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Abstract

Introduction: Stroke‐associated pneumonia (SAP) is a major cause of

mortality in patients who have suffered from severe ischemic stroke. Although

multifactorial in nature, stroke‐induced immunosuppression plays a key

role in the development of SAP. Previous studies using a murine model of

transient middle cerebral artery occlusion (tMCAO) have shown that focal

ischemic stroke induction results in functional defects of lymphocytes in the

spleen, thymus, and peripheral blood, leading to spontaneous bacterial

infection in the lungs without inoculation. However, how ischemic stroke

alters immune cell niche and the expression of cytokines and chemokines

in the lungs has not been fully characterized.

Methods: Ischemic stroke was induced in mice by tMCAO. Immune cell

profiles in the brain and the lungs at 24‐ and 72‐hour time points were

compared by flow cytometric analysis. Cytokine and chemokine expression in

the lungs were determined by multiplex bead arrays. Tissue damage and

bacterial burden in the lungs following tMCAO were evaluated.

Results: Ischemic stroke increases the percentage of alveolar macrophages,

neutrophils, and CD11b+ dendritic cells, but reduces the percentage of CD4+

T cells, CD8+ T cells, B cells, natural killer cells, and eosinophils in the lungs.
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The alteration of immune cell niche in the lungs coincides with a significant

reduction in the levels of multiple chemokines in the lungs, including

CCL3, CCL4, CCL5, CCL17, CCL20, CCL22, CXCL5, CXCL9, and CXCL10.

Spontaneous bacterial infection and tissue damage following tMCAO, however,

were not observed.

Conclusion: This is the first report to demonstrate a significant reduction of

lymphocytes and multiple proinflammatory chemokines in the lungs following

ischemic stroke in mice. These findings suggest that ischemic stroke directly

impacts pulmonary immunity.
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1 | INTRODUCTION

Stroke is the fifth highest cause for overall mortality and
the leading cause of long‐term disability in the United
States.1 A major cause of mortality is the acquisition of
stroke‐associated pneumonia (SAP). It was long thought
that dysphagia‐mediated aspiration following stroke is the
sole cause of SAP. However, it is now clear that the stroke‐
induced immunosuppression is a critical risk factor for
acquiring SAP,2 and although it has been recognized for
more than 15 years,3 the cellular and molecular mechan-
isms that trigger this event are still not well‐defined. One
possibility is that inflammatory immune cells infiltrating
into the central nervous system (CNS) from the periphery
during reoxygenation (reperfusion) causes transient ex-
haustion of immune cells in the periphery, leading to
immunosuppression.4 Another explanation currently un-
der active investigation is that brain damage in stroke
triggers the hypothalamic‐pituitary‐adrenal axis and sym-
pathetic nervous system in an attempt to dampen further
inflammation within the CNS, causing bystander periph-
eral immunosuppression. These pathways stimulate the
secretion of glucocorticoid and catecholamine respectively,
both of which are natural immunosuppressive agents. The
importance of neurological and endocrinal control of
stroke‐induced immunosuppression was demonstrated in
mouse models with the use of a β‐adrenoreceptor blocker
propranolol to prevent poststroke pneumonia.3,5 However,
a recent historical cohort study concluded that the
β‐blocker therapy does not reduce the risk of SAP in
humans.6 Therefore, detailed investigation on how differ-
ent immune cell types are affected quantitatively and
functionally after stroke is critical for designing more
specific therapeutic strategies.

Current knowledge of the immunological responses
following stroke were mostly generated using the murine

transient middle cerebral artery occlusion (tMCAO)
model of ischemic stroke induction. So far, immune
phenotypes that are linked to stroke‐induced immuno-
suppression include (a) induction of apoptosis of
lymphocytes (T cells, B cells, and natural killer [NK]
cells) in the blood, spleen, and the thymus3; (b) reduced
expression of proinflammatory tumour necrosis factor
(TNF) but increased expression of immunosuppressive
interleukin‐10 (IL‐10) in blood and splenic monocytes7;
(c) reduction of interferon γ (IFN‐γ) expression in blood
T cells and liver natural killer T (NKT) cells3,8; and
(d) impaired neutrophil chemotaxis.9 Among these
mechanisms, the reduction of IFN‐γ in liver NKT cells
seems to be the most relevant, as propranolol treatment
in mice following ischemic stroke restores IFN‐γ produc-
tion in these cells.8 However, currently there is no
explanation for how immune cell defects occurring in
remote organs, such as the liver and the spleen, lead to
bacterial infection in the lungs. Additionally, there is
little information on how ischemic stroke affects the
immune cell niche and functions in the lungs, which
directly impact pulmonary immunity.

