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ABSTRACT: DNA-Encoded Chemical Libraries (DELs) have
emerged as efficient and cost-effective ligand discovery tools,
which enable the generation of protein−ligand interaction data of
unprecedented size. In this article, we present an approach that
combines DEL screening and instance-level deep learning modeling
to identify tumor-targeting ligands against carbonic anhydrase IX
(CAIX), a clinically validated marker of hypoxia and clear cell renal
cell carcinoma. We present a new ligand identification and hit-to-
lead strategy driven by machine learning models trained on DELs,
which expand the scope of DEL-derived chemical motifs. CAIX-
screening datasets obtained from three different DELs were used to
train machine learning models for generating novel hits, dissimilar to
elements present in the original DELs. Out of the 152 novel
potential hits that were identified with our approach and screened in an in vitro enzymatic inhibition assay, 70% displayed
submicromolar activities (IC50 < 1 μM). To generate lead compounds that are functionalized with anticancer payloads, analogues of
top hits were prioritized for synthesis based on the predicted CAIX affinity and synthetic feasibility. Three lead candidates showed
accumulation on the surface of CAIX-expressing tumor cells in cellular binding assays. The best compound displayed an in vitro KD
of 5.7 nM and selectively targeted tumors in mice bearing human renal cell carcinoma lesions. Our results demonstrate the synergy
between DEL and machine learning for the identification of novel hits and for the successful translation of lead candidates for in vivo
targeting applications.

■ INTRODUCTION
Small organic ligands which specifically interact with protein
targets overexpressed in cancer lesions are increasingly being
considered for the targeted delivery of therapeutic payloads to
the site of diseases.1−4 Most of the ligands used for
pharmacodelivery applications have been generated on the
basis of natural substrates of tumor-associated antigens.5−7

Lutathera and Pluvicto, two recently approved radioligand
therapeutics for the treatment of gastroenteropancreatic
neuroendocrine tumors (GEP-NETs) and metastatic castra-
tion-resistant prostate cancer (mCRPC), are based on
derivatives of previously known binders of their respective
molecular targets (i.e., somatostatin receptor-2 and prostate-
specific membrane antigen, respectively). Nature has been a
productive source of molecules with favorable binding
specificities, but de novo ligand discovery remains challeng-
ing.1,8 Interrogation of chemical compound collections has
been miniaturized and automated in the form of high-
throughput screening (HTS) technologies.9 While HTS has
promised to deliver ligands for any protein target of interest
and can contain diverse chemical collections, practical
application of this technology by pharmaceutical companies

is limited by high setup costs and time-consuming screening
protocols.8−10

DNA-encoded chemical libraries (DELs) have evolved as
efficient and cost-effective ligand discovery tools as an
alternative to HTS.11−17 DELs are pools of organic chemical
compounds generated via combinatorial synthesis approaches.
The DEL compounds are individually linked to DNA tags that
serve as unique identification “barcodes”. In a typical DEL
selection, millions to billions of DEL members are screened
against the target protein of interest. High throughput DNA
sequencing (HTDS) technologies enable the identification of
barcodes uniquely associated with preferentially enriched
compounds, creating large protein−ligand interaction data-
sets.17 With increasing library size, complexity, and sequencing
capacity, it has become more challenging to interpret and
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exploit the large datasets that result from DEL screening
campaigns.9,18,19 Computational methods have been developed
to facilitate the identification of potential protein binders (hits)
and study structure−activity relationships.20,21 Quantitative
analysis based on negative binomial distribution,18,22,23 enrich-
ment metrics that factor in different sources of uncertain-
ties,24−26 and modeling approaches to denoise DELs

accounting for partial products27 were successfully applied
for hit prioritization.
Building predictive models on DEL-screening datasets is

challenging due to various confounding factors such as varying
chemical yields of expected structures during library syn-
thesis,28 nonuniform baseline abundances of library members,
and substantial undersampling.26 To cover a diverse chemical

Figure 1. DEL training dataset. (A, D, and G.) Chemical structures of DELs. (B, E, and H) HTDS plots after library selections against
unmodified streptavidin-coated beads. The x, y, and z axes correspond to code A, B, and C, respectively. The colored jet scale indicates DNA
sequence counts. Cut-off = 4, 4, and 100, respectively. Total counts (B, E, H) = 1,551,875; 1,817,134; and 1,617,433, respectively. These results are
used in data analysis as negative controls to evaluate selection results. (C, F, I) HTDS plots after library selections against Carbonic Anhydrase IX
(CAIX). Cut-off = 40; 30; and 300, respectively. Total counts = 2,837,727; 1,964,585; and 2,533,971, respectively. Building block combinations
enriched in selections against CAIX are indicated by black arrows. Selections were performed in duplicates (see Figure S1).
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space, modern DEL experiments are often multiplexed,29

where tens to hundreds of DEL libraries are pooled together
during selections and sequencing.26,30,31 This allows billions of
compounds to be screened against the target in a single
experiment. However, due to sequencing time and cost, a
typical experiment generates 106 to 108 of reads, which is only
a small fraction of the total chemical diversity tested. With a
low sampling ratio, sequencing count distributions are
dominated by shot noise,26 resulting in low signal-to-noise
ratios and poor reproducibility between experimental repli-
cates.26

