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Abstract: Catalytic properties of noble-metal nanoparticles (NPs) are largely determined by their
surface morphology. The latter is probed by surface-sensitive spectroscopic techniques in different
spectra regions. A fast and precise computational approach enabling the prediction of surface–
adsorbate interaction would help the reliable description and interpretation of experimental data.
In this work, we applied Machine Learning (ML) algorithms for the task of adsorption-energy
approximation for CO on Pd nanoclusters. Due to a high dependency of binding energy from the
nature of the adsorbing site and its local coordination, we tested several structural descriptors for
the ML algorithm, including mean Pd–C distances, coordination numbers (CN) and generalized
coordination numbers (GCN), radial distribution functions (RDF), and angular distribution functions
(ADF). To avoid overtraining and to probe the most relevant positions above the metal surface, we
utilized the adaptive sampling methodology for guiding the ab initio Density Functional Theory
(DFT) calculations. The support vector machines (SVM) and Extra Trees algorithms provided the
best approximation quality and mean absolute error in energy prediction up to 0.12 eV. Based on
the developed potential, we constructed an energy-surface 3D map for the whole Pd55 nanocluster
and extended it to new geometries, Pd79, and Pd85, not implemented in the training sample. The
methodology can be easily extended to adsorption energies onto mono- and bimetallic NPs at an
affordable computational cost and accuracy.

Keywords: palladium nanoparticles; probing molecules; adsorption energy; machine learning; radial
distribution function; adaptive sampling

1. Introduction

Palladium nanoparticles (NPs) are famous catalysts for various reactions [1]. Their
catalytic properties significantly depend on size and shape [2–4], which could be estimated
by the molecular adsorption techniques. In particular, CO pulse chemisorption enables
determination of particle dispersion by their CO uptake [5,6]. Fourier-transform infrared
(FTIR) spectroscopy of adsorbed CO probes various adsorption sites, such as extended
surfaces Pd (111) and (100) and different defects (corners, edges) [7,8]. This is possible due
to the strong dependency of vibration frequency from the local environment of adsorbing
site, leading to different binding (or adsorption) energies [9–11]. Conventionally, theoretical
frequencies and binding energies of adsorbed molecules are obtained from Density Func-
tional Theory (DFT) calculations [12–16]. However, even for single-molecule adsorption,
such DFT computations can require a lot of computational resources to describe the whole
surface of the NPs.

Machine learning (ML) has already demonstrated a high potential in material science.
In particular, it was used for predicting and analyzing X-ray absorption spectra [17], where
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it succeeded in predicting coordination numbers (CN) and radial distribution functions
(RDF) [18,19] of monometallic NPs and reconstruction of the structure of bimetallic NPs
with atomic resolution [20]. Lansford and Vlahos [21] applied polynomial regression using
neural network ensembles to extract information about the microstructure of NPs from
FTIR spectra. The authors collected a training set of ab initio-calculated FTIR spectra of
CO and NO molecules adsorbed on platinum nanocatalysts, and selected the frequencies
and intensities of CO and Pt–C and generalized coordination numbers (GCN) [22] as mi-
crostructure descriptors to obtain detailed information on adsorption sites. As a result, they
successfully predicted the centers where adsorption occurs for the experimentally measured
spectra and the distribution functions of GCN, thereby establishing surface coordination.

Gasper et al. [23] applied the gradient-boosting regression algorithm to predict the
adsorption energies in different regions of Pt NPs of various sizes (0.2–1.5 nm). For this
purpose, they used a combination of both structural (GCN of adsorption centers, cluster
size, bond lengths) and electronic (the position of the center of the d-band, energies of
completely frozen structures introduced by the authors) descriptors. This approach allowed
them to determine the binding energies of adsorbates with an error comparable with the
results of DFT calculations.

Recently, Praveen and Comas-Vives [24] designed a highly accurate ML algorithm,
able to predict the adsorption energies of several adsorbates binding either via C, N, O, or
H on the surface sites of (100), (111), and (211) facets of transition-metals simultaneously.
They combined electronic and structural descriptors (such as CN, GCN, and others) of free
adsorbates on clean metal surfaces (10–13 features in total) and applied extragradient boost
regression in combination with a tree booster to obtain the best performance.

