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BACKGROUND: Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this
study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues.
METHODS: MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential
centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux
activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific
overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide
labelling of cells.
RESULTS: MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1
was more efficient (55–64%) than that of plasma membrane MRP-1 (11–22%; Po0.001). Induced MRP-1 expression resulted in a
preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal
concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1
substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria.
CONCLUSION: Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have
limited clinical success.
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Multi-drug resistance (MDR) contributes to a decrease in the
efficacy of many agents used in the treatment of human
malignancies. Overexpression of transmembrane proteins of the
ATP-binding cassette (ABC) protein superfamily are commonly
implicated in the development of MDR (Redmond et al, 2008).
Multi-drug resistance protein 1 (MRP-1; (Cole et al, 1992)) is one
of the first described ABC transporter proteins, expressed in the
plasma membrane of normal and cancer cells where it effluxes
both physiological toxins (Leier et al, 1994; Jedlitschky et al, 1997;
Haimeur et al, 2004) and a variety of agents from the cell (Grant
et al, 1994; Loe et al, 1998; Renes et al, 1999), leading to decreased
cytotoxicity. In addition to being overexpressed in the plasma
membrane of cancer cells, MRP-1 has been described in a variety
of subcellular localisations, including the nucleus (Rajagopal and
Simon, 2003), golgi apparatus (Kaufmann et al, 2008) and
lysosomes (Rajagopal and Simon, 2003) of human cancer cells.
Most recently, MRP-1 was described in the mitochondria of
doxorubicin-treated cells of the murine sarcolemma (Jungsuwadee
et al, 2009). Consequently, we have hypothesised that the sub-
cellular localisation of MDR ABC transporter proteins may have a
role in the detoxification of the cell by efflux of compounds from
within specific subcellular compartments (Maraldi et al, 1999),

which may modulate induction of the intracellular cell death
cascade. To our knowledge, this is the first investigation to
describe MRP-1 in mitochondria from human cancer and normal
cells, and characterise its functional significance in a panel of
human cell lines.

MATERIALS AND METHODS

Cell culture

The substrate adherent Ewing’s Sarcoma Family of Tumour (ESFT;
A673, RD-ES, SKES-1, SK-N-MC, TTC 466, TC-32) and the
neuroblastoma (NB; SHEP-1 and SK-N-SH) cell lines were cultured
as previously described (Myatt et al, 2005). The IMR-32 NB
and HT-29 colon carcinoma cell lines were maintained in 50%
Dulbecco’s Modified Eagle Medium (DMEM; Invitrogen Life
Technologies, Paisley, UK) and 50% RPMI (Invitrogen
Life Technologies) containing 10% and 5% foetal calf serum
(FCS; Harlan Sera-Lab, Leicestershire, UK), respectively, and 2 mM

glutamine (Sigma-Aldrich, Dorset, UK). The transitional bladder
carcinoma cell lines, RT-4 and RT-112 were cultured as previously
described (Hurst et al, 2004). The breast adenocarcinoma (MCF-7),
embryonal rhabdomyosarcoma (CCL136) and glioblastoma (T98G)
cell lines were maintained in DMEM containing 10% FCS and 2 mM

glutamine. The rhabdomyosarcoma cell line, A204, was cultured in
McCoy’s containing 10% FCS, 1.5 mM glutamine and 2.2g/l sodium

Received 6 September 2011; revised 4 January 2012; accepted 17
January 2012; published online 21 February 2012

*Correspondence: Dr EA Roundhill; E-mail: e.a.roundhill@leeds.ac.uk

British Journal of Cancer (2012) 106, 1224 – 1233

& 2012 Cancer Research UK All rights reserved 0007 – 0920/12

www.bjcancer.com

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s

http://dx.doi.org/10.1038/bjc.2012.40
http://www.bjcancer.com
mailto:e.a.roundhill@leeds.ac.uk
http://www.bjcancer.com


bicarbonate (Invitrogen Life Technologies). The Phoenix A
packaging cell line was used in the production of retroviruses
(Tomlinson et al, 2005).

Normal human urothelial (NHU) cells were cultured as
previously described (Chapman et al, 2006) and the normal
human foreskin fibroblast (HFF) cell line was cultured in DMEM
containing 10% FCS and 2 mM glutamine. Mesenchymal stem cells
(MSC) were cultured in an undifferentiated state using nonhae-
matopoietic (NH) stem cell media; NH Expansion Medium
(Miltenyl Biotec Ltd., Bisley, Surrey, UK).