We predict that ischemic stroke alters lung immune
cell quantity and/or function. The objectives of the study
are (a) to investigate whether ischemic stroke induction
in mice alters the immune cell niche in the lungs, and
(b) to determine whether changes of the immune cell
niche in the lungs following ischemic stroke induction
result in spontaneous bacterial infection. Here, we report
that the immune cell niche in the lungs is altered
following the tMCAO‐mediated ischemic stroke induc-
tion, with a significant depletion of lymphocyte popula-
tions. Importantly, these changes do not result in
spontaneous bacterial infections of the lungs and tissue
damage as previously reported, but rather they correlate
with the reduction of multiple chemokine levels in the
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lungs, which may represent immunosuppressive events
following ischemic stroke.

2 | MATERIALS AND METHODS

2.1 | Animals

Eight to 12‐week‐old male C57BL/6J mice, weighing 25
to 30 g were used (The Jackson Laboratory, Bar Harbor,
ME). The mice were housed under specific‐pathogen‐free
conditions in the vivarium at West Virginia University
Health Sciences Center. Mice were housed according
to the Institutional Animal Care and Use Committee
(IACUC) guidelines on a 12‐hour light/dark cycle and fed
and watered ad libitum. All protocols and procedures
performed were approved by the IACUC of West Virginia
University (protocol number 1705006753).

2.2 | Transient middle cerebral artery
occlusion

tMCAO is the major animal model used to investigate the
underlying mechanisms for the stroke‐induced immuno-
logical events. Mice were randomly assigned to either
sham or tMCAO groups. tMCAO was performed at 8 to
11 AM in the Experimental Stroke Core of West Virginia
University. Mice were anesthetized with 4% to 5%
isoflurane until a deep plane was reached and animals
did not respond to toe‐pinch stimulus. Anesthesia was
maintained using a nose cone during surgery with 1% to
2% isoflurane in oxygen enriched air. The common
carotid artery and external carotid artery were exposed.
Temporary suture was applied to the common carotid
artery to stem the flow of blood for filament placement,
and an incision was made in the external carotid artery.
tMCAO was induced by inserting a monofilament into
the external carotid artery which was further propelled to
the middle cerebral artery, where it was left in place for
60 minutes. Following the 60‐minute period of ischemia,
the filament was removed and reperfusion was allowed to
occur. The sham operation included the suturing of the
common carotid artery for 60 minutes without filament
placement. Throughout surgical procedure and during
reperfusion the flow of blood was monitored using Laser
Doppler Flowmetery (Moor Instruments, UK). Mortality
rate of the mice 72 hours following tMCAO was
approximately 10%.

2.3 | Neurological deficit assessment
following tMCAO surgery

All mice were scored on a 6‐point neurological deficit
scoring scale following sham or tMCAO procedure, and

were reassessed every 24 hours for the duration of the
study.10 0—no neurological deficit, 1—retracts contral-
ateral forepaw when lifted by the tail, 2—circles to the
contralateral when lifted by the tail, 3—falling to the
contralateral while walking, 4—does not walk sponta-
neously or is comatose, and 5—dead.

2.4 | Triphenyltetrazolium chloride
staining and quantification of infarct
volume

Whole brains were removed from skull and surrounding
tissue, then sectioned using a 2‐mm tissue matrix.
Sections were stained in triphenyltetrazolium chloride
at 37°C for 10minutes on each side. Sections were
then imaged, and total infarct volume was measured
using Image J.

2.5 | Brain tissue homogenization
and single‐cell isolation
Brains were harvested 24 and 72 hours following tMCAO
or sham operation, and were mechanically homogenized
using a razor blade. Brain homogenates were digested
with collagenase D (1mg/mL) and DNase I (200 µg/mL)
for 30minutes at 37°C. Tissues were then passed through
a 100‐µm cell strainer. Single cells were isolated by
discontinuous Percoll gradient centrifugation.

