon	key	associated	with	each	of	the	five	
North	American	bovids	(O. canadensis, 2441119; O. dalli, 2441118; O. 
americanus, 2441151; O. moschatus, 2441108; and B. bison, 2441176), 
as	well	as	the	remaining	North	American	members	of	Artiodactyla	
(Antilocapra americana, 2440902; Odocoileus hemionus, 2440974; 
Odocoileus virginianus, 2440965; Cervus canadensis, 8600904; Alces 
alces, 4262283; Rangifer tarandus, 5220114; and Dicotyles tajacu, 
2440996).	Occurrence	data	were	 sent	 through	 a	 cleaning	process	
to	 remove	 biased,	 uninformative,	 or	 inappropriate	 observations	
(for	 a	 full	 description	 of	 removed	 observations,	 see	 “Biodiversity	
data”	 in	 Table	 S1).	 First,	 points	 with	 missing	 geographic	 informa-
tion	were	censored.	Next,	observations	outside	of	North	America	
were	removed,	as	were	cases	where	observation	 locations	did	not	
correspond	with	observation	 country.	Records	with	no	 associated	
observation	date,	and	records	with	observation	date	prior	to	1980,	
were	removed.	Finally,	irrelevant	observation	locations	(e.g.,	bighorn	
sheep	at	the	Chicago	Zoo)	were	removed.

Data	generated	through	citizen	science	collection	face	concerns	
over	validity	and	sampling	bias	(Beck	et	al.,	2013; Yesson et al., 2007). 
The	dataset	we	used	constitutes	a	set	of	charismatic,	easily	identified	
species,	in	a	generally	well-	sampled	geographic	region	(see	Table	S1, 
Biodiversity	Data).	Because	presence-	only	species	distribution	models	
are	sensitive	to	spatial	biases	in	sampling	effort	(Phillips	et	al.,	2009), 
we	used	occurrence	data	from	the	full	set	of	North	American	even-	
toed	ungulates	to	generate	a	sampling	bias	grid,	which	was	used	during	
the	background	data	generation	(described	below).	Furthermore,	we	
coarsened	 the	 resolution	 of	 the	 predictor	 dataset	 to	 accommodate	
uncertainty	 in	observation	 location.	However,	our	efforts	to	control	
for	biases	in	species	presence	data	limit	the	resolving	power	of	species	
distribution,	and	we	were	thus	unable	to	account	for	the	effects	of	mi-
croclimate	(e.g.,	Lembrechts	et	al.,	2019)	in	our	models,	or	incorporate	
anticipated	fine-	scale	change	in	our	projections.

2.2  |  Climate, land cover, and topography data

Historical	and	projected	Worldclim	v.	2.1	data	(Fick	&	Hijmans,	2017), 
present	and	future	GCAM	land	cover	data	(Chen	et	al.,	2020), and 
North	America	Elevation	GRID	data	(available	at	https://www.scien 
cebase.gov/catal	og/item/4fb54	95ee4	b04cb	93775	1d6d)	were	used	

https://www.sciencebase.gov/catalog/item/4fb5495ee4b04cb937751d6d
https://www.sciencebase.gov/catalog/item/4fb5495ee4b04cb937751d6d
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as	baseline	environmental	covariates.	All	predictors	were	coarsened	
to	6 × 6 km	pixels	in	an	equal-	area	projection	to	accommodate	spatial	
uncertainty	and	match	the	resolution	of	the	coarsest	predictor	data	
product	in	species	occurrence	data	using	bilinear	interpolation.

Current	and	future	climate	data	were	accessed	from	the	Worldclim	
v.	 2.1	 dataset.	We	 selected	 data	 generated	 from	 all	 eight	 available	
global	 climate	 models	 (GCMs;	 BCC-	CSM2-	MR,	 CanESM5,	 CNRM-	
CM6-	1,	 CNRM-	ESM2-	1,	 IPSL-	CM6A-	LR,	 MIROC-	ES2L,	 MIROC6,	
and	MRI-	ESM2-	0)	under	two	shared	socioeconomic	pathways	(SSPs;	
SSP2–	4.5	 and	 SSP5–	8.5)	 for	 the	 period	 2081–	2100.	 SSPs	were	 ad-
opted	with	the	CMIP6	models	and	incorporated	socioeconomic	growth	
with	the	previously	used	representative	concentration	pathways	(Riahi	
et al., 2017).	SSP2	reflects	a	 future	with	moderate	development,	on	
track	with	historical	growth	and	inequality,	but	with	reduced	depen-
dence	on	fossil	fuels,	whereas	SSP5	reflects	a	future	with	accelerating	
socioeconomic	development	and	reduced	global	inequality,	but	with	a	
heavy	reliance	on	fossil	fuels.	SSP2–	4.5	predicts	about	3°C	warming	
by	the	end	of	this	century,	while	SSP5–	8.5	predicts	about	5°C	warm-
ing	relative	to	the	1850–	1900	average	(Tebaldi	et	al.,	2021). Data on 
future	conditions	were	re-	centered	and	transformed	according	to	the	
approach	described	for	historical	data	above.