All cell lines were purchased from the American Type Culture
Collection (Manassas, Virginia, USA), except for the following
cell lines which were gifts: RT-4, RT-112, NHU, T98G, HT-29,
from Professor M Knowles (LIMM, SJUH, Leeds, UK), MSC from
Dr E Jones (LIMM, SJUH, Leeds, UK), HFF from Cancer Research
UK. All ESFT cell lines contain EWS-ETS gene re-arrangements
and express CD99 at the cell membrane, characteristic of the ESFT.
All cell lines are yeast, bacterial and mycoplasma-free; cells are
evaluated for mycoplasma every 4 months using the EZ-PCR
mycoplasma test according to manufacturer’s instructions
(Geneflow, Fradley, Staffordshire, UK).

Subcellular localisation of MRP-1 by cellular fractionation
and western blot

Subcellular fractionation (Westwood et al, 2002) and western
blotting (Myatt et al, 2005) were performed as previously
described. The purity of fractions was confirmed by western
blotting for Grp75 (mitochondrial marker used at 1 : 1000;
ab13529, Abcam Plc., Cambridge, UK) and NaKATPase (mem-
brane marker used at 4 mg ml – 1; ab7671 Abcam Plc); equal loading
was confirmed using the monoclonal a-tubulin antibody
(0.4mg ml – 1; sc-5286 Santa-Cruz, CA, USA) or staining membranes
for total protein using ponceau S (Sigma-Aldrich), where tubulin
was not useful. MRP-1 protein expression was detected using the
polyclonal antibody A23 (0.3mg ml – 1; ALX-210-841 Axxora,
Nottingham, UK) and Pgp expression using the monoclonal
antibody C219 (1 mg ml – 1; Calbiochem, Merck Chemicals Ltd.,
Nottingham, UK). Western blots were incubated with primary
antibodies overnight at 4oC and secondary antibodies (0.4mg ml – 1;
Alexa Fluor, Molecular Probes, Invitrogen Life Technologies, Invitrogen,
Grand Island, NY, USA) for 1 h at room temperature with agita-
tion. Bands were visualised and quantified using the Li-cor Odyssey
infrared imaging system (Li-cor Biosciences, Lincoln, NE, USA).

De-glycosylation of proteins

Subcellular fractions were prepared as previously described
(Westwood et al, 2002) and proteins de-glycosylated using the
Protein Deglycosylation Mix (New England Biolabs, Ipswich, MA,
USA) following manufacturer’s instructions for non-denaturing
reaction conditions.

Immunofluorescence (IF) and microscopy

Cells (2� 104) were grown on sterilised coverslips (22� 40 mm;
Scientific Laboratory Supplies Ltd., Hull, UK) in cell-specific
media. MitoTrackerCMXRos (100 nM; M7512, Molecular Probes,
Invitrogen Life Technologies), widely used to identify mitochon-
dria (Zhou et al, 2011), was added to the cells for 30 min and cells
then washed in PBS. If required, frozen primary tumour sections
(5mm) were prepared. Sections and cells were fixed for 15 min
at room temperature in 4% paraformaldehyde (in PBS;
Sigma-Aldrich) and permeabilised with 0.1% Triton-X (BioRad,
Hertfordshire, UK) for 5 min (in PBS; Oxoid, Nottingham, UK).
Cells were incubated with primary antibody (5 mg ml – 1, A23 MRP-
1 polyclonal antibody, Axxora; 1 : 200 Grp-75 (Zheng et al, 2008),
ab13529, Abcam Plc; 1 : 100 g-tubulin, ab11316, Abcam Plc.) for 1 h

at room temperature, followed by a 30 min incubation with
secondary antibody (0.4 mg ml – 1 Molecular Probes, Invitrogen,
100ml) also in PBS-containing DAPI (0.2 mg ml – 1, Sigma-Aldrich)
at room temperature in the dark. In between incubations, sections
and cells were washed in PBS. Cells were mounted using Dako
Faramount Aqueous Mounting Medium Ready-to-use (Dako,
Invitrogen Life Technologies, Stockport, UK). Sections were
visualised by IF microscopy using a Zeiss 200 inverted microscope
(Carl Zeiss Ltd., Hertfordshire, UK) and a Nikon Eclipse TE2000-E
confocal microscope (Nikon UK Ltd., Surrey, UK). Z-stack images
were rendered using the Nikon NIS-elements software; 0.2 mm per
stack. Control sections (no primary antibody) were included to
check for cross-reactivity and bleed through of fluorescence. IF has
been employed in these studies as by using the organelle-
specific fluorescence marker MitoTrackerCMXRos it is possible
to precisely visualise colocalisation of MRP-1 within the
mitochondria.