2.6 | Lung perfusion and excision

Mice were deeply anesthetized using ketamine/xylazine
combination. Once in a deep plane of anesthesia, in
which mice did not respond to toe‐pinch stimulus,
thoracic cavity was exposed and whole‐body perfusion
was performed by administering 15mL of cold phos-
phate‐buffered saline (PBS) via the left cardiac ventricle.
Lungs were excised and place into 2 mL of cold PBS
supplemented with 1% fetal bovine serum (FBS). Right
apical lobes were weighed for homogenization.

2.7 | Lung tissue digestion
and single‐cell isolation
Right cardiac, diaphragmatic, azygous, and left lobes
were place into digestion buffer containing collagenase D
(1mg/mL) and DNase I (200 µg/mL) in Hank’s Buffered
Salt Solution. Lung lobes were inflated with 1mL of
digestion buffer and incubated at room temperature for
5minutes. Following incubation, lung lobes were cut into
pieces 2 to 3 mm in size and placed into 5mL of digestion
buffer. The tissues were vortexed and incubated in a 37°C
water bath for 45 minutes with vigorous vortexing every 8
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to 10minutes. Digests were pushed through 100‐µm cell
strainers and contents were centrifuged for 10 minutes at
380g. Supernatant was discarded and tissue digests were
resuspended in PBS with 1% FBS to obtain single cell
suspension.

2.8 | Lung tissue homogenization

Right apical lobes were placed into a 2‐mL screw cap
microtube containing (three) sterile 2.3 mm zirconia/
silica microbeads (BioSpec Products, Bartlesville, OK)
and 200 µL of cold PBS containing 1× HALT protease
inhibitor cocktail (Thermo Fisher Scientific, Waltham,
MA). Tissues were homogenized using the BeadBug™
benchtop microtube homogenizer on maximum speed
for 2 minutes. Following homogenization, samples were
transferred to prechilled tubes and centrifuged at 15 870g
for 3 minutes. Supernatants were stored at −80°C for
multiplex bead array analysis.

2.9 | Lung tissue homogenization
and culture for the assessment
of spontaneous pneumonia

Mice were euthanized 24 and 72 hours following sham or
tMCAO operation. Whole lungs were excised, rinsed in
sterile PBS, and then mechanically homogenized in 1mL
of sterile PBS in a 7‐mL glass dounce tissue grinder
(Corning, Corning, NY). Tissue homogenates were
passed through a 100‐µm sterile cell strainer and serially
diluted. Aliquots of serial dilution were plated onto Luria
agar and incubated at 37°C overnight to assess for
bacterial growth.

2.10 | Lung tissue histopathology
for the assessment of pneumonia

Mice were euthanized 24 and 72 hours following sham or
tMCAO operation. Mice were tracheally cannulated and
lungs were excised. Lungs were then inflated with 10%
formalin. Tissue was fixed in formalin for a minimum of
24 hours before being embedded into paraffin, sectioned,
and mounted onto the slides. Sections were stained with
hematoxylin and eosin stain and assessed by a pathologist
for the presence of histopathological features of
pneumonia.

2.11 | Immunohistochemistry for the
assessment of activated caspase‐3
Mice were euthanized 72 hours following sham and
tMCAO operation. Lung and spleen tissues were
harvested, then fixed in 4% paraformaldehyde at 4°C

overnight. After fixation, the tissues were embedded in
tissue freezing medium, and sectioned to a thickness of
20 µm using cryostat. After 10 minutes incubation in
3% H2O2 (in methanol) at room temperature, the
sections were incubated in the Tris‐buffered saline
containing 0.3% Triton X 100% and 5% normal goat
serum for 1 hour at room temperature, then incubated
with primary antibody that recognizes the cleaved
(Asp175) form of caspase 3 in a dilution of 1:500 (clone
5A1E, Cell Signaling Technology, Danvers, MA) over-
night at 4°C. The sections were washed, then incubated
with the SignalStain Boost IHC detection reagents
(Cell Signaling Technology) for 30 minutes at room
temperature. The horseradish peroxidase activity was
detected with SignalStain DAB substrate kit (Cell
Signaling Technology). The sections were counter-
stained with hematoxylin, dehydrated, and mounted.
Images were collected with an Olympus Slide Scanner
at 10x magnification.