Current	and	future	(2081–	2100)	land	use/land	cover	data	were	ac-
cessed	from	the	GCAM	Demeter	land	use	dataset	(Chen	et	al.,	2020). 
GCAM	data	are	reported	by	cover	type	on	a	fractional	scale	from	0	
to	100,	where	100	 indicates	 the	pixel	 is	saturated	by	that	 type.	We	
aggregated	each	of	the	GCAM	tree	cover	types	into	their	respective	
biome	(PFT4	and	6;	1,	5,	and	7;	and	2,	3,	and	8	representing	tropical,	
temperate,	 and	 boreal	 trees,	 respectively),	 and	 PFT15–	30	 into	 an	
umbrella	category,	 “Agriculture,”	 to	 reduce	 the	size	of	 the	candidate	
predictor	 pool.	 Thus,	 from	 the	GCAM	data	we	 included	14	 vegeta-
tion	layers,	an	agriculture	layer,	a	barren	layer,	and	an	urban	layer.	We	
used	the	SSP1–	2.6	2015	model	to	index	current	land	cover	conditions.	
Because	GCAM	data	are	not	available	for	the	same	CMIP6	models	as	
Worldclim,	we	condensed	the	five	available	models	of	land	use	futures	
into	their	respective	SSP	scenarios	(SSP2–	4.5	and	SSP5–	8.5)	by	taking	
the	mean	value	of	each	fractional	land	cover	type	for	each	pixel	across	
the	 five	 available	models.	The	 “current”	SSP1–	2.6	 scenario	was	also	
condensed	from	the	five	available	models.

To	account	for	topographic	constraints	on	species	distribution,	
we	included	elevation	and	terrain	ruggedness	as	predictors.	Terrain	
ruggedness	 (TRI)	was	calculated	 following	 standard	gdal	protocols	
(GDAL/OGR	 contributors,	 2021).	 Finally,	 elevation	 and	 TRI	 were	
centered	 by	 subtracting	 the	 mean	 layer	 value	 from	 all	 grid	 cells	
within	each	layer.	Topography	data	were	treated	as	static,	and	there-
fore,	the	same	topography	products	were	used	for	present	and	fu-
ture	(2081–	2100)	datasets.

2.3  |  Vector spatial data

Land	 boundaries	 of	 North	 America	 were	 extracted	 from	 the	
rnaturalearth::ne_countries()	 dataset	 (South,	2017).	 The	 periphery	
of	the	Greenland	Inland	Ice	Sheet	was	delineated	by	vectorizing	all	

cells	classified	as	“ice”	in	the	raster	version	of	the	Circumpolar	Arctic	
Vegetation	 Map	 (Raynolds	 et	 al.,	 2019).	 Protected	 area	 bounda-
ries	were	 identified	using	 the	World	Database	of	Protected	Areas	
(UNEP-	WCMW	and	IUCN,	2021)	and	filtered	to	include	only	poly-
gons with area >100 km2.