Isolation of functional mitochondria

Mitochondria were isolated from ESFT cells (12� 107) using the
Mitochondria Isolation Kit (MITOISO2; Sigma-Aldrich) following
the manufacturer’s instructions. After isolation, mitochondria
were re-suspended in 20 ml of CellLytic M Cell Lysis Reagent
(MITOISO2; Sigma-Aldrich) containing the Protease Inhibitor
Cocktail (1 : 100; (v/v), MITOISO2; Sigma-Aldrich). For western
blotting, the mitochondrial cell lysate was added to an equal volume
of 2� SDS reducing loading buffer containing 200 mM DTT. For
functional assays, isolated mitochondria were resuspended in
CellLytic M Cell Lysis Reagent, incubated with 1 mM calcein-AM for
30 min and analysed by flow cytometry as described below.

Activity of mitochondrial and membrane MRP-1

MRP-1-dependent efflux activity of mitochondria and whole cells
was measured using the calcein-F efflux assay (Legrand et al,
1998). Briefly, whole cells were loaded with the non-fluorescent
calcein-AM, which is converted to fluorescent calcein-F by
intracellular esterases. Fluorescent calcein-F is then effluxed by
MRP-1. Calcein-F-specific efflux by MRP-1 was confirmed using
the inhibitor MK571: efflux of calcein-F was unaffected by the Pgp
inhibitor verapamil (Supplementary Figure 1). ESFT cells were
incubated for 30 min with calcein-AM; 0.05mM for whole cell or
1 mM for isolated mitochondria analysis. Calcein-F accumulation
and efflux in whole cells or mitochondria was measured on the
FACsCalibur using an excitation laser of 488 nm and emission
detected using a 530/30 nm filter (BD Biosciences, Oxford,
UK). Unlabelled control samples were included to correct for
autofluorescence.

Knockdown of MRP-1 protein by siRNA

TC-32 cells were electroporated with MRP-1 siRNA (400 nM;
siGenome SMARTpool M-007308-01-0005, Dharmacon, Lafayette,
CO, USA) or scrambled siRNA control (400 nM; Silencer Negative
control, Ambion, Austin, TX, USA) (Myatt and Burchill, 2008).
MRP-1 protein expression, detected by western blot, was normal-
ised to the loading control and relative to the scrambled siRNA
control. MRP-1 efflux activity, after knockdown of MRP-1
protein by siRNA, was detected by measuring efflux of calcein-F
(calcein-AM functional assay).

Overexpression and subsequent characterisation
of MRP-1 in the ESFT cell line TC-32

MRP-1 (a kind gift from Professor Cole; (Zhang et al, 2001))
was subcloned into the retroviral expression vector pFb-neo
(Stratagene, La Jolla, CA, USA); the insert sequence was confirmed
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by terminator sequencing using the ABI PRISM Big dye terminator
kit V1.1. and an ABI 3100 Genetic Analyser (Applied Biosystems,
Invitrogen Life Technologies, GrandIsland, NY, USA) as previously
described (Tomlinson et al, 2005). Infected cells were selected in
geneticin (300 mg ml – 1; Sigma-Aldrich) for 10 days before placing
cells in normal growth media. Overexpression of MRP-1 in the TC-
32MRP-1.Fb-neo cells was confirmed by western blot and flow
cytometry using A23 MRP-1 polyclonal antibody (Axxora). For
flow cytometry (analysing 10 000 events) this antibody was used at
10mg ml – 1 and expression detected using the goat-anti rabbit
TRITC antibody (4ml ml–1; Southern Biotech, Birmingham, AL, USA).
MRP-1 activity was evaluated by the calcein-AM functional assay.

Gene expression of 50 ABC transporters was measured using the
Taqman Human ABC Transporter Array (Applied Biosystems,
Invitrogen Life Technologies) according to manufacturer’s in-
structions. RNA was extracted using the RNeasy Mini Kit (Qiagen,
Crawley, West Sussex, UK) from TC-32.Fb-neo and TC-32MRP-
1.Fb-neo cells. RNA (1 mg) was converted to cDNA using Super-
script III Reverse Transcriptase (Invitrogen) following manufac-
turer’s instructions. Fold change in ABC transporter expression
was determined using the comparative ct method, normalising data
to peptidylprolyl isomerase A (PPIA; Lastowska et al, 2007).

TC-32.Fb-neo and TC-32MRP-1.Fb-neo cells were treated with
increasing concentrations of the MRP-1 substrates doxorubicin
(0.85–56 nM), vincristine (2–120 nM), etoposide (7–240 nM) and a
non MRP-1 substrate, actinomycin D (0.1– 7.2 nM) for 48 h, after
which viable cell number was counted using the trypan blue
exclusion assay (Vi-cell, Beckman Coulter, High Wicombe, UK)
(Myatt et al, 2005).