2.12 | Broncho‐alveolar lavage
of the lungs

Mice were euthanized and tracheas were exposed. A
cannula was inserted by a small incision into the trachea
and secured with surgical suture. Thoracotomy was
performed to expose lung tissue. Two fractions of a total
of 3 mL cold PBS were instilled into the lungs: the first
fraction of 0.4 mL was delivered, and then withdrawn
following 30 seconds of continuous gentle lung massage.
The second fraction of 2.6 mL were delivered in aliquots
of 0.6‐0.7 mL. The aliquots were delivered and withdrawn
with simultaneous and continuous gentle massage of
the lungs. The first fraction was centrifuged at 470g for
5minutes, and supernatant was stored at −80°C for
multiplex bead array analysis. The second fraction was
centrifuged at 470g for 5 minutes, and supernatant was
discarded. The cell pellets from both fractions were
combined in 1mL of cold RPMI, quantified, and analyzed
by flow cytometry.

2.13 | Cell quantification and
phenotyping by flow cytometry

Lung and brain single cell suspensions were quantified
by the trypan blue exclusion method. Cells were
blocked with anti‐CD16/32 (Biolegend, San Diego,
CA); immune cell types were identified using combina-
tions of antibody listed in Table 1. All antibodies were
purchased from Biolegend, except anti‐Siglec F, which
was purchased from BD Pharmingen (Franklin Lakes,
NJ). LIVE/DEAD Fixable Dead Cell Stain was used to
exclude dead cells (Thermo Fisher Scientific). Samples
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were run on a LSRFortessa (BD Biosciences) using
FACSDiva software version 8.0, and analyzed using
FlowJo version 9.9.6.

2.14 | Multiplex cytokine and
chemokine bead arrays

Multiplex bead arrays for cytokine and chemokine
quantification were performed according to manufac-
turer protocol (catalogue #740446 and #740451; Biole-
gend). Samples were analyzed on a LSRFortessa (BD
Biosciences) as described above.

2.15 | Statistical analyses

Statistical comparison between samples was done by
Student’s t test using either GraphPad Prism 7, or an
online tool developed by the College of Saint Benedict
and Saint John’s University, Collegeville, MN (http://www.
physics.csbsju.edu/stats/t‐test.html; *P< .05; **P< .01;
***P< .001; not statistically different [NS]).

3 | RESULTS

3.1 | Severe ischemic stroke
in C57BL/6J mice does not cause
spontaneous pneumonia

Several groups reported that ischemic stroke induced by
tMCAO in mice causes spontaneous pneumonia, defined
as lung infection without bacterial inoculation. However,
previous studies have shown that the incidence of
spontaneous pneumonia varies in mice with different
genetic backgrounds,11 and may also depend on environ-
mental factors such as animal housing facility condi-
tions.12,13 We performed tMCAO in C57BL/6J mice by
inserting a monofilament into the middle cerebral
artery for 60 minutes, followed by monofilament removal
to allow blood reperfusion. We obtained significant
brain infarcts at 24 and 72 hours following tMCAO
(Figure 1A,B). The percentage of infarcts in the ipsilateral
cortex was over 50% and nearly 100% in the corpus
striatum (Figure 1C,D). Correspondingly, neurological
deficits of score greater than or equal to 2 were observed

TABLE 1 Surface markers and antibody combinations for determining immune cells from the lungs and the brain following tMCAO

Antibody Clone Immune cell type Population Surface marker expression

CD45‐FITC 30‐F11 Alveolar macrophages L1 CD45+ Siglec F+ CD11b−

Siglec F‐PE E50‐2440 Eosinophils L2 CD45+ Siglec F+ CD11b+

CD11c‐Percp/Cy5.5 N418 CD103+ DCs L3 CD45+ Siglec F− CD11b− CD103+ CD11c+ MHC II+