However, all the abovementioned studies rely to one degree or another on some ab
initio (or Monte-Carlo) calculations for the preparation of training sets. Among the classical
approaches to the selection of training set points are grid sampling, random sampling,
and Improved Latin Hypercube sampling (HIS) [25]. However, the use of homogeneous
methods for sampling may underestimate the importance of small regions on the surface
near the adsorption sites. With such important for catalysis points, the method would make
mistakes but the overall statistical precision of the approach would still be high due to the
low fraction of such points. Enlarging the training set for denser sampling requires a lot of
additional time and computational efforts.

In this work, we applied adaptive sampling (also called active learning or response-
adaptive designs) for effective training-set generation. This approach has already demon-
strated high performance in molecular dynamics and simulations [26,27] and material
design [28]. Gastegger et al. [29] used adaptive sampling for the preparation of training sets
by ab initio molecular-dynamics simulations for infrared spectra prediction, and it enabled
acceleration of simulations by several orders of magnitude and extending the size of treated
systems. The method is based on stepwise addition of the new points in the training set
when cross-validation quality suggests the areas for denser sampling. We discuss the effi-
ciency of different ML algorithms such as Ridge regression, Decision tree, support vector
machines (SVM), Least absolute shrinkage and selection operator (Lasso), and several
ensemble methods (Decision tree, AdaBoost, XGBoost, Random forest, Gradient boosting).
RDF and angular distribution functions (ADF) were used as descriptors and compared
with conventional descriptors such as CN and GCN along with the mean distance and
Coulomb matrix. The developed approach enabled prediction of binding energy with high
precision and construction of an energy-surface map for Pd NPs of different sizes.

2. Methods
2.1. DFT Computation Details

All DFT calculations were carried out using the Vienna Ab initio simulation package (VASP)
code [30,31] and the projector augmented wave (PAW) method [32] for periodic structures.

An octahedral Pd55 nanocluster was placed in the center of the cell with a size of
30 ×30 × 30 Å3. The calculations were performed using 1 k-point in a direct space with
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an energy cutoff of 400 eV inside a cubic supercell. Geometry optimization of the atomic
positions was performed with a criterium of energy convergency of 10−6 eV and force
convergency of 10−2 eV/Å.

Obtained total energies were recalculated to binding energies using the equation
(Equation (1)):

Ebind = ENP+CO − (ENP + ECO) (1)

where Ebind is binding energy, ENP+CO is the total energy of Pd55 with adsorbed CO, ENP is
the energy of Pd55 without adsorbate, and ECO is the energy of the free CO molecule.

For benchmarking, the DFT calculations were performed for four different sites at
(100) and (111) facets and two sites at defects of Pd55:

• the central atom of Pd(100)–(100)—top
• between two atoms of Pd(100)–(100)—bridge
• between two atoms of Pd(111)–(111)—bridge
• between three atoms of Pd(111)–(111)—hollow (three-fold)
• between two atoms of the edge between Pd(100) and Pd(111)—edge bridge
• on the single atom of the corner—vertex top

Single CO molecules (one for each calculation) were placed on these sites by carbon
end, and potential energy scans were performed upon moving CO from 0.1 to 5 Å from these
sites (Figure S1 of Section 1, Supplementary Materials) with a step of 0.1 Å. The positions of
the carbon and Pd atoms were fixed, while positions of oxygen atoms were optimized for
each step before energy calculation. The initial C–O distance was set to 1.128 Å.

When calculating the binding energy by the DFT approach, computational errors are
mostly associated with pseudopotential and the form of the exchange–correlation functional.

The DFT-GGA calculations of CO adsorption on transition metals [33] tend to favor
higher coordination sites, leading to a site preference error mainly due to the core overlap
between metal and CO. Mason et al. [34,35] estimated this error as 0.38 eV (~30%) for the
PBE functional and developed an approximation approach enabling a decrease in average
error to 0.16 eV (~13%). Revised versions of semi-local functionals partially address this
problem. According to results of CO adsorption modeling on fcc sites of Pd(111) reported
by Hammer et al. [36] and performed under the revised Perdew-Burke-Ernzerhof (rPBE)
exchange-correlation functional [37,38], the overbinding was estimated as 0.1–0.2 eV. This
functional has been specifically designed to improve upon over-binding issues, particularly
tailored to the chemisorption of CO [39]. A GGA rPBE exchange–correlation functional
was also applied in this work.