Effect of chemotherapeutics on MRP-1 expression and
efflux activity of ESFT cells

TC-32 cells were treated with doxorubicin (0.85 nM), etoposide
(7.2 nM) or actinomycin D (0.1 nM) for 2– 8 h. At these concentra-
tions of the agents viable cell number was 480% (Figure 4B) and
the concentration of actinomycin D was not sufficient to inhibit
transcription (Cheon et al, 2000). From cell extracts subcellular
fractions were prepared and MRP-1 expression analysed
by western blot. Plasma membrane MRP-1 efflux activity was
measured in both control and doxorubicin (0.85 nM) -treated cells
using the calcein-AM functional assay.

The effect of the doxorubicin (0.85 nM) -induced increase in
MRP-1 expression on the cytotoxicity of chemotherapeutics
was examined in TC-32 cells. Briefly, doxorubicin (0.85 nM for
8 h) -treated and -untreated TC-32 cells were incubated with toxic
concentrations of five chemotherapeutics (doxorubicin 3.5 nM,
vincristine 8.6 nM, etoposide 61.8 nM, actinomycin D 0.2 nM and
fenretinide 2.56 mM) for 16 h, when an increase in MRP-1 was
evident. Cells were harvested and apoptosis measured by flow
cytometry of annexin V and propidium iodide (PI) -labelled
cells (Annexin V-FITC apoptosis detection kit, BD PharMingen,
BD Biosciences, Oxford, UK; Myatt et al, 2005); annexin V-PI was
used to assess the cytotoxicity of agents as at 16 h cells may have an
intact cell membrane (so would not be identified as dead with the
trypan blue exclusion assay) but could be pre-apoptotic (annexin
V positive) or apoptotic (annexin V:PI positive).

Statistical methods

Unless stated otherwise, experiments were performed three times
with triplicates in each experiment. Statistical analyses were
performed using GraphPad prism (San Diego, CA, USA). Any
significant differences in calcein-F efflux, MRP-1 expression, viable
or non-viable cell number were determined using analysis of
variance (ANOVA) followed by Bonferroni’s post hoc multiple
comparison test. Differences in gene expression were determined
using ANOVA and Dunnett’s post hoc test. Regression analysis was

performed on viable cell counts to calculate the IC50 of therapeutic
agents.

RESULTS

Plasma membrane MRP-1 and its functional activity

Full length MRP-1 (150 –250 kDa) was expressed in all 15 cancer
and 3 normal cell types examined (Figure 1A). The different sizes
of native MRP-1 protein reflect post-translational glycosylation
(Cole et al, 1992); de-glycosylated MRP-1 has a molecular weight
of B150 kDa (Supplementary Figure 2).

Consistent with its role as a plasma membrane efflux protein,
MRP-1 was detected in the membrane-enriched fractions of all the
cells analysed (Figure 1B; Supplementary Figure 3). The SHEP-1,
RT-112, A204, HT-29, RD-ES and A673 cancer cells had the highest
membrane MRP-1 expression, whereas in cells of normal origin
MRP-1 was barely detectable in the plasma membrane. This is
consistent with the hypothesis that plasma membrane MRP-1 may
be upregulated in some cancer cells. Consistent with its role as a
transport protein, MRP-1-dependent efflux of calcein-F from
ESFT cells was 12 – 23% over 60 min (Figure 1C). There was no
statistically significant correlation between the level of MRP-1
in the plasma membrane (evaluated by densitometry of western
blots) and efflux activity (Po0.1) in ESFT cells. However, when
the expression of MRP-1 was decreased using MRP-1 siRNA
in whole TC-32 cells (Supplementary Figure 4A), the efflux activity
of MRP-1 was significantly decreased (Po0.05), (evaluated by
the calcein-AM functional assay; Supplementary Figure 4B), sup-
porting the use of the calcein-AM assay to evaluate MRP-1 efflux
activity.

Consistent with the lack of Pgp protein expression in ESFT cells
(Supplementary Figure 5A), no Pgp-dependent efflux activity was
detected in ESFT cell lines (Supplementary Figure 1 and 5B).

MRP-1 is expressed in the mitochondria of human
cancer and normal cells

MRP-1 was detected in the mitochondrial fraction of all cancer and
normal cell lines (Figure 2A; Supplementary Figure 3). The level of
expression was heterogeneous across the cell types examined.
MRP-1 protein was more abundant in the mitochondrial protein
mass in 7 out of 15 cancer cell lines (IMR-32, SK-N-SH, MCF-7,
SK-N-MC, SKES-1, A673 and TC-32; Figures 1B and 2A, Supplemen-
tary Figure 3) than in the protein mass of the membrane fraction. In
contrast, membrane MRP-1 protein was more abundant (Figure 1B)
in 5 out of 11 (SHEP-1, RT-4, CCL136, A204 and RD-ES) cancer cell
lines than mitochondrial MRP-1 protein (Figure 2A). Taken together,
these data suggest there is subcellular-specific regulation of MRP-1
expression within the cell. Mitochondrial MRP-1 in normal cells was
high in MSCs (Figure 2A), consistent with previous reports,
suggesting that stem cells express high levels of ABC transport
proteins (Zhou et al, 2001; Kim et al, 2002).