CD11b‐PE/Cy7 M1/70 CD11b+ DCs L4 CD45+ Siglec F− CD11b hi CD103− CD64− MHC II+

CD64‐APC X54‐5/7.1 Interstitial macrophages L5 CD45+ Siglec F− CD11b hi CD103− CD64+ MHC II+

Live/dead‐APC/Cy7
CD103‐BV421 2E7

MHC II‐BV510 M5/114.15.2

CD45‐FITC 30‐F11 Monocytes/moDCs L8 CD45+ CD11b hi Ly6C hi/int CCR2+/− Ly6G−

Ly6C‐PE HK1.4 Neutrophils L9 CD45+ CD11b hi Ly6C int CCR2− Ly6G+

CD11b‐PE/Cy7 M1/70

Live/dead‐APC/Cy7
CCR2‐BV421 SA203G11

Ly6G‐BV510 1A8

CD45‐FITC 30‐F11 Plasmacytoid DCs L6 CD45+ B220+ CD11c+

CD8‐PE 53‐6.7 B cells L7 CD45+ B220+ CD11c−

NK1.1‐Percp/Cy5.5 PK136 CD4+ T cells L10 CD45+ B220− CD11c− CD4+ CD8−

CD11c‐PE/Cy7 N418 CD8+ T cells L11 CD45+ B220− CD11c− CD4− CD8+

B220‐APC RA3‐6B2 NK cells L12 CD45+ B220− CD11c− CD4− CD8− NK1.1+ TCRβ−

Live/dead‐APC/Cy7 NKT cells L13 CD45+ B220− CD11c− CD4− CD8− NK1.1+ TCRβ+

CD4‐BV421 GK1.5

TCRβ‐BV510 H57‐597
Abbreviations: FITC, fluorescein isothiocyanate; moDC, monocyte‐derived dendritic cell; NK, natural killer; NKT, natural killer T; tMCAO,transient middle
cerebral artery occlusion.
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(Figure 1E). In addition, we found a significant reduction
in splenic cellularity (Figure 1F) in mice following
tMCAO, which is a feature of severe ischemic stroke in
humans and mice.3,14 These data indicate that induction
of severe ischemic stroke was achieved. However, we
could not detect spontaneous pneumonia in our mice
following tMCAO. Pathological characteristics of bacter-
ial pneumonia, such as inflammation, tissues damage,
and edema were not observed in the lungs (Figures 1G
and S1). The cellularity of the bronchoalveolar lavage

fluid (BALF) was modestly increased in mice 24 hours
following tMCAO compared to sham operation
(Figure 2A). Over 90% of CD45+ cells were alveolar
macrophages (Figure 2B‐E), but not neutrophils, which
are commonly found in BAL during bacterial pneumonia.
There was no bacterial recovery in lung homogenates
24 hours following tMCAO (Table S1). At 72 hours, a
low quantity of bacteria were detected in some tMCAO‐
and sham‐operated mice (Table S1), but the quantity was
substantially lower than that which has previously been

FIGURE 1 Severe ischemic stroke in C57BL/6J mice does not cause spontaneous pneumonia. Brain, spleen, and lung tissues were analyzed 24
and 72 hours following tMCAO or sham operation. A, Representative images showing ipsilateral brain infarcts following tMCAO but not sham
operation by TTC staining. B‐D, Percentage of infarcts within the ipsilateral hemisphere (B), cortex (C), and corpus striatum (D) following tMCAO
(filled circle) or sham controls (open circle) quantified by Image J. E, Neurological deficit scores of the mice 24 and 72 hours following tMCAO (filled
circle) or sham controls (open circle). See Section 2 for score definition. F, Cell number from the spleens of mice 72 hours following tMCAO (filled
circle) or sham controls (open circle). G, Representative images from H&E staining of lung tissues 72 hours following tMCAO (right) or sham
operation (left). Images from all animals are shown in Figure S1. Data shown are combined results from two independent experiments with
n=6 animals per group (sham 24 hours, tMCAO 24hours, sham 72 hours, and tMCAO 72 hours). ***P< .001. H&E, hematoxylin and eosin;
tMCAO, transient middle cerebral artery occlusion; TTC, Triphenyltetrazolium chloride
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reported.3,15 Our findings suggest that there