2.2. Descriptors of Structure

RDF, or pair correlation function g(r) of a system of particles (atoms), is the probability
of finding a particle at a distance r from another tagged particle. It describes how density
varies as a function of distance from a reference atom, and its calculation is one of the most
common methods of describing the structure of a system. In this work, we applied RDF
of Pd atoms relative to the carbon atom that belongs to the adsorbing molecule of carbon
monoxide, as a descriptor of structure for ML. All RDF were calculated using vasppy [40]
and pymatgen [41,42] Python modules (see Section 2, Supplementary Materials, for detailed
information).

The following structural parameters were evaluated for each structure apart from RDF:

• mean distance from carbon to the nearest Pd atoms (<dPd–C>)
• CN of the carbon atom of CO molecule;
• GCN of adsorbing site;
• ADF for Pd–C–Pd and Pd–C–O combinations.

The problem of energy approximation is a typical regression problem. Each object of
the training set was represented by values of RDF determined in the range from 0 to 7 Å
with a step of 0.01 Å, and values of ADF in the phi range from 0 to 180 ◦ with a step of 1◦.
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2.3. Training- and Test-Set Preparation

Spherical coordinates were applied to describe the positions of CO molecules around
Pd NP. The parameter space was represented by θ and ϕ angles, and the distance R from
the Pd NP surface to the carbon atom RPd–C. Upon R, θ, and ϕ variations, we kept the
minimal Pd–C distance Rmin equal to 1.62 Å and maximal distance Rmax = 3.02 Å. This
region represents the valley of a minimum of the attractive potential. Details of points
generations for training-set preparation are shown in Section 2, Supplementary Materials.
The training set was prepared following the procedure of adaptive sampling described in
Section 2.4.

A set consisting of 500 unique structures with the random location of CO in the region
of parameter variation (θ in [0, π], ϕ in [0, 2π], and RPd-C in [0, 1.4 Å]) was generated. We
will refer to it as a Random Sampling Test Set (RSTS).

2.4. Adaptive Sampling

The aim of applying ML methods is to find the model that enables one to approximate
a hidden dependency in data. Let ŷ be an unknown binding-energy dependence on RDF
which is defined on D ⊂ R, and xi—a set of spherical coordinates {ri , θi, φi}. Then,
Xl = {(xi, yi)}l

i=1 where yi = ŷ(xi) will be the training dataset of size l. This dataset is
used to build an approximation model a : D → R via ML method µ : a = µ(Xl).

Since the DFT calculations of the binding energies are time-consuming, it becomes
necessary to use effective approaches for the training-set preparation, and not just calculate
all possible or some random points around metal NP. In this work, we applied an adaptive
sampling approach to generate a training set as small as possible, which would be enough
to train ML methods for binding-energy prediction with satisfactory quality. The algorithm
of its work is presented in Scheme 1.

At the beginning of its work, the adaptive sampling method generates homogeneously
some points using IHS. This training set Xl is used to train an ML method µ(Xl), which
is the first approximation of ŷ dependence. This model predicts the binding energy and
the quality of model predictions depending on the training dataset. In this study, the Extra
Trees ML method was used as a µ function during the training-dataset-generation process.

To improve the generalizing ability of the model, it is necessary to expand the training
dataset. It is necessary to choose the next nodal point xl+1 so that the new approximation
constructed from the sample Xl+1 = Xl ∪ {xl+1; yl+1} approximates the target dependence
ŷ in the best way (Equation (2)):

||µ
(

Xl+1
)
− ŷ||Lp(D) →

min
xl+1

(2)

To find a good point, we should try to keep the balance between local exploitation
and global exploration. The global exploration term votes for placing new sampling points
inside unvisited regions and the local exploitation term votes for a thorough investigation
of the most interesting regions. The key to solving this problem is the following formula
(Equation (3)): ∫

S(xl+1)

∣∣∣µ(Xl
)
− ŷ
∣∣∣P → max

xl+1
, (3)

where S(xl+1) is the vicinity containing xl+1.
Candidates for the next point are generated in the vicinity of each of the maxima of

the approximation error in the range of distances [0.5d1NN ; 2.5d1NN ], where d1NN is the
distance to the nearest neighbor of the point with the maximum approximation error.