MRP-1-dependent efflux from isolated mitochondria

Having observed mitochondrial MRP-1 in normal and cancer cell
lines, it was important to evaluate the functional significance of the
ABC transporter in this organelle.

The viability of the isolated mitochondria was confirmed by the
successful oxidation of MitoTrackerCMXRos dye to a fluorescent
form in isolated organelles measured by fluorescent microscopy
(data not shown). The expression of MRP-1 was confirmed in
isolated whole mitochondria from ESFT cell lines by western blot
(Figure 2B). Efflux of calcein-F was observed in mitochondria
isolated from all ESFT cell lines, consistent with mitochondrial
MRP-1-dependent efflux activity; efflux of calcein-F was between
55-64% of the initial fluorescence within 5 min (Figure 2C) and
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calcein-F was completely removed from mitochondria by 10 min
(cellular fluorescence was equal to the autofluorescence of
unlabelled cells). The efflux activity from isolated mitochondria
was greater than that from the whole cell via the plasma membrane
(Po0.001). Interestingly, mitochondrial MRP-1 is glycosylated
(Supplementary Figure 2), consistent with transport to the
mitochondrial membrane and a putative efflux role.

MRP-1 is expressed in the mitochondria of human cancer
and normal tissues

Expression of MRP-1 in the mitochondria was confirmed by IF and
microscopy using the mitochondrial marker MitoTrackerCMXRos.
Expression of mitochondrial MRP-1 was either punctate (TTC 466;
Figure 2D), suggesting cellular transport of MRP-1 in vesicles, or
homogenous (HT-29; Figure 2E). Mitochondrial MRP-1 was also
confirmed by analysing labelled cells by confocal microscopy
(Figure 2F; Supplementary Figure 6).

This is the first time to our knowledge that MRP-1 has been
described in mitochondria isolated from different human cell types
that have not been exposed to chemotherapeutics. To confirm
mitochondrial MRP-1 is not an in vitro phenomenon, we went on
to investigate the expression of MRP-1 in the mitochondria of
both normal and cancer tissues by IF and microscopy. MRP-1 was

expressed in the membrane of all the tissues evaluated except the
haemangioma tissue (data not shown).

Consistent with the presence of mitochondrial MRP-1 in cancer
cell lines, there was clear co-localisation of the mitochondrial
marker Grp75 (red) and MRP-1 (green) in 7/7 primary ESFT
(example shown in Figure 3A), 2/2 thyroid carcinomas (example
shown in Figure 3B), 1/1 haemangioma, 2/2 melanomas and
1/1 soft tissue rhabdomyosarcoma. The expression of MRP-1 in
mitochondria of primary tumours was confirmed by confocal
microscopy (Figure 3E; Supplementary Figure 6). Consistent with
the identification of mitochondrial MRP-1 in normal cells,
co-localisation of Grp75 and MRP-1 was also observed in normal
lymph node and tonsil (Figure 3C). However, MRP-1 was not
evident in mitochondria of five NBs (example shown in Figure 3D),
in contrast to the high mitochondrial MRP-1 observed in the NB
cell lines (Figure 2A). Whether this reflects selection of NB cells
surviving in culture conditions or an adaptation of cells to in vitro
culture remains to be seen.

Transport of MRP-1 to the mitochondria

MRP-1 total protein expression on western blot was increased in
the stable retroviral-infected TC-32MRP-1.Fb-neo cells, compared
with the vector control-infected cells (TC-32.Fb-neo)(Figure 4A);
this increase was approximately two-fold when quantified by flow
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cytometry (increase in fold change expression from 7±1 to 14±1;
Po0.05) and correlated with an 85% increase in efflux activity
measured using the calcein-AM assay (Po0.0001). Interestingly,
expression of MRP-1 was preferentially increased in the mitochon-
dria (densitometry, 634units±36; Po0.01) compared with ex-
pression in other subcellular localisations (Figure 4A,
Supplementary Figure 8), suggesting that in conditions of
overexpression MRP-1 is preferentially transported to the mito-
chondria in cancer cells. This may be analogous to the
development of acquired resistance in cancer cells, although this
requires further investigation.