To address undersampling and build predictive models on
DEL datasets, denoising strategies such as disynthon
aggregation9 have been employed. Sequencing reads of
molecules which share common two-cycle building blocks
are aggregated to generate “disynthon-level” enrichment scores
and classification labels for model training.32 However, during
disynthon aggregation, structural information from individual
molecules is partially lost. Additionally, aggregation over a
middle-position building block can generate molecules that
cannot be practically synthesized. Several groups have recently
proposed probabilistic models that operate on the fully
enumerated DEL compounds (“instance-level”) and have
demonstrated promising results in retrospective evalua-
tion.33−35 However, there have not been published prospective
studies to validate such models in real-world hit-finding
applications.
In this article, we developed an approach that combines

DEL screening and modeling to identify and generate lead
compounds against carbonic anhydrase IX (CAIX), a clinically
validated marker of hypoxia and clear cell renal cell
carcinoma.36−42 We introduced an instance-level deep learning
approach on screening results of three different DELs.
Prospective application of the model resulted in novel hits
(not present in the original chemical collections), which were
characterized by a CAIX enzymatic inhibition assay. The
model was then further applied to prioritize and generate a list
of lead candidates for in vivo applications. To the authors’
knowledge, this is the first example of prospective hit-to-lead
driven by ML models trained on DEL selection results. A
selection of lead compounds was found to bind to the surface
of CAIX-positive cancer cells and selectively target tumors in
mice bearing human renal cell carcinoma lesions. Our results
demonstrate that machine learning on DEL approaches can
extrapolate beyond the DEL training space to identify novel
hits and lead compounds for in vivo tumor-targeting
applications.

■ MATERIALS AND METHODS
Datasets. The training dataset consists of three-cycle DEL

with 4.2 million (DEL01), 1.57 million (DEL02), and 53,326
(DEL03) members. While the combined library size of 5.9
million members is small compared to billion compound
libraries, this work focused on generating high signal-to-noise
data for machine learning model training. Schematic structures
of the three DELs are shown in Figure 1. For each DEL library,
affinity-mediated selections for CAIX (target selection) and
selections without the presence of the target protein (no target
control, NTC) were performed.
A variety of chemical structures have been described as

binders and inhibitors of Carbonic Anhydrase IX (CAIX, the
target), such as carboxylic acids, coumarins, and sulfona-
mides.43 During the construction of the three DEL libraries,

sulfonyl benzoic acid (SABA) derivatives were included as
DEL building blocks, resulting in 1.3% SABA-containing
compounds in the overall DEL dataset. To reduce noise in
DEL sequencing counts, selections and sequencing were
performed for each individual DEL separately, resulting in
sampling ratios (defined as the ratio of sequencing read depth
to the number of DEL members) that are on the order of 1
(Table S1), which is thousand times higher than typical
multiplex DEL screenings.26 Such setup generates high-quality
and reproducible screening results for machine learning
(Figures S1 and S2).
Input Featurization and Processing. To train machine

learning models, DEL compounds and screening results need
to be represented in model readable formats. This required two
data pre-processing steps: (1) computationally enumerate
individual DEL compound structures from their corresponding
building blocks and represent them as molecular graphs and
(2) create training labels for each DEL compounds based on
their sequencing counts.

SMILES Enumeration and Small-Molecule Representa-
tion. SMARTS-based enumeration was used to generate
SMILES (simplified molecular input line entry system)
representations of the DEL compounds. For each synthesis
cycle, RDkit was used to perform in-silico reactions to generate
the products from the building blocks and the corresponding
reaction SMARTS (SMILES arbitrary target specification).
The fully enumerated products were represented as molecular
graphs, where the nodes represent individual atoms and the
edges represent bonds, with atom and bond features as
specified by Kearnes et al.44

Enrichment Score Computation and Example Labeling.
For each of the target and no target control selection types,
normalized z-scores24 were obtained from the raw sequencing
counts. The normalized z-score calculation approximates the
DNA sequencing process as random sampling with replace-
ment using a Binomial distribution and quantifies the level of
enrichment of an observed count compared to the expected
count (e.g., uniform prior), factoring in the sequencing read
depth and library sizes. Specifically, the formulation is
described in eq 1.
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where po is the observed probability (po = co/n), pi is the
expected probability (pi = 1/library size), co is the observed
count, and n is the total sequencing reads.
From the normalized z-scores, each DEL compound was

categorized into one of the three different classes: MATRIX_-
BINDER, TARGET_HIT, and NON_HIT. The classes were
defined as follows: (1) MATRIX_BINDER: Examples with
NTC-normalized z-score ≥ 0.004 in the no target control
selection. (2) TARGET_HIT: Examples with NTC-normal-
ized z-score < 0.004 and target selection normalized z-score ≥
0.004. (3) NON_HIT: All the other examples. With this
process, the TARGET_HIT class included DEL compounds
that were enriched in the target condition but were not
enriched in the matrix-only condition and were defined as the
“positive” class for our machine learning model. From this
process, 37,928 examples were labeled as TARGET_HIT
across the three DELs.
Model Design, Training, and Evaluation. Model

Architecture. Following the work by McCloskey et al.,32 we
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employed a Graph Convolutional Neural Network (GCNN)
with weave modules (“W2N2” variant), where the input
features and hyperparameters were as specified by Kearnes et
al.44 The max number of heavy atoms per compound was set
to 70 to account for the larger, instance-level compounds. The
final linear layer of the model, trained with softmax cross-
entropy loss, makes predictions on the three mutually exclusive
classes [NON_HIT, MATRIX_BINDER, TARGET_HIT].
GCNN was selected as our model architecture because it
outperformed Random Forest models in hit-finding.32