2.4  |  Statistical modeling

Complete	details	on	overview,	data,	model	design,	assessment,	and	
prediction	 (ODMAP;	 Zurell	 et	 al.,	2020)	 are	 available	 in	 Table	 S1. 
MaxEnt	v.	3.4.3	models	 (Phillips	et	al.,	2021)	were	 fit	 to	 the	pres-
ence	and	background	locations	for	each	bovid	species.	We	used	the	
‘SDMtune’	library	(Vignali	et	al.,	2020)	to	fit,	evaluate,	and	generate	
predictions	with	MaxEnt	models.	For	each	species,	a	MaxEnt	model	
was	constructed	using	the	following	approach:	Occurrence	records	
were	spatially	thinned	to	a	radius	of	6	km.	A	bias	grid	was	generated	
using	occurrence	data	from	all	North	American	artiodactyl	species	
to	account	for	sampling	bias	in	occurrence	data	(Phillips	et	al.,	2009). 
We	assumed	that	sampling	bias	was	equivalent	across	Artiodactyla,	
given	 that	 they	 are	 large,	 charismatic,	 and	 easily	 identifiable,	 and	
therefore	 used	 one	 bias	 grid	 for	 the	 continent.	 The	 bias	 grid	was	
calculated	by	generating	a	continental	raster	with	6 × 6 km	pixel	res-
olution,	 identifying	 all	 pixels	 containing	 artiodactyl	 species	 occur-
rences,	and	applying	a	2-	dimensional	kernel	density	estimator	with	
a	 normal	 reference	 bandwidth.	 Ten	 thousand	 background	 points	
were	 randomly	sampled	 from	the	bias	grid	 in	 lieu	of	absence	data	
for	model	fitting	for	each	species.	Occurrence	and	background	data	
were	subdivided	into	60%	training,	20%	validation,	and	20%	testing	
partitions.	Naïve	MaxEnt	models	were	fit	with	training	data	and	spa-
tial	cross-	validation	using	the	checkerboard1	function	in	the	R	pack-
age	ENMeval	(Kass	et	al.,	2021).	To	minimize	model	complexity	and	
reduce	the	 likelihood	of	overfitting,	we	considered	only	 linear	and	
quadratic	feature	classes	(Elith	et	al.,	2011).	We	assumed	no	a	priori	
knowledge	of	factors	associated	with	species	presence	and,	there-
fore,	included	all	19	bioclimatic	variables,	all	topographic	covariates,	
and	all	land	cover	indices	in	the	naïve	models.	A	data-	driven	variable	
selection	 procedure	 was	 then	 employed	 to	 remove	 highly	 corre-
lated	predictor	variables,	based	on	a	Spearman	correlation	threshold	
of	 0.7	 (Vignali	 et	 al.,	2020).	 After	 removing	 correlated	 predictors,	
models	were	optimized	for	complexity	using	a	genetic	algorithm	to	
identify	 the	most	 robust	 combination	 of	 model	 hyperparameters.	
We	 considered	 regularization	multipliers	 between	 0.5	 (most	 com-
plex)	and	10	 (least	complex)	and	 linear	as	well	as	 linear+quadratic	
feature	classes.	Finally,	we	 removed	non-	important	variables	 from	
the	optimized	models	to	maximize	parsimony	using	a	leave-	one-	out	
jackknife	 test.	We	 refer	 to	 these	 optimized	models	 with	 selected	
variables	as	the	“final	model”	for	each	species.	Final	model	reports	
were	generated	for	each	species	(summarized	in	Figure	S1).

Species	distributions	were	predicted	using	final	models	and	three	
raster	stacks:	“current”	conditions	defined	by	the	training	data,	and	
two	future	scenarios	(SSP2–	4.5	and	SSP5–	8.5),	both	for	the	period	
spanning	2081–	2100.	Because	MaxEnt	models	generate	continuous	
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prediction	surfaces,	model-	specific	response	thresholds	were	used	
to	 differentiate	 between	 predicted	 “presence”	 and	 “absence.”	We	
used	two	thresholds	(Liu	et	al.,	2013):	one	with	equal	model	sensi-
tivity	and	specificity	(ESS)	and	one	which	maximized	the	sum	of	sen-
sitivity	and	specificity	 (MSS).	For	each	 future	SSP	scenario,	model	
consensus	was	calculated	as	the	sum	of	the	MaxEnt	model	predic-
tions	under	each	GCM	that	were	above	the	MSS	threshold,	based	on	
a	comparison	between	the	two	thresholds	under	current	conditions	
revealing	few	differences	except	for	a	more	constrained	bison	range	
using	 MSS.	 Correlative	 distribution	 modeling	 approaches	 such	 as	
MaxEnt	are	limited	by	uncertainty	in	future	conditions,	non-	analog	
conditions,	 and	 exclusion	 of	 endogenous	 factors	 that	 may	 allow	
species	 to	 adapt	 or	 tolerate	 future	 change	 (Dawson	 et	 al.,	2011). 
Uncertainty	 in	 climate	 forecasts	 was	 accounted	 for	 by	 composit-
ing	modeled	species	distributions	across	environmental	 covariates	
predicted	under	a	suite	of	GCM	models.	To	account	for	non-	analog	
conditions,	we	applied	a	clamping	procedure	to	prevent	projecting	
results	outside	the	range	of	conditions	present	during	model	train-
ing.	 We	 also	 generated	 multivariate	 environmental	 similarity	 sur-
faces	 (“MESS	grids”)	and	 limited	predictions	 to	areas	with	positive	
MESS	values	 (Elith	et	al.,	2010).	MESS	grids	were	calculated	using	
the	R	package	dismo	instantiation	of	‘mess()’	with	all	continuous	pre-
dictors	in	the	dataset	and	are	shown	in	Table	S1.	We	were	unable	to	
account	for	species'	adaptive	potential	and	thus	limit	our	interpreta-
tion	of	the	results	below	to	anticipated	change	in	distribution	of	en-
vironmental	characteristics	associated	with	bovid	species	presence,	
rather	than	distribution	of	bovid	species	themselves.