Significant resistance to the cytotoxic agents vincristine and
etoposide was induced in the TC-32MRP-1.Fb-neo cells compared
with the vector control cells; IC50 of vincristine from 5 to 15 nM

(Po0.001) and etoposide from 102 to 126 nM (Po0.001). There
was no significant change in the IC50 for doxorubicin or
actinomycin D (Figure 4B). Remarkably, MRP-1 was the only

ABC transporter with significantly increased gene expression in
the TC-32MRP-1.Fb-neo cells compared with the vector control
(Figure 4C; Po0.001), consistent with the conclusion that the
changes in sensitivity to vincristine and etoposide were likely to be
the result of increased expression of MRP-1 rather than changes in
the expression of other ABC transporters.

Doxorubicin and etoposide increase the expression of
MRP-1 in the membrane and mitochondria of TC-32 cells,
inducing resistance to chemotherapeutics that are MRP-1
substrates

As we have established MRP-1 is expressed in the mitochondria of
cancer cell lines, the expression of this MDR protein following
exposure to chemotherapeutics was investigated to explore the
hypothesis that mitochondrial MRP-1 might have a role in
acquired drug resistance. Increased MRP-1 expression was not
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observed by western blot of total cellular fractions prepared from
TC-32 cells treated with a non-toxic concentration of doxorubicin
(Figure 5A). However, MRP-1 expression was increased in the
membrane and mitochondrial fractions from these cells
(Figure 5A). In agreement with these findings, efflux of calcein-F
from the doxorubicin (0.85 nM, 8 h) -treated TC-32 cells was
increased by 114±13% compared with the untreated control cells
(Po0.01). In contrast, nuclear MRP-1 expression decreased 2 h
after treatment (Figure 5A); this decrease was maintained to 72 h
(data not shown). This may reflect the movement of MRP-1 from
the nucleus to the mitochondria and plasma membrane. MRP-1
expression was not induced in the MRP-1-negative cytoplasmic
fraction of TC-32 cells (data not shown).

Similar findings were observed when TC-32 cells were
treated for up to 8 h with a second MRP-1 substrate, etoposide
(Supplementary Figure 7). In contrast, treatment of TC-32 cells
with the non-MRP-1 substrate actinomycin D did not increase
expression of MRP-1 in total or specific subcellular fractions
(Figure 5B). Interestingly, actinomycin D (a substrate of a second
ABC transporter protein Pgp (Juliano and Ling, 1976)), did not
induce Pgp expression in these cells (data not shown). Collectively,
these observations demonstrate that chemotherapeutics that are
substrates for MRP-1 (doxorubicin and etoposide) can upregulate
expression of MRP-1 in specific subcellular organelles; this may be
important for the development of drug resistance.

Consistent with this hypothesis, pre-treatment of TC-32 cells
with doxorubicin (0.85 nM) significantly increased the resistance of
this cell line to the cytotoxic effects of the MRP-1 substrates

doxorubicin and etoposide after 16 h (Po0.05; Figure 5C). There
was no significant increase in resistance observed after 16 h
treatment with fenretinide or actinomycin D, consistent with the
view that these agents are not substrates for MRP-1. Some agents
such as vincristine need to be conjugated with a secondary factor
such as glutathione for MRP-1-dependent transport (Loe et al,
1998), which may explain why there was no increased resistance to
vincristine. Whether this is the case for fenretinide or actinomycin
D remains to be seen.

DISCUSSION

In this study, we have demonstrated the expression of MRP-1 in
the mitochondria of human cancer and normal cell lines and
tissues. We found MRP-1 to be enriched in mitochondrial
compared with plasma membrane protein extracts in a cell type-
specific pattern. Although other ABC transporters have previously
been identified in the mitochondria (Zutz et al, 2009) and more
specifically MRP-1 has been described in mouse mitochondria
isolated from heart tissue after treatment of mice with doxorubicin
(11), this is the first time mitochondrial MRP-1 has been described
in human, untreated cells. Importantly, we have shown mitochon-
drial MRP-1 has efflux activity, removing calcein-F more efficiently
from viable mitochondria than from the whole cell. However,
efflux activity does not correlate with plasma membrane MRP-1
expression. We are therefore currently investigating whether
this may reflect the presence of functional MRP-1 splice variants
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Arrows indicate regions of co-localisation. Positive staining by multiple fluorescent compounds was compared with the staining with each individual
compound alone, to confirm the staining was not a result of interactions between the fluorescent compounds. (E) Z-stack images created and rendered
using the Nikon NIS-elements software. Images are representative of the tissue population analysed. Scale bar¼ 10mm.
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and/or differences in ATP levels required by ABC transporters for
function.