Cross-Validation and Evaluation Metrics. To evaluate the
ability of the models to extrapolate outside of the training
space, we employed a k-fold cross-validation scheme that
divides the DEL data into well-separated train, validation, and
test splits. The k-folds were determined by affinity clustering, a
method to perform clustering on weighted (where the edge
weights represent similarity) undirected graphs.45 Specifically,
we created compound-similarity-based clusters by the follow-
ing steps: (i) Compute pairwise molecular similarities with
extended-connectivity fingerprints,46 radius 3 (ECFP6)
between all DEL compounds across the three DELs. (ii)
Construct a large graph where each compound is a single node,
and two nodes are connected with a weighted edge if they have
fingerprint similarity ≥ 0.5. The weight of the edge is the
molecular similarity between the two nodes. (iii) Affinity
clustering is then run on the constructed graph to identify the
best neighbors (prioritized by weights) of each node. The
resulting connected subgraphs determined the different
clusters. For this study, five clusters were generated, resulting
in five distinct folds across the three DELs. Three (k − 2) folds
were merged and used for training. The fourth fold was used
for validation and model selection. The fifth fold served as the
test set. This process was repeated 5 times, with each of the
folds being used as either validation or test fold. For each of
the cross-validation fold models, two different metrics were
computed for the TARGET_HIT class: (1) The area under
the curve of the receiver operator characteristic curve,47 or
ROC-AUC, which quantifies the overall ability of the model to
classify CAIX hits against nonhits across different score
thresholds and (2) top_100_positives, defined as the number
of true TARGET_HIT class examples in the top-100-scored
compounds in the validation fold. Top_100_positives
quantifies early enrichment of the model, which mimics the
actual use case in a drug discovery program where only the top
k candidates are experimentally validated.
Batch Sampling. The three classification classes are highly

imbalanced (with the NON_HIT class dominating the training
data), and the affinity cluster-based cross-validation folds
varied substantially in size (Table 1). To ensure the model is
presented with examples from different classes and chemical
spaces, we follow a similar oversampling strategy outlined in
McCloskey et al.,32 which over-samples examples from the

underrepresented classification classes and cross-validation
folds. Additionally, due to the high enrichment of SABA
derivatives in the TARGET_HIT class, we enforced a strategy
to sample evenly from SABA-containing and non-SABA-
containing examples per classification class. This results in a
sampling strategy where each minibatch contains equal
numbers of examples from different (fold, classification class,
SABA-containing, or non-SABA-containing) categories. Effec-
tively, the additional SABA-based batch creation strategy up-
samples the TARGET_HITs that do not contain SABA and
NON_HITs that contain SABA.
Model Training and Selection. Each of the GCNN

models was trained to converge on 1 tensor processing unit
(TPU) with 8 TensorNodes. Each model comprises 8
independently randomly initialized TPU replicas. Each of the
8 TPU replicate models converged independently, and the
median of the predictions from the 8 replicates is used as the
overall prediction of a single model.32 To assess the variability
of the GCNN models, we trained 3 independent models with
different random initializations for each fold, resulting in 15
models (5 cross-validation fold, 3 independent model replicas,
each with 8 TPU replicates). Each GCNN model converged
within 24 h. An important motivation for our cross-validation
setup was to evaluate the ability of the models to extrapolate
outside of their training space. The cross-validation folds were
constructed such that the folds were well-separated in chemical
space. Due to the cross-validation fold split design, different
fold models reached the best validation fold performance at
different training steps. For each cross-validation fold model,
the model weights at the training step with the maximum
TARGET_HIT class top_100_positives validation fold metric
were selected. After model training, we ensembled the best
models in different chemical folds to generate the final model
predictions. Among the selected models, the average cross-
validation TARGET_HIT ROC-AUC and top_100_positives
metrics are 0.88 and 71.3, respectively. Additional evaluation
metrics and hit enrichment curves are summarized in
Supporting Information, Tables S2 and S3, and Figure S3.
Hit Finding: Inference and Diversity Selection on

Commercial Catalogs. The selected best models were used
to make predictions on Enamine REAL (735.15M compounds,
version 2019)48 and Mcule Instock (9.35M compounds,
version 2021).49 For a given test compound, the median
prediction across the 15 models (5 cross-validation fold, 3
replicates) was used as the final prediction. The following
process was then applied to select a set of diverse, high-scoring,
and drug-like compounds for experimental validation. (1) Top
scoring compounds that received prediction scores higher than
a pre-specified threshold (0.8) were selected to form the
candidate compound set. (2) A set of pre-defined property
filters were then applied to remove compounds that are non-
drug-like or reactive. Briefly, compounds weighing > 600 Da,
containing more than 4 aromatic rings or more than 7 rotatable
bonds were removed. A set of SMARTS patterns were further
used to perform substructure search to remove compounds
that may be toxic or reactive. The full set of filtering criteria is
described in Table S4. (3) Directed sphere exclusion50 (DISE)
was applied using ECFP6 Tanimoto similarity (cut-off = 0.7
for Enamine and cut-off = 0.65 for Mcule), ranked by the
model prediction score. This generated a diverse set of
molecules sampled from the highest scoring members.
Following the above steps, we selected 125 compounds from
Enamine and 47 compounds from Mcule. One hundred and

Table 1. Number of Examples in Different Classes and
Cross-Validation Folds

fold total NON_HITS MATRIX_BINDER TARGET_HITS

0 1,977,046 1,922,599 39,926 14,521
1 3,177,018 3,122,073 39,480 15,465
2 24,404 24,210 115 79
3 664,714 626,382 30,633 7699
4 59,516 59,168 184 164
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eight and forty-four compounds were delivered from Enamine
and Mcule, respectively.
Hit-To-Lead: Analogue Search, Enumeration, and

Prioritization. Given the potent and diverse starting hits, to
develop tumor-targeting ligands against CAIX that can be
functionalized with imaging payloads, we aimed to identify
analogues of the initial hits that contain reaction handles for
amidation and CuAAC click chemistry. To achieve this, we
performed analogue search and model-guided analogue
prioritization, as detailed below.