The next important factor in optimization is the approximation error estimation∣∣∣µ(Xl
)
(x)− ŷ(x)

∣∣∣. A more universal, widespread approach is based on cross-validation.
To save time, the calculation of the integral in Equation (3) was replaced by a point estimate
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of the approximation error divided by the density of points in the vicinity of xl+1. To
estimate the error from Equation (2), the following expression has been used (Equation (4)):∣∣∣µ(Xl

)
(xl+1)− y1NN(xl+1)

∣∣∣ (4)

where y1NN(xl+1) is the point of the training sample closest to the xl+1 candidate.
After determining the best candidate for which an approximation error is the highest,

it is included in the training dataset. According to this algorithm, an adaptive sample is
formed sequentially.

We will refer to the set generated using this approach and consisting of 548 unique
data points as the Adaptive Sampling Training Set (ASTS). Examples of these structures
can be found in Section 3, Supplementary Materials.

Scheme 1. Algorithm of adaptive sampling.

2.5. Assessment of Prediction Quality

Nine different ML methods such as a linear methods of Ridge regression and Lasso [43],
Decision tree [44], SVM [45,46], and five different ensemble methods: Gradient boost-
ing [47], Extra trees [48], XGBoost [49], AdaBoost [50], and Random forest [51], were trained
on ASTS for the task of binding-energy prediction. All ML algorithms were implemented
using the Scikit-learn package for Python [52,53]. RidgeCV and LassoCV modifications
were used to protect these linear methods from overtraining.

The effectiveness of the ML methods trained on the ASTS was tested on RSTS data
(see Section 2.3). Thus, a test error was determined on external data.
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The quality of predictions was assessed using three quality metrics (Equations (5)–(7)):
R2-score, mean absolute error (MAE), and mean square error (MSE):

R2 = 1− ∑N
i=1 ||Ei − Êi||

2

∑N
i=1 ||Ei − 〈E〉||2

(5)

MAE
(
E, Ê

)
=

1
N

N

∑
i=1

∣∣Ei − Êi
∣∣ (6)

MSE
(
E, Ê

)
=

1
N

N

∑
i=1

(
Ei − Êi

)2 (7)

where Ei are the ab initio DFT energy values, Êi—are the values predicted by ML binding
energies, and 〈E〉 is the average energy value calculated as (Equation (8)):

〈E〉 = 1
N

N

∑
i=1

Ei (8)

3. Results and Discussion
3.1. Prediction Binding Energy Using ASTS

Results of binding-energy predictions by different ML methods are shown in Figure 1,
depicting ML predicted energy vs. the binding energy calculated at the DFT level. Respec-
tive quality metrics are summarized in Table 1. The entire interval of RDF (radius 0–7 Å
from carbon atom in CO) was used as a descriptor of structure (Figure S2, Supplementary
Materials). This choice of a descriptor is explained further, in Section 3.2.

Table 1. Comparison of the used ML algorithms in terms of their efficiency for predicting the binding
energy over the entire interval of the calculated RDF.

ML Algorithm MAE, eV MSE, eV R2-Score

Ridge regression 0.40 0.28 0.31
Decision tree 0.30 0.27 0.33

Lasso 0.39 0.26 0.36
AdaBoost 0.29 0.16 0.60
XGBoost 0.20 0.15 0.64

Gradient boosting 0.22 0.14 0.64
Random forest 0.22 0.14 0.65

Extra trees 0.19 0.13 0.68
SVM 0.15 0.08 0.81

The best quality was achieved by the SVM algorithm, for which MAE was close to
0.15 eV. It is comparable or even less than an underlying error of DFT calculations of
binding energies [23]. The ensemble methods were somewhat less efficient for energy
prediction. The worst quality of prediction was demonstrated by the Ridge regression and
Lasso methods, which may be due to the complex dependence of the binding energy on
the RDF when the linear model is insufficient.

3.2. Comparison between Structural Descriptors

The energy of adsorption is influenced mostly by the local coordination of adsorbed
molecule (adsorbing site) and the distance to this site, but it also depends on a neighbor-
hood of Pd atoms forming the adsorbing site. To illustrate these effects, potential energy
scans (Figure 2a,b) were performed for different adsorption sites of Pd55 nanoclusters (see
structures in Figure S1, Supplementary Materials) both upon CO molecules moving away
from these sites and moving along the plane perpendicular to Pd (100). The binding energy
decreases for molecules adsorbed on hollow > bridge > top positions and varies by almost
1 eV for carbonyls formed on different sites. Furthermore, adsorption on sites with a similar
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local environment has different binding energies: in particular, binding on the top position
of corner defects of Pd NP will be slightly stronger than on regular Pd(100) surface, and
CO adsorbed on different bridged sites will have different adsorption energy, even if this
difference is an order of magnitude smaller.