The punctate pattern of MRP-1 expression in the mitochondria
is consistent with localisation to vesicles and a putative role in

subcellular sequestration of toxins and protection of the organelle.
Specific overexpression of MRP-1 in cancer cell lines increased
resistance to chemotherapeutics that are MRP-1 substrates, and
resulted in selective expression of MRP-1 in the mitochondria,
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suggesting this might have a role in acquired as well as intrinsic
drug resistance. MRP-1 was also expressed in most cancer cell lines
at higher levels in the plasma membrane than in normal cells,
consistent with a putative role in the development of the malignant
phenotype and drug resistance.

Efflux of calcein-F from isolated mitochondria is consistent with
localisation of MRP1 to the mitochondrial membrane. This rapid

and efficient efflux is similar to that of the Pgp substrate Rho123
from mitochondria of a drug-resistant hepatocellular carcinoma
cell line (Solazzo et al, 2006). Some studies have suggested that
mitochondrial Pgp is orientated in an inverse direction to that in
the plasma membrane (Munteanu et al, 2006). However, the rapid
efflux of mitochondrial calcein-F in this study confirms the
orientation of mitochondrial MRP-1 to be the same as that in the

A Doxorubicin (0.85 nM)

MRP-1

← �-tubulin, 55 kDa

250 kDa

150 kDa

50 kDa

Total

MRP-1

250 kDa

150 kDa

Mitochondrial

Plasma membrane

← NaKATPase,
     ~110 kDa

250 kDa

150 kDa

100 kDa

75 kDa
37 kDa

← TATA, 38 kDa

MRP-1

250 kDa

150 kDa

Nuclear

MW 0 2 4 6 8 h

MW 0 2 4 6 8 h MW 0 2 4 6 8 h

MW 0 2 4 6 8 h

← Grp75, 74 kDa75 kDa

MRP-1

Actinomycin D (0.1 nM)

250 kDa

150 kDa

50 kDa

MRP-1

← �-tubulin, 55 kDa

Total

MRP-1
250 kDa

150 kDa

100 kDa

75 kDa

← NaKATPase,
     ~110 kDa

Plasma membrane

250 kDa
MRP-1

150 kDa

Mitochondrial

37 kDa ← TATA, 38 kDa

MRP-1
250 kDa

150 kDa

Nuclear

← Grp75, 74 kDa75 kDa

MW 0 2 4 6 8 h

MW 0 2 4 6 8 h MW 0 2 4 6 8 h

MW 0 2 4 6 8 h

*
*

*P<0.05

In
cr

ea
se

 in
 r

es
is

ta
nc

e 
co

m
pa

re
d

w
ith

 c
on

tr
ol

 c
el

ls
 (

%
) 

B

C

Doxorubicin
(3.50 nM)

Vincristine
(8.60 nM)

Etoposide
(61.80 nM)

Actinomycin D
(0.20 nM)

Fenretinide
(2.56 �M)

0

5

10

15

20

25

Figure 5 Subcellular expression of MRP-1 in TC-32 cells after incubation with (A) doxorubicin (0.85 nM) and (B) actinomycin D (0.1 nM). a-tubulin,
sodium potassium ATPase, Grp75 and TATA TBP were included as loading controls for total, plasma membrane, mitochondrial and nuclear fractions,
respectively. Results are representative of two independent sets of extracts. (C) Percentage increase in resistance to doxorubicin and etoposide after
doxorubicin-dependent upregulation of mitochondrial and membrane MRP-1 expression. Percentage of viable, unlabelled TC-32 cells after pre-treatment
with a non-toxic concentration of doxorubicin (0.85 nM) followed by a 16 h treatment with 3.5 nM doxorubicin, 8.6 nM vincristine, 61.8 nM etoposide, 0.2 nM

actinomycin D and 2.56mM fenretinide, determined by annexin V/PI labelling of cells and flow cytometry. Results are shown as mean percentage increase in
resistance±s.e.m. (n¼ 9). Any significant differences in the percentage of unlabelled cells were determined by ANOVA and Bonferroni’s post hoc test.
Abbreviation: MW¼molecular weight marker.

Mitochondrial MRP-1

EA Roundhill and SA Burchill

1231

British Journal of Cancer (2012) 106(6), 1224 – 1233& 2012 Cancer Research UK

G
e
n

e
ti

c
s

a
n

d
G

e
n

o
m

ic
s



plasma membrane, in agreement with Solazzo et al. (Solazzo et al,
2006). Indeed, calcein-F efflux from mitochondria was actually
more efficient than that from the whole cells. Consistent with
localisation to the mitochondrial membrane, mitochondrial MRP-1
is glycosylated; whether mutations in the putative glycosylation
sites modulate expression and function as described for the Naþ -
dependent OCTN2 carnitine/organic cation transporter (Filippo
et al, 2011) remains to be seen. These observations suggest that not
only is mitochondrial MRP-1 likely to contribute to the develop-
ment of the malignant and drug-resistant phenotype, it might also
represent an exciting new therapeutic target.