Analogue Search in Enamine REAL and Enumeration of
Derivatives. We first performed substructure search in
Enamine REAL (1.9B compounds, version 2021) to identify
readily available compounds that contain the desired reaction
handles (primary amines, carboxylic acids, and alkynes) or
their protected variants. For each starting hit, we then
performed similarity searches within the identified Enamine
subset to find analogues with ECFP6 Tanimoto similarity > 0.5
to the initial hit. For starting hits where reaction-handle-
containing analogues were not available in Enamine, we
computationally enumerated the amine/acid/alkyne deriva-
tives. The attachment points of the reaction handles were
determined based on heuristics on synthesizability and
positioning away from the aromatic sulfonamides.

Model-Driven Analogue Prioritization. The reaction
handles were expected to undergo chemical changes after
conjugation. To predict the compounds’ ability to bind to
CAIX in their conjugated form, for each of the proposed
analogues, we computationally generated surrogate com-
pounds where the reaction handles were replaced with the
reacted form (capped) and re-scored the surrogate compounds
with our trained models. Only compounds whose surrogate
form scored above 0.8 were selected for experimental
validation (Figure S4).

Purchasing and Custom Synthesis of the Analogues.
Commercially available analogues were directly purchased
from Enamine, while computationally enumerated derivatives
were custom-synthesized by Enamine. Additionally, we
custom-synthesized the surrogate compounds (capped ver-
sion) for all analogues through Enamine to allow a two-stage
testing strategy: i) validation of the surrogate compounds in
enzymatic assays and (ii) conjugation to fluorescein
isothiocyanate (FITC) and subsequent validation of the
analogs with fluorescence polarization.
Protein Expression and Purification. To produce

recombinant human CAIX (amino acids 120−397), a Chinese
Hamster Ovary (CHO) stable cell line was generated. Briefly,
CHO cells were transfected with a pcDNA3.1 mammalian
expression vector (Invitrogen) carrying a CAIX gene where the
endogenous leader sequence was replaced by a murine IgG
signal peptide and a hexa-histidine-tag sequence was fused at
the 3′ end of the CAIX gene to facilitate purification.
Transfected cells were cultivated for 3 weeks in PowerCHO-
2CD median (LONZA) supplemented with 4 mM ultraglut-
amine-1 (LONZA) and 500 mg/L G418 (Millipore) to obtain
a pool of stably transfected cells. Single cells were then sorted
by limiting dilution, and a clone showing high CAIX expression
was chosen for production.
For production, the selected clone was incubated at a

density of 0.3 × 10 × 106 cells/mL in the PowerCHO-2CD
median (LONZA) supplemented with 4 mM ultraglutamine-1
(LONZA) and incubated under shaking conditions at 37 °C
for 4 days, followed by 5 additional days at 31 °C. The cell

supernatant was then collected and clarified by centrifugation
and filtration before loading it on a cOmplete His-Tag
purification resin (Roche). Following a washing step with
250 mM NaCl and 10 mM imidazole, the protein was eluted
with 250 mM NaCl and 250 mM imidazole and finally dialyzed
against PBS. Protein characterization is described in Figure S5.
Enzymatic Assay. Carbonic anhydrase IX was diluted in

assay buffer (12.5 mM Tris−HCl, 75 mM NaCl, 1% DMSO
pH 7.5) to reach a final concentration of 200 nM. The
respective compound (10 μL) was transferred into a
transparent flat-bottom 384-well microplate (Greiner Bio-
One, #781901) to perform a 1:1 serial dilution in the assay
buffer with a typical concentration range of 40 μM to 20 pM.
To each well, 20 μL of 200 nM CAIX and 10 μL of 1 mM 4-
nitrophenylacetate (assay buffer, 3% acetone) were added.
After an incubation period of 60 min at 37 °C in the dark, the
absorption was measured at 400 nm on a Tecan Spark
Multimode Microplate Reader. Values were normalized with
respect to the enzyme activity in the absence of inhibitor. The
assay was performed for 152 compounds in single titration
experiments (see Table S5) between those, 14 most potent
candidates were selected. The assay was then performed in
duplicates on 39 capped analogues of the previous 14 hits, and
between those, 8 were selected for FITC derivatization for in
vivo studies (see Figure S6).
Synthesis. Chemical synthesis and compound character-

ization are described in detail in the Supporting Information:
Additional Methods.
Fluorescence Polarization (FP) Measurements. Fluo-

rescence polarization measurements were performed in black
384-well microplates (Greiner Bio-One, #784900). A 1:1
dilution series of the protein (i.e., CAIX or serum albumin in
PBS) was prepared to reach a final volume of 5 μL per well.
Subsequently, 5 μL of the fluoresceinated compound (20 nM
in PBS) was added to each well. The plate was centrifuged
(400 rcf, 1 min) and incubated in the dark for 15 min at room
temperature. Anisotropy was recorded on a Tecan Spark
Multimode Microplate Reader (Excitation = 485 ± 20 nm,
Emission = 535 ± 25 nm). For all tested compounds, FP
measurements were performed in five independent replicates
(see Figures S7−S14).
Cell Culture. The human renal cell carcinoma cell line SK-