Comparisons	among	species	of	land	area,	range	elevation,	range	
latitude,	and	realized	protected	area	were	calculated	by	taking	the	
mean	value	of	current	and	projected	data	layers	grouped	by	species	
and	 SSP.	 Standard	 errors	 of	mean	 projected	 range	measurements	
were	calculated	by	 treating	GCM	as	a	 replicate.	All	 analyses	were	
performed	in	R	v.	4.1.2	(R	Core	Team,	2019).

3  |  RESULTS

We	accessed	32,999	North	American	bovid	records	from	GBIF.	We	
removed	14,514	observations	during	data	quality	checks	and	14,927	
during	data	thinning,	leaving	3558	records	for	model	fitting.	Within	
the	 cleaned,	 thinned	 dataset,	 bighorn	 sheep	were	 represented	 by	
1915	 records,	 thinhorn	 sheep	 by	 218	 records,	mountain	 goats	 by	
659	records,	muskoxen	by	218	records,	and	North	American	bison	
by	519	records.

In	general,	modeled	potential	habitat	shifted	in	response	to	pro-
jected	climate	change	in	2081–	2100	(Figure 1).	Modeled	future	hab-
itat	covered	less	area	under	the	SSP5–	8.5	scenario	than	under	the	
SSP2–	4.5	 scenario	 for	all	 species	except	 thinhorn	sheep	 (Table 1). 
Projected	 change	 in	 the	 surface	 area	 of	 modeled	 habitat	 was	 in-
consistent	across	species,	but	with	a	trend	of	 increasing	change	at	
higher	 latitudes	 (Table 1).	For	example,	over	a	quarter	of	modeled	
potential	habitat	space	is	expected	to	be	lost	for	thinhorn	sheep	by	
2100	regardless	of	the	SSP,	while	the	projected	change	for	bighorn	

sheep	is	less	coherent.	The	total	area	of	modeled	potential	habitat	
was	never	consistently	higher	under	both	scenarios	for	any	species	
(although	modeled	potential	habitat	increased	slightly	under	SSP2–	
4.5	for	bighorn	sheep	and	mountain	goats).

Projected	 elevational	 range	 shifts	 were	 variable	 among	 spe-
cies	(Table	S2-	S3).	Whereas	projections	for	bighorn	sheep	featured	
marginal	 elevational	 change	 (current	 mean	 elevation	 =	 1527 m;	
SSP2–	4.5	 mean	 elevation	 =	 1537 ± 5	 m;	 SSP5–	8.5	 mean	 eleva-
tion =	1583 ± 7	m),	stronger	elevational	contraction	was	evident	for	
thinhorn	 sheep	 (current	mean	 elevation	=	 826 m;	 SSP2–	4.5	mean	
elevation =	 932 ± 17 m;	 SSP5–	8.5	 mean	 elevation	 =	 934 ± 44 m).	
Projected	 latitudinal	 range	 shifts	 were	 similarly	 variable	 among	
species.	 For	 example,	 modeled	 muskox	 habitat	 faces	 a	 signifi-
cant	 northward	 contraction	 due	 to	 limited	 available	 land	 area	
further	north	(current	mean	latitude	=	68.1°N;	SSP2–	4.5	mean	lati-
tude	=	71.7 ± 0.4°N;	SSP5–	8.5	mean	latitude	=	74.5 ± 0.5°N),	while	
modeled	 mountain	 goat	 habitat	 shifts	 slightly	 southward	 (current	
mean	 latitude	=	 53.1°N;	 SSP2–	4.5	 mean	 latitude	=	 52.2 ± 0.4°N;	
SSP5–	8.5	mean	latitude	=	51.8 ± 0.9°N).