Although the punctate pattern of mitochondrial MRP-1 expres-
sion is consistent with its presence and transport in vesicles, the
mechanism of trafficking to the mitochondria is not clear. Previous
studies investigating MRP-1 in the golgi of cancer cells suggest that
localisation to this organelle may be due to a mutation or error in
the MRP-1 transport pathway (Kaufmann et al, 2008). However,
this is unlikely to be the explanation in these studies as
overexpression of wild-type MRP-1 results in mitochondria-
specific increased expression of the MRP-1 protein. Analysis
of the MRP-1 sequence (using Predator and MitoProtII)
failed to reveal published mitochondrial targeting sequences
(Pfanner, 2000). We have therefore hypothesised that there is a
currently unidentified mitochondrial targeting sequence in the
NH2 terminus of MRP-1, and are investigating this possibility by
site-directed mutagenesis (Neve and Ingelman-Sundberg, 2001).
The increased expression of MRP-1 in the mitochondria following
exposure to doxorubicin and etoposide suggests a tumour
acquired resistant phenotype may be associated not only with
increased expression of MRP-1 but with a specific increase in
mitochondrial MRP-1.

The expression of MRP-1 in mitochondria of normal cell lines
and tissues is consistent with recent data in the mouse identifying
MRP-1 in mitochondria isolated from cardiomyocytes after
treatment (Jungsuwadee et al, 2009). Consistent with our
observations showing doxorubicin and etoposide increase mito-
chondrial MRP-1 expression, doxorubicin also increases the level
of MRP-1 in the inner mitochondrial membrane of cardiomyocytes
where it is reported to protect these cells from endo- and xeno-
biotics (Jungsuwadee et al, 2009). Taken together, these studies
demonstrate doxorubicin can increase mitochondrial MRP-1 in
normal and cancer cells, and might therefore have a role in cellular
homoeostasis and development of different abnormal phenotypes
including the induction of multidrug resistance in cancer. The
expression of MRP-1 in mitochondria isolated from MSCs is
consistent with the role of the ABC transporters such as BCRP
(Zhou et al, 2001) in stem cells, and also suggests increased
mitochondrial MRP-1 expression may be important in the
acquisition of cancer stem cell-like properties. We are currently
investigating these possibilities.

Doxorubicin-induced expression of mitochondrial MRP-1 was
accompanied by a decrease in nuclear expression, suggesting
doxorubicin may affect intracellular trafficking of MRP-1.

Exposure to doxorubicin significantly increased resistance to
doxorubicin and etoposide but failed to increase resistance to the
MRP-1 substrate vincristine, possibly reflecting the dependence of
vincristine on GSH levels for MRP-1 efflux activity (Loe et al, 1996,
1998). However, specific retroviral-induced overexpression of
MRP-1 triggered resistance to vincristine and etoposide. The
difference in resistance observed following doxorubicin-induced
increases in MRP-1 and overexpression using the retroviral
expression vector most likely reflects chemotherapy-induced
changes in drug resistance mechanisms other than increased
expression of MRP-1 (Rajkumar and Yamuna, 2008). Therefore,
our data suggest doxorubicin-induced resistance might reflect the
increased efflux activity of mitochondrial MRP-1 protecting cells
from induction of cell death. This hypothesis is supported by the
co-localisation of MRP-1 and doxorubicin in lysosomes, suggest-
ing the MDR protein directly transports doxorubicin into
intracellular vesicles (Rajagopal and Simon, 2003).

In summary, we have identified mitochondrial MRP-1 in human
normal and cancer cell lines and tissues, and confirmed
mitochondrial MRP-1 efflux activity in human cell lines. In this
subcellular organelle, MRP-1 may efflux chemotherapeutics and
cellular toxins to protect the mitochondrial DNA from damage,
and prevent induction of mitochondria-dependent cell death.
It might therefore be considered a pro-survival protein, essential
for normal cellular function and development of intrinsic and
acquired drug resistance in cancer cells. Although other mechan-
isms of drug resistance have been described, given the key role that
mitochondria have in oncogenesis and the process of malignant
cellular transformation (Ralph et al, 2010) and the limited clinical
success with conventional MDR inhibitors (Gandhi et al, 2007;
Lhomme et al, 2008; Ruff et al, 2009), mitochondrial MRP-1 may
represent an important new therapeutic target.
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