RC-52 was kindly provided by Professor E. Oosterwijk
(Radbound University Nijmegen Medical Centre, Nijmegen,
The Netherlands). SK-RC-52 Cells were cultured in the RPMI
medium (Invitrogen), supplemented with fetal calf serum
(10%, FCS, Invitrogen) and antibiotic-antimycotic (1%, AA,
Invitrogen) at 37 °C, 5% CO2. Once confluence was reached
(90−100% confluence), tumor cells were detached using
Trypsin−EDTA 0.05% (Invitrogen) and re-seeded at a
dilution of 1:6. Expansion of tumor cells was continued until
sufficient cells to run in vitro and in vivo assays presented
below were available.
Confocal Fluorescence Microscopy. SK-RC-52 cells

were seeded into 4-well coverslip chamber plates (Sarstedt,
Inc.) at a density of 104 cells per well in the RPMI medium (1
mL, Invitrogen) supplemented with 10% fetal bovine serum
(Thermofisher), antibiotic-antimytotic (Gibco), and 10 mM
HEPES (VWR). Cells were allowed to grow overnight under
standard culture conditions. The culture medium was replaced
with a fresh medium containing the suitable FITC-conjugated
probes (100 nM) and Hoechst 33,342 nuclear dye (Invitrogen,
1 μg/mL). Colonies were randomly selected and imaged 30
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min after incubation on a SP8 confocal microscope equipped
with an AOBS device (Leica Microsystems).
Animal Studies. All animal experiments were conducted in

accordance with Swiss animal welfare laws and regulations
under the license number ZH006/2021 granted by the
Veterinar̈amt des Kantons Zürich.
Subcutaneous Tumor Implantation. SK-RC-52 cells

were grown to 80−100% confluence and detached with
Trypsin−EDTA 0.05% (Invitrogen). Cells were washed once
with Hank’s Balanced Salt Solution (HBSS, Thermo Fisher
Scientific, pH 7.4), counted, and resuspended in HBSS.
Aliquots of 5−10 × 106 cells were resuspended in 150 μL of
HBSS and injected subcutaneously in the right flank of female
athymic BALB/c nu/nu mice (8−10 weeks of age, Janvier).
Ex Vivo Fluorescence Analysis. Mice bearing subcuta-

neous SK-RC-52 tumors were injected intravenously with
fluorescein-linked compounds (30 nmol dissolved in 150 μL of
sterile PBS, pH 7.4 5% v/v DMSO). Animals were sacrificed
by CO2 asphyxiation 1 h after the intravenous injection.
Tumors were excised, snap-frozen in the OCT medium
(Thermo Scientific), and stored at −80 °C. Cryostat sections
(10 μm) were cut, and nuclei were stained with the
Fluorescence Mounting Medium (Dako Omnis, Agilent).
Images were obtained using an Axioskop2 mot plus micro-
scope (Zeiss) and analyzed by ImageJ 1.53 software.

■ RESULTS
Model-Based Hit Identification and Characterization

of Potency by Enzymatic Assay. Figure 1 presents the
chemical structures of three building block libraries, named
DEL01, DEL02, and DEL03 comprising 4.2 million, 1.57

million, and 53,326 members, respectively. They were screened
against streptavidin beads (no target control, NTC) and
against beads coated with CAIX. Selection results show a
homogenous count distribution for the no protein control
selections. DEL screening against CAIX led to the preferential
enrichment of several different combinations of building blocks
which are indicated by the arrows. All screening experiments
were performed in duplicates and gave consistent and
reproducible enrichment fingerprints (Figure S1). Screening
data from NTC and from CAIX were used as an input for
machine learning procedures, as presented in Figures S2 and
S4.
From the raw sequencing counts, enrichment scores were

computed to assign classification labels to each of the DEL
compounds for model training. The instance-level GCNN
models were trained in a 5-fold cross-validation set-up, with
the average cross-validation metrics summarized in Materials
and Methods. The best models were used to select a list of 152
high-scoring and diverse compounds from Enamine (108
compounds) and Mcule Instock (44 compounds), which were
experimentally validated for CAIX binding in enzymatic assays.
Out of the 152 tested compounds, 108 compounds (71%)
achieved a better half maximal inhibitory concentration (IC50)
than sulfamoylbenzoic acid (SABA, IC50 = 1.2 μM), while 43
compounds (28%) revealed an IC50 of below 50 nM.
Furthermore, our model led to the identification of 12
aromatic sulfonamide comprising compounds with higher
potency in comparison to a highly potent reference,
acetazolamide (AAZ, IC50 = 24 nM), a sulfonamide derivative
which has already been successfully used for tumor-targeting
applications in mice and in men. Representative structures of
the hits are shown in Figure 2. While most of compounds