Overlap	between	ENM	projections	and	current	protected	areas	
varied	among	species,	and	future	overlap	is	expected	to	vary	by	spe-
cies	as	well	(Figure 2).	Whereas	habitat	of	southerly	montane	species	
with	 minimal	 projected	 range	 shifts	 (bighorn	 sheep	 and	 mountain	
goats)	 is	not	projected	to	face	a	significant	change	in	potential	pro-
tected	area,	habitat	of	northerly	species	such	as	thinhorn	sheep	and	
muskoxen	 is	projected	to	face	a	considerable	reduction	 in	potential	
protected	area	(38.6%	and	43.1%	of	protected	area	for	thinhorn	sheep	
and	muskoxen,	respectively,	under	SSP2–	4.5,	and	30.5%	and	62.9%	
under	SSP5–	8.5).	Projected	loss	of	potential	protected	area	for	bison	
followed	a	similar	pattern	(55.3%	and	59.3%	for	SSP2–	4.5	and	SSP5–	
8.5,	 respectively).	 For	 the	 only	 obligate	 Arctic	 species,	 muskoxen,	
the	 projected	 reduction	 in	 potential	 protected	 area	 is	 considerably	
greater	 under	 the	 SSP5–	8.5	 scenario	 than	 under	 SSP2–	4.5	 (nearly	
20%	greater	reduction	in	potential	protected	area	under	SSP5–	8.5).

The	proportion	of	potential	 species	distributions	 that	overlaps	
with	protected	area	and	the	proportion	of	protected	area	that	over-
laps	with	potential	distributions	reveal	different	patterns	in	potential	
protected	area	among	the	bovid	species	(Figure 3).	Although	approx-
imately	proportional	loss	of	protected	area	relative	to	potential	spe-
cies	distributions	is	projected	across	the	five	North	American	bovid	
species	 (indicated	by	overlapping	 current	 and	projected	 estimates	
in Figure 3a),	the	percentage	of	currently	protected	area	that	is	pro-
jected	 to	 feature	 environments	 characterized	 by	 bovid	 presence	
is	 projected	 to	 drop	 across	 SSPs	 for	 thinhorn	 sheep,	muskox,	 and	
American	 bison	 (indicated	 by	 the	marked	 reduction	 in	 fraction	 of	
protected	area	estimated	for	these	species	in	Figure 3b).

4  |  DISCUSSION

We	identified	discordant	projections	by	MaxEnt	distribution	mod-
els	 across	 Nearctic	 bovids.	 Inconsistent	 projections	 among	 spe-
cies	arose	through	two	processes:	unequal	response	by	species	to	
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different	 topographic,	 land	 cover,	 and	 bioclimatic	 variables,	 and	
uneven	projected	environmental	 change	across	 space.	Projected	
potential	habitat	shifts	in	response	to	anticipated	climate	change	
are	greatest	for	species	at	high	latitudes,	where	observed	warm-
ing	outpaced	 change	at	 lower	 latitudes,	 and	 is	 expected	 to	 con-
tinue	to	do	so	(Post,	Steinman,	&	Mann,	2018;	Post	et	al.,	2019). 
Furthermore,	 for	 some	 species,	 the	 total	 area	 of	 potential	

protected	space	is	projected	to	decrease	more	dramatically	under	
the	higher	emissions	scenario,	SSP5–	8.5.	Shifts	in	climatically	suit-
able	habitat	seem	likely	for	other	high	latitude	species,	where	ef-
fects	of	climate	change	are	amplified.

Other	species	distribution	modeling	efforts	corroborate	the	im-
portance	of	human	impacts,	terrain,	and	land	cover	characteristics	
for	 ungulate	 distributions	 (Herrera-	Sánchez	 et	 al.,	 2020;	 Jenkins	
et al., 2020;	Kuemmerle	et	al.,	2012).	To	our	knowledge,	this	is	the	
first	study	to	simultaneously	explore	future	distributions	of	multiple	
North	American	bovids	in	the	context	of	protected	areas.	However,	
modeling	studies	 that	employ	different	data	sources	and	different	
scales	of	analysis	have	uncovered	important	relationships	between	
bovid	 species	 and	 their	 environment	 that	 help	 contextualize	 our	
findings.

In	 a	 recent	 study,	 a	MaxEnt	model	 for	 desert	 bighorn	 sheep	
(Ovis canadensis nelsoni)	 was	 hindcast	 to	 investigate	 range	 dy-
namics	 during	 the	 mid-	Holocene	 (Gámez-	Brunswick	 &	 Rojas-	
Soto,	2020).	Although	this	subspecies	occupies	only	a	portion	of	

F I G U R E  1 Predicted	current	potential	habitat	(top	subplots)	and	consensus	future	potential	habitat	under	future	conditions	in	2081–	2100	
modeled	using	two	SSPs	(bottom	subplots)	for	each	Nearctic	bovid	species.	For	the	current	plots,	predicted	potential	habitat	is	indicated	
by	pale	blue	(for	the	ESS	threshold)	and	pale	green	(for	the	MSS	threshold).	For	the	consensus	plots,	the	fill	value	increases	in	intensity	with	
increasing	predicted	suitability	across	GCMs	(using	the	MSS	threshold).	Protected	areas	indicated	by	merlot	polygons,	data	from	(UNEP-	
WCMW	and	IUCN,	2021).