Figure 1. Machine learning (ML)-predicted vs. Density Functional Theory (DFT)-calculated binding
energy in eV for different ML algorithms: (a) Ridge regression; (b) Decision tree; (c) Least abso-
lute shrinkage and selection operator (Lasso); (d) AdaBoost; (e) XGBoost; (f) Gradient boosting;
(g) Random forest; (h) Extra trees; (i) support vector machines (SVM). The entire interval of radial
distribution functions (RDF) 0–7 Å from the carbon atom of CO was used as a descriptor. Histograms
on the opposite axis represent distributions of respective values of energy.

The mean distances <dPd–C> where binding energy reaches minima increase from
1.8 (top) to 1.96 (bridge) and 2.06 Å (for hollow sites). However, <dPd–C> differs negligibly
for sites with a similar local environment, e.g., bridged sites on different facets or edges.
Energy scans performed along the plane perpendicular to the Pd(100) facet of Pd55 (see
Figure 2b) demonstrated that binding energy changes significantly for scans in directions
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perpendicular to the surface (Z in Figure 2b), but there are areas with close energy values
upon moving simultaneously in Z and X directions (parallel to the Pd(100) surface).

Figure 2. DFT potential energy scans upon moving CO molecules (a) from adsorption sites on the
surface of Pd55 nanocluster; (b) along the plane perpendicular to Pd(100) (nearest Pd atoms are
marked by red and green dashes). (c) Series of smeared RDF upon CO moving away from the
respective adsorbing site, colored according to binding energies. The color scale is the same for
parts (b,c).

Thus, distinguishing sites with similar local environments and areas with close but
different energies is essential for precise binding-energy prediction but cannot be done
using only <dPd–C> as a descriptor.

As is clear from Figure 2c, the shape of RDF for different distances between CO and
the adsorbing sites of Pd55 are sensitive both to energies and mean Pd–C distances (<dPd–C>)
distances. Therefore, RDF is expected to be an adequate descriptor for energy approximation.

We compared results of binding-energy predictions made by using RDF as a descrip-
tor and other conventional structural descriptors such as Coulomb matrix and <dPd–C>
combined with CN of carbon and/or GCN of adsorbing site. Furthermore, we tested the
efficiency of ADF used as a descriptor (Figure S3, Supplementary Materials). Results of their
comparison are summarized in Figure 3 and Table S3, Supplementary Materials (results ob-
tained by Lasso and other ML methods, are shown in Figure S5, Supplementary Materials).

We found that <dPd–C> were ineffective descriptors. CN and GCN cannot be directly
used as descriptors themselves because they are discrete and are not sensitive to the position
of CO perpendicularly to the surface. However, their use together with the <dPd–C>
(<dPd–C>+CN and <dPd–C>+GCN combinations) significantly enhanced the quality of
prediction, with the best performance of their combination <dPd–C>+CN+GCN.
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Figure 3. Comparison of the quality of prediction of binding energy when using different descrip-
tors/ML methods.

ADF for Pd–C–Pd combinations (ADFPd–C–Pd) demonstrated a similar quality as
<dPd–C>+CN+GCN and Coulomb matrix, while ADF for Pd–C–O (ADFPd–C–O, Figure S3,
Supplementary Materials) was slightly better. At that time, ADF was still less effective
than RDF as a descriptor, but their use together resulted in the best obtained precision
(RDF+ADFPd–C–O).

We also tested which part of RDF contains the most valuable information about the
structure (Section 4.2, Supplementary Materials). Reducing the interval from 0–7 to 0–3 Å
had little effect on the prediction accuracy (Figure 4) but already on the interval 0.1–2.0 Å
the quality decreased significantly. From 0 to 1.5 Å, the RDF have zero or near-zero values,
and therefore are useless for training ML models.

We also split RDF into segments with a length of 1, 1.5, 2, 2.5, and 3 Å and tried
them as descriptors (see Table S5, Supplementary Materials). The highest accuracy was
provided by segments that include 1.5–2.5 Å interval, highlighting the impact of the local
environment on the binding energy of the adsorbate and the principal applicability of the
above approach to ultra-small particles without long-range order.