Figure 2. Representative structures of the identified hits in hit finding. The top panel shows the cumulative % hit rates of the 152 compounds that
were identified with our approach and screened in an in vitro enzymatic inhibition assay, where the darker the color, the more stringent the potency
cut-off. Out of the 152 compounds, 71% displayed submicromolar activities (IC50 < 1 μM) and 28% achieved IC50 < 50 nM. The GCNN model
discovered 12 diverse and potent SABA-derived compounds that are more potent than AAZ (24 nM), improving the potency of SABA (1.2 μM) by
2−3 orders of magnitude.
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identified at this stage presented sulfonamides moieties, certain
nonsulfonamide structures were isolated but found to be
inactive (IC50 > 30 μM). The 152 structures and respective
IC50 values are summarized in Table S5.
Hit Optimization and Lead Generation. To develop

tumor-targeting ligands against CAIX that can be function-
alized with anti-cancer payloads, we aimed at identifying
“portable” versions of the initial hits containing amine, alkyne,
or carboxylic acid reaction handles for amidation and CuAAC
click chemistry. Among the most potent hits identified by our
approach (IC50 < 50 nM, 28% of total hits), we selected 14
compounds for further development based on the commercial
availability of amine, alkyne, and carboxylic acid analogues. A
set of functionalized analogues were identified by fingerprint
similarity searches against Enamine REAL (ECFP6 Tanimioto
similarity ≥ 0.5) or by computationally installing amine,
alkyne, and carboxylic acid groups on sites distal from the
sulfonamide group (See Materials and Methods). A total of 46
analogues were prioritized by the GCNN model, synthesized,
and experimentally validated in the CAIX inhibition enzymatic
assay. Analogues prioritized by the model retained the potency
of the original starting points. Mean pIC50 of the starting
points and the surrogate compounds are 7.841 and 7.458,
respectively. Mean LLE (pIC50 − c log P) of the starting points
and the surrogate compounds are 4.7 and 5.0, respectively
(Figure S15 and Table S6).
Among the 46 portable analogues identified, eight analogues

were selected and conjugated to fluorescein to enable affinity
measurements by fluorescence polarization (FP) and further in
vivo characterization. The fluorescein-conjugated compounds
were screened against CAIX, human serum albumin, and

mouse serum albumin. All compounds bound to human
recombinant CAIX in the nanomolar range (Table S7). Six of
the tested compounds revealed higher affinity compared to
acetazolamide [AAZ, KD = (17.5 ± 1.4) nM] (Figure 3).51,52

Moderate binding (KD > 1 μM) was observed for human and
mouse serum albumins.
Evaluation of Similarities Between DEL Training Set

and Machine Learning-Derived Hits and Lead Com-
pounds. A known challenge of machine learning models is the
ability to extrapolate beyond the training set. DEL libraries,
due to their combinatorial construction, sample deep but
relatively small chemical space. To investigate the ability of our
model to identify hits that are dissimilar to the DEL training
set, we evaluated the nearest neighbor similarity of the diversity
selected 152 hits to the DEL training dataset [all training data
and positive training examples (PTEs) only, respectively] and
computed the correlation between similarity and experimental
potency. As shown in Figure S16, the 152 selected hits are well
separated from the training set, with 72.4% of compounds
having less than 0.4 nearest neighbor similarity to the training
DEL. Additionally, there is no meaningful correlation between
similarity to the original DELs and experimental potency.
Spearman correlation between experimental potency and
similarity to the nearest DEL neighbor is 0.0994, while
correlation to the nearest PTE is 0.1616. Furthermore, for the
46 tested surrogate compounds, Spearman correlation between
experimental potency and similarity to the nearest DEL
neighbor is −0.335, while correlation to the nearest PTE is
−0.287. These results demonstrated the ability of our model to
discover compounds outside of the original libraries, expanding
the scope of DEL-derived chemical motifs.

Figure 3. Potency of representative starting hits, capped compounds, and FITC conjugates. Starting hits and capped analogue compounds
(surrogates) were validated in enzymatic assays (IC50). The confirmed analogues were subsequently conjugated with FITC and further validated
with fluorescence polarization (KD). Among the eight FITC-conjugated compounds (data reported in Table S7), six compounds obtained better
KD than the positive control AAZ (KD = 17.5 nM). L1 corresponds to the βAla-Asp-Lys tripeptide linker, while L2 corresponds to the PEG2 linker
(see synthesis schemes presented in the Supporting Information). Compound suffixes a, b, and c represent analogue type amine, carboxylic acid,
and alkyne, respectively.
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Figure 4. Cellular binding and ex vivo biodistribution of CAIX-lead compounds. Flow cytometry analysis on (A) CAIX-negative HEK-293 cells and
(B) CAIX-positive SK-RC-52 cells. (C) Confocal fluorescence microscopy images on SK-RC-52 cancer cells. AAZ* and compounds 61a, 68c-iii,
and 68c-v accumulated on the surface of CAIX-positive SK-RC-52 cancer cells. No binding on CAIX-negative cells was observed in flow cytometry
and confocal experiments. (D) Results of ex vivo biodistribution experiments in SK-RC-52 tumor-bearing mice. Microscopic pictures of cancer
lesions collected 1 h after systemic administration of compounds are presented. All compounds were injected intravenously (tail vein injection, a
dose of 30 nmol/mouse). Compound 68c-iii shows strong accumulation in CAIX positive tumors after systemic administration. Acetazolamide-
Fluorescein (AAZ*) and a non-targeted fluorescein conjugate (Neg) were included in the in vitro and ex vivo experiments as positive and negative
controls, respectively. GREEN = compounds (Fluorescein), BLUE = cancer cell nuclei (DAPI staining). Scale bar (confocal) = 30 μm. Scale bar
(ex vivo biodistribution) = 100 μm.
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Cellular Binding. Fluorescent derivatives of the com-
pounds (compounds 61a, 68c-iii, and 68c-v) selectively bound
to CAIX on the surface of SK-RC-52 renal cell carcinoma cells
in flow cytometry and confocal microscopy assays, while no
binding was observed on the negative control cell line HEK-
293 (CAIX negative cells) (Figures 4A−C and S17). AAZ*
and untargeted fluorescein were included in the experiments as
positive and negative controls, respectively.
Ex Vivo Studies in Tumor-Bearing Mice. To assess in