TA B L E  1 Surface	area	of	modeled	species	distributions	under	
current	(1970–	2000)	and	projected	future	(2081–	2100)	conditions,	
expressed	in	millions	of	km2.

Species Current SSP2– 4.5 SSP5– 8.5

Bighorn sheep 2.46 2.53 ± 0.04 2.18 ± 0.09

Thinhorn sheep 2.20 1.21 ± 0.04 1.50 ± 0.09

Mountain	goat 1.86 1.89 ± 0.04 1.65 ± 0.08

Muskox 5.00 2.77 ± 0.16 1.62 ± 0.21

American	bison 3.34 1.22 ± 0.14 1.01 ± 0.18
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the	 total	 range	of	 bighorn	 sheep,	 the	modeled	 current	 potential	
distribution	 of	 desert	 bighorn	 in	 that	 study	 largely	 mirrors	 the	
current	potential	distribution	of	bighorn	sheep	across	the	south-
west	 United	 States	 predicted	 by	 our	 models.	 Importantly,	 our	
results	suggest	 that	potential	habitat	extends	 further	northward	
along	 the	American	 cordillera	 than	either	 the	hindcast	model	 of	
desert	bighorn	or	the	actual	current	distribution	of	bighorn	sheep	
(Brewer	 et	 al.,	 2014).	 The	 predicted	 presence	 of	 bighorn	 sheep	

through	Yukon	and	Alaska	likely	relates	to	the	similar	life	history	
requirements	 of	 the	 closely	 related	 thinhorn	 sheep	 (Ovis dalli), 
which	 inhabits	 these	 higher	 latitude	 regions	 of	 the	 cordillera.	
Indeed,	among	the	selected	predictor	variables	that	were	shared	
among	bighorn	and	thinhorn	sheep	MaxEnt	models,	most	univari-
ate	response	curves	were	approximately	comparable	with	shifted	
centers.	 Furthermore,	 a	 comparison	 of	 the	 two	 species'	 mod-
eled	 distributions	 reveals	 considerable	 overlap	 north	 of	 British	

F I G U R E  2 Protected	area	of	modeled	
species	distributions	in	millions	of	km2. 
Squares	indicate	the	land	area	of	modeled	
current	distributions	that	fall	within	
protected	areas,	and	boxes	illustrate	land	
area	for	modeled	future	distributions	
within	protected	areas	under	projected	
conditions	for	2081–	2100	under	SSP2–	4.5	
(purple)	and	SSP5–	8.5	(tan).

F I G U R E  3 Potential	protected	area	
expressed	as	a	percentage	of	potential	
species	distributions	(a)	and	as	a	
percentage	of	currently	protected	area	
(b).	In	a,	the	proportion	is	calculated	based	
on	the	percentage	of	each	species,	GCM,	
and	SSP-	specific	potential	distribution	
that	overlaps	with	protected	areas.	In	b,	
the	proportion	is	calculated	based	on	the	
percentage	of	currently	protected	areas	
that	overlap	with	each	species,	GCM,	and	
SSP-	specific	potential	distribution.	Black	
dots	indicate	current	potential	distribution	
estimates,	purple	boxes	show	variation	
in	SSP2–	4.5	scenarios	across	GCMs,	and	
tan	boxes	show	variation	in	SSP5–	8.5	
scenarios	across	GCMs.



    |  7 of 10JOHN and POST

Colombia.	 It	 is	 possible	 that	 the	 lack	 of	 bighorn	 sheep	 at	 high	
latitudes	stems	from	competitive	exclusion	by	thinhorn	sheep,	or	
through	fine-	scale	environmental	variation	that	was	not	evident	at	
the	scale	of	our	study.

MaxEnt	 distribution	 models	 have	 also	 been	 used	 to	 examine	
spatial	 dynamics	 of	 muskoxen	 at	 local	 to	 regional,	 but	 not	 conti-
nental	 scales	 (Beumer	et	al.,	2019;	 Jenkins	et	al.,	2020; van Beest 
et al., 2021).	In	those	applications,	GPS	collars	and	systematic	human	
observations	were	used	to	identify	environmental	covariates	under-
lying	muskox	distribution	in	Northeast	Greenland	and	the	Canadian	
Arctic.	Across	levels	of	analysis,	elevation	emerged	as	an	important	
covariate	of	muskox	distribution,	following	the	same	tendency	of	se-
lection	toward	low	elevations	we	found	here	(Beumer	et	al.,	2019; 
Jenkins	 et	 al.,	 2020).	 Notably,	 our	 variable	 selection	 and	 model	
optimization	process	 did	 not	 retain	 the	 same	bioclimatic	 variables	
that	were	selected	 in	one	study	using	Worldclim2	data	 (van	Beest	
et al., 2021),	but	that	work	included	a	subset	of	candidate	predictor	
variables,	used	a	coarser	covariate	resolution	(20 km),	and	the	study	
extent	was	limited	to	northeast	Greenland,	as	opposed	to	our	6	km	
analysis	of	North	America.