Extended parts of RDF cannot be used alone for precise energy estimation: for example,
the interval from 4.0 to 7.0 Å leads to a more than twofold increase in MAE. However, their
combined use together with the short-range intervals improves the quality of predictions
and enables recovery of detailed information about the adsorption site.
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Figure 4. The quality of binding-energy prediction when using a different length of RDF.

3.3. Energy-Surface Construction

We applied the trained SVM model to predict the energy surface of the whole nan-
ocluster. This surface illustrates the minimal values for the binding energy of the CO
molecule adsorbed in each given point above the nanocluster. The energy surface estimated
for Pd55 is shown in Figure 5.

Figure 5. Energy surface of Pd55 predicted by trained SMV ML method. A grid with steps π/100 for
ϕ and θwas used.

According to these results, the lowest binding energies were found in the vicinity of
three-fold hollow (111) and bridged sites on particle edges (from −2 eV to −2.41 eV, blue
in Figure 5). Adsorption energy was slightly weaker near the bridged sites on (100) and
(111) regular facets (from −1.8 eV to −2 eV, cyan), and top sites (from −1.25 eV to −1.9 eV,
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green). The highest energy was found for four-fold hollow sites at Pd (100) surface (ca.
−0.8 eV, red).

These findings correlate with the results of ab initio DFT calculations (Figure 2a),
where the CO molecule was strongly bound to the (111) hollow site (−2.64 eV in mini-
mum) and bridged sites (from −2.40 eV for edge to −2.28 eV on (100) facet) and weakly
bound to the top positions (ca. −1.8 eV). ML predicted higher energies than expected
only in the case of three-fold hollow sites. This can be explained by the significant varia-
tion in the C–O distances in the probe molecule that were not taken into account in the
training-set calculations.

Obtained data are also in good agreement with the results of the computational
study [9] as well as with the experimentally observed shifts of absorption bands in FTIR
spectra: the highest red shift is observed for CO on hollow sites and the lowest is for linearly
adsorbed CO [54]. The same algorithm was also applied to construct the binding-energy
surface for Pd79 and Pd85 clusters (Figure S6, Supplementary Materials).

4. Conclusions

In this work, we applied ML methods to the problem of adsorption-energy prediction.
Among different ML methods, the SVM and ensemble methods (Extra trees, Gradient
boosting) provided the best quality for prediction. RDF has shown its efficiency as a
structural descriptor while mean Pd–C distances, CN, GCN, and ADF provided worse
results. The space of structural parameters was probed by an adaptive sampling approach
which ensured a good approximation quality for the regions with a strong variation in the
target function. This approach enabled the prediction of the binding energy with the best
precision using RDF as a descriptor: MAE of 0.15 eV (MSE 0.08 eV, R2-score 0.81) by the
SVM method.

The further development of this methodology will permit quick and accurate predic-
tion of binding energies along with the frequencies and intensities of atomic vibrations,
which is crucial for quantitative analysis of infrared spectra and kinetic catalytic studies.

Supplementary Materials: The following supporting information can be downloaded online, Scheme
S1. Algorithm of dataset point generation, Figure S1. Sites for CO adsorption on Pd55 cluster where
potential scans were performed: (a) (100) top; (b) (100) bridge; (c) (111) bridge; (d) (111) hollow;
(e) edge bridge; (f) vertex top. Pd atoms forming adsorbing site are outlined by the colored dashed
line, Figure S2. Series of smeared RDF calculated for all structures of the ASTS, colored according to
their binding energies, Figure S3. Series of smeared ADF calculated for all structures of the ASTS,
colored according to their binding energies, Figure S4. MAE decrease upon adding new data points
to the training sets prepared by different sampling approaches. The quality of predictions was
estimated on the test set from randomly generated data points, Figure S5. Comparison of the quality
of prediction of binding energy when using different descriptors and ML methods, Figure S6. Energy
surface of (a) Pd79 and (b) Pd85 nanoclusters predicted by the SVM method trained on ASTS of Pd55.
A grid with steps π/200 forϕ and θwas used, Table S1. Positions of Pd atoms in Pd55 cluster, Table S2.
Examples of data points in ASTS, Table S3. Comparison of the quality of prediction of binding energy
when using different descriptors/ML methods, Table S4. Effect of varying the length of RDF range on
the performance of the SVM method in binding-energy prediction, Table S5. Influence of the range of
the RDF used for determination of binding energies by the SVM algorithm. References [55,56] are
cited in the Supplementary Materials.
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