vivo tumor targeting performance, the fluorescent derivative
compounds (compounds 61a, 68c-iii, and 68c-v), AAZ*
(positive control) and untargeted fluorescein (negative
control) were intravenously administered to athymic BALB/c
nude mice bearing subcutaneous SK-RC-52 tumors. Micro-
scopic analysis of the fluorescence signal associated with small
molecules revealed selective tumor accumulation of compound
68c-iii, similar to what was achieved with AAZ* (positive
control). Untargeted fluorescein (negative control) and
compounds (compounds 61a and 68c−v) did not accumulate
to SK-RC-52 tumors (Figure 4D).

■ DISCUSSION
In this article, we presented the development and application
of ML models trained on DEL data for hit-finding and hit-to-
lead. Our approach enabled the discovery of new hits against
CAIX and successful translation of DEL selection data into
lead compounds with promising in vivo biodistribution and
excellent accumulation in CAIX-positive tumors. During hit
finding and hit-to-lead procedures, we applied our model to
commercially available catalogues to discover novel and
structurally diverse hits with a high hit rate, as demonstrated
by in vitro biochemical characterization. Discovered hits with
potency in the low nanomolar range were chemically distant
from the DEL training set (i.e., low chemical similarity
between hits and training library). The presented results
demonstrate that DEL-derived machine learning models can
successfully extrapolate beyond the space over which they are
trained and produce accurate predictions on non-DEL
compounds. Once the model is built, inference costs are
relatively low, allowing the model to be applied to different sets
of non-DEL chemical space.
The GCNN model presented was used to identify a panel of

high affinity ligands of a tumor-associated antigen. As
presented in Figure 4, additional hit-validation experiments
that test the ability of the novel compounds to bind to the
target in its natural cellular environment (e.g., antigen
expressed on the surface of cancer cells) are still required to
select lead candidates for in vivo applications. In this work, we
expanded the scope of machine learning models applied on
DEL datasets to identify hits and subsequently generate lead
candidates which accumulated in renal cancer xenografts. The
availability of large datasets based on in vitro cellular binding
and in vivo targeting performance could become crucial to
further expand the scope of drug-discovery machine learning
models and enhance their translational success rate.
Performance of machine learning models depends on the

quantity and quality of the underlying training data. While
multiplexed DEL screening experiments can generate large
datasets in the order of 100 billion molecules that cover broad
chemical space, the low signal-to-noise ratios often hinder the
ability of machine learning models to reliably capture the
relationship between sequencing counts and affinity for the
biological target. Synthon-based aggregations are required to

enhance the signals at the expense of discarding structural
information. In this work, we performed selections and
sequencing of individual libraries, achieving sampling ratios
∼1000-fold higher in comparison to conventional multiplexed
DEL screenings.26 While multiplexed selections of large DELs
may increase the probability of finding isolated binders, library
size limits applicable selection inputs which in turn have shown
to be essential for the reproducible identification of DEL-
derived hits. High inputs (i.e., higher than 105 copies of library
per compound) resulted in high-quality DEL datasets, which
enabled the generation of a productive GCNN machine
learning model.
To further expand from the instance-level classification

model presented in this paper, it will be desirable to build
probabilistic regression models, based on DEL screening
results, to relate biological activity of compounds to
sequencing reads. This approach may allow the in silico
predictions of binding affinities.33−35 Additionally, hyper-
parameter searches could further improve the performance of
the model in a target specific manner. Methods to accurately
estimate synthetic yields during library construction, correct
for PCR and HTS bias, and normalize screening results across
DELs could address inaccuracies that lower model productiv-
ity.

■ CONCLUSIONS
We have developed a novel approach that combines DEL
screening and instance-level deep learning modeling to identify
tumor-targeting agents against Carbonic Anhydrase IX
(CAIX), a clinically validated marker of renal cell carcinoma
and hypoxia. The trained model enabled the discovery of
diverse CAIX hits which were not present in the original DEL
chemical space. Furthermore, our method was applied to hit-
to-lead procedures to generate candidates that accumulated on
the surface of CAIX-expressing tumor cells. The successful
translation of lead candidates for in vivo tumor targeting
applications demonstrates the potential of machine learning on
DEL methods to advance real-world drug discovery. The
powerful discovery approach presented here can be generalized
and will be applied to additional targets of pharmaceutical
interest for the discovery of novel drug prototypes.
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8112, Switzerland