The	results	of	this	modeling	study	suggest	a	broader	spatial	range	
of	present	potential	habitat	than	is	realized	for	any	of	these	five	bovid	
species	 (Brewer	et	al.,	2014;	Côté	&	Festa-	Bianchet,	2003;	Cuyler	
et al., 2020;	Demarchi	&	Hartwig,	2004; Meagher, 1986).	For	exam-
ple,	predictions	from	the	muskox	model	indicate	that	Southampton	
and	Baffin	 Islands	are	within	 the	potential	distribution	of	muskox,	
yet	that	species	is	not	known	to	live	there.	Overprediction	of	actual	
distributions	may	have	resulted	from	the	coarse	nature	of	our	pre-
dictor	data	 (6 × 6 km	pixels),	 limiting	 factors	 that	we	were	not	able	
to	account	for	(e.g.,	predation,	important	forage	species,	or	habitat	
fragmentation	 by	 non-	permeable	 barriers),	 or	 more	 complex	 re-
sponses	to	environmental	variables	than	we	allowed	in	our	modeling	
design	(such	as	absolute	thermal	tolerance	thresholds	or	interactions	
among	variables).	Thus,	the	modeling	results	should	be	interpreted	
in	the	context	of	predicted	change	in	environmental	factors	associ-
ated	with	bovid	presence,	rather	than	spatial	redistribution	of	bovid	
species	themselves.

The	predictive	ability	of	species	distribution	models	is	limited	by	
the	extent	 to	which	current	predictor	variables	 relate	 to	 the	envi-
ronment	at	the	time	of	occurrence	data	collection,	and	the	degree	
to	which	covariate	forecasts	represent	future	conditions.	Worldclim	
data	are	least	reliable	in	mountainous	terrain,	where	fine-	scale	com-
plexity	overwhelms	broad	geographic	variation	and	in	remote	areas	
where	only	sparse	meteorological	records	were	available	for	model	
training	(Fick	&	Hijmans,	2017;	Hijmans	et	al.,	2005).	Furthermore,	
species	distribution	forecasts	may	be	sensitive	to	inconsistent	varia-
tion	among	modeled	bioclimatological	futures	(Cerasoli	et	al.,	2022) 
and	uncertainty	related	to	the	underlying	GCMs	(Bedia	et	al.,	2013; 
Foley,	 2010).	 Finally,	 predicted	 future	 distributions	 rest	 upon	 as-
sumptions	about	future	change;	for	example,	GCAM	land	use	data	
incorporates	no	developments	 in	urbanization	 through	 the	end	of	
the	century,	and	modeled	vegetation	change	stems	only	from	land	
use	impacts,	as	opposed	to	vegetation	response	to	warming	(Chen	

et al., 2020),	which	is	complex	(Myers-	Smith	et	al.,	2020)	and	import-
ant	for	spatial	dynamics	of	large	herbivores	(Tape	et	al.,	2016).

Our	model	projections	are	based	on	relationships	between	ob-
servations	 of	 bovids	 and	 environmental	 factors	 where	 they	 were	
observed.	 In	 reality,	 drivers	of	 range	dynamics	 in	 large	herbivores	
are	complex	and	unlikely	to	relate	directly	to	climatological	variabil-
ity.	 Instead,	 indirect	 effects	 of	 climate	 such	 as	 forage	 distribution	
and	 phenology,	 distribution	 of	 competitors	 and	 natural	 enemies,	
and	frequency	and	severity	of	extreme	weather	events	are	likely	to	
play	 important	 roles	 in	 changes	 in	 species	 distributions	 related	 to	
climate	change	 (Creel	et	al.,	2005;	Parmesan	et	al.,	2000;	Ponti	&	
Sannolo,	2022;	Winnie	et	al.,	2008).	Historical	relationships	among	
humans	 and	 megafauna	 may	 drive	 patterns	 in	 species	 distribu-
tion,	 particularly	 if	 species	 are	 refugees	 from	 human	 exploitation	
(Cromsigt	et	al.,	2012).	The	 importance	of	human	impacts	was	ev-
ident	for	several	of	the	species	we	investigated;	for	example,	frac-
tional	agriculture	and	urban	cover	were	the	second-		and	third-	most	
important	 variables	 in	 the	 thinhorn	 sheep	 model,	 which	 revealed	
strong	patterns	 of	 selection	 against	 both	 cover	 types.	Agriculture	
was	 the	 fifth-	most	 important	 variable	 in	 the	 bison	 model,	 which	
showed	 a	weaker	 pattern	 of	 selection	 against	 urban	 cover.	While	
agriculture	and	urban	 land	cover	did	not	emerge	as	 important	fac-
tors	in	other	models,	it	is	likely	that	a	more	precise	land	cover	data	
product	 (in	terms	of	both	spatial	resolution	and	cover	type)	would	
reveal	significant	human	effects.	For	example,	the	Human	Footprint	
Index	(1	km	resolution)	may	uncover	fine-	scale	impacts	of	light	and	
infrastructure	on	current	bovid	distributions	that	we	could	not	ex-
plore	here	(Venter	et	al.,	2016),	but	a	comparable	forecast	product	
is	not	currently	available.	Further,	the	ability	of	bovid	populations	to	
redistribute	 in	 future	will	be	 limited	by	not	only	available	destina-
tion	space,	but	also	by	barriers	to	movement	(McInturff	et	al.,	2020; 
Sawyer	et	al.,	2013).

Conservation	 planning	 is	 sensitive	 to	 biases	 in	 species	 distri-
bution	models	(Wilson	et	al.,	2005),	and	we	emphasize	the	need	to	
incorporate	multiple	approaches	and	 lines	of	evidence	 in	planning	
future	protected	areas.	Furthermore,	although	spatial	priorities	for	
protected	 areas	 increasingly	 rely	 on	 species	 distribution	 projec-
tions	under	 climate	 change,	 they	often	 ignore	human	 response	 to	
climate	change	(Jones	et	al.,	2016;	Post	&	Brodie,	2015).	Human	in-
fluence	on	the	landscape	limits	movements	by	animals,	which	may	
ultimately	 lead	 to	 the	 local	 exclusion	 of	 broad-	ranging	 migrants	
(Tucker	et	al.,	2018).	Other	work	on	large	bovids	has	emphasized	the	
importance	of	anthropogenic	 influence	on	habitat	suitability	 (Epps	
et al., 2005;	 Kuemmerle	 et	 al.,	2010).	We	were	 unable	 to	 include	
movement	 barriers	 and	 some	 human	 impacts	 on	 species	 ranges,	
such	as	roads	and	fencing,	tourism,	and	recreation.	More	precise	es-
timates	of	 future	suitable	habitat	 for	 large	herbivores	will	become	
possible	as	forecasts	of	anthropogenic	change	across	the	landscape	
become	clearer.

Most	 immediately,	 North	 American	 bovids	 contend	 with	 al-
teration	 of	 existing	 suitable	 habitat	 (Krausman	 &	 Bleich,	 2013), 
limitations	 on	movement	 between	 seasonal	 ranges	 (Courtemanch	
et al., 2017;	Stoellinger	et	al.,	2020),	 and	 introduction	of	zoonotic	
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disease	(Clifford	et	al.,	2009).	These	threats	are	difficult	to	predict,	
and	changes	in	their	distribution	and	magnitude	should	be	consid-
ered	 while	 crafting	 management	 and	 conservation	 plans.	 Of	 the	
protected	areas	that	are	already	home	to	wild	bovids,	those	which	
are	 expected	 to	 retain	 ecological	 and	 climatic	 characteristics	 that	
are	associated	with	bovid	presence	may	become	especially	import-
ant	in	the	coming	decades.	As	conservation	planners	make	decisions	
about	designation	of	new	protected	areas,	 it	will	be	 imperative	to	
consider	not	just	the	future	distribution	of	Nearctic	bovids,	but	also	
future	 conditions	 for	 ecosystem	 services	 and	 human	 response	 to	
change	 (IPBES,	2019).	 Protected	 areas	 conserve	 ecosystem	 func-
tion,	 culturally	 important	 settings,	 recreational	 hotspots,	 and	
natural	 resources.	 However,	 if	 biodiversity,	 or	 the	 longevity	 of	 a	
particular	 species	 is	 the	goal,	 future	 climatological	 conditions	and	
their	implication	for	the	focal	species	and	increased	human	access	
to	remote	regions	should	be	a	top	consideration	in	the	prioritization	
of	protected	lands.
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