Sebastian Oehler − R&D Department, Philochem AG, Zürich
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P.; Neri, D. Discovery of TNF inhibitors from a DNA-encoded
chemical library based on diels-alder cycloaddition. Chem. Biol. 2009,
16, 1075−1086.
(24) Faver, J. C.; Riehle, K.; Lancia, D. R.; Milbank, J. B. J.;
Kollmann, C. S.; Simmons, N.; Yu, Z.; Matzuk, M. M. Quantitative
comparison of enrichment from DNA-encoded chemical library
selections. ACS Comb. Sci. 2019, 21, 75−82.
(25) Gerry, C. J.; Wawer, M. J.; Clemons, P. A.; Schreiber, S. L.
DNA barcoding a complete matrix of stereoisomeric small molecules.
J. Am. Chem. Soc. 2019, 141, 10225−10235.
(26) Kuai, L.; O’Keeffe, T.; Arico-Muendel, C. Randomness in DNA
encoded library selection data can be modeled for more reliable
enrichment calculation. SLAS DISCOVERY: Advancing the Science of
Drug Discovery 2018, 23, 405−416.
(27) Kómár, P.; Kalinic, M. Denoising DNA encoded library screens
with sparse learning. ACS Comb. Sci. 2020, 22, 410−421.
(28) Satz, A. L. Simulated screens of DNA encoded libraries: the
potential influence of chemical synthesis fidelity on interpretation of
structure−activity relationships. ACS Comb. Sci. 2016, 18, 415−424.
(29) Decurtins, W.; Wichert, M.; Franzini, R. M.; Buller, F.; Stravs,
M. A.; Zhang, Y.; Neri, D.; Scheuermann, J. Automated screening for
small organic ligands using DNA-encoded chemical libraries. Nat.
Protoc. 2016, 11, 764−780.
(30) Cuozzo, J. W.; Centrella, P. A.; Gikunju, D.; Habeshian, S.;
Hupp, C. D.; Keefe, A. D.; Sigel, E. A.; Soutter, H. H.; Thomson, H.
A.; Zhang, Y.; et al. Discovery of a potent BTK inhibitor with a novel
binding mode by using parallel selections with a DNA-encoded
chemical library. ChemBioChem 2017, 18, 864−871.
(31) Richter, H.; Satz, A. L.; Bedoucha, M.; Buettelmann, B.;
Petersen, A. C.; Harmeier, A.; Hermosilla, R.; Hochstrasser, R.;
Burger, D.; Gsell, B.; et al. DNA-encoded library-derived DDR1
inhibitor prevents fibrosis and renal function loss in a genetic mouse
model of Alport syndrome. ACS Chem. Biol. 2018, 14, 37−49.
(32) McCloskey, K.; Sigel, E. A.; Kearnes, S.; Xue, L.; Tian, X.;
Moccia, D.; Gikunju, D.; Bazzaz, S.; Chan, B.; Clark, M. A.; et al.
Machine learning on DNA-encoded libraries: a new paradigm for hit
finding. J. Med. Chem. 2020, 63, 8857−8866.
(33) Ma, R.; et al. Regression modeling on DNA encoded libraries.
In NeurIPS 2021 AI for Science Workshop, 2021.
(34) Lim, K. S.; Reidenbach, A. G.; Hua, B. K.; Mason, J. W.; Gerry,
C. J.; Clemons, P. A.; Coley, C. W. Machine learning on DNA-
encoded library count data using an uncertainty-aware probabilistic
loss function. J. Chem. Inf. Model. 2022, 62, 2316−2331.
(35) Binder, P.; et al. Partial Product Aware Machine Learning on
DNA-Encoded Libraries, 2022. arXiv preprint arXiv:2205.08020.
(36) Swietach, P.; Vaughan-Jones, R. D.; Harris, A. L.; Hulikova, A.
The chemistry, physiology and pathology of pH in cancer. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130099.
(37) Alterio, V.; Hilvo, M.; Di Fiore, A.; Supuran, C. T.; Pan, P.;
Parkkila, S.; Scaloni, A.; Pastorek, J.; Pastorekova, S.; Pedone, C.; et al.
Crystal structure of the catalytic domain of the tumor-associated
human carbonic anhydrase IX. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
16233−16238.
(38) Krall, N.; Pretto, F.; Decurtins, W.; Bernardes, G. J. L.;
Supuran, C. T.; Neri, D. A small-molecule drug conjugate for the
treatment of carbonic anhydrase IX expressing tumors. Angew. Chem.,
Int. Ed. 2014, 53, 4231−4235.
(39) Hilvo, M.; Baranauskiene, L.; Salzano, A. M.; Scaloni, A.;
Matulis, D.; Innocenti, A.; Scozzafava, A.; Monti, S. M.; Di Fiore, A.;
De Simone, G.; et al. Biochemical characterization of CA IX, one of
the most active carbonic anhydrase isozymes. J. Biol. Chem. 2008, 283,
27799−27809.
(40) Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C. T.
Carbonic anhydrases: Current state of the art, therapeutic applications
and future prospects. J. Enzyme Inhib. Med. Chem. 2004, 19, 199−229.
(41) Divgi, C. R.; et al. Preoperative characterisation of clear-cell
renal carcinoma using iodine-124-labelled antibody chimeric G250 (

124 I-cG250) and PET in patients with renal masses: a phase I trial.
Lancet Oncol. 2007, 8, 304−310.
(42) Kulterer, O. C.; Pfaff, S.; Wadsak, W.; Garstka, N.; Remzi, M.;
Vraka, C.; Nics, L.; Mitterhauser, M.; Bootz, F.; Cazzamalli, S.; et al. A
Microdosing Study with 99mTc-PHC-102 for the SPECT/CT
Imaging of Primary and Metastatic Lesions in Renal Cell Carcinoma
Patients. J. Nucl. Med. 2021, 62, 360−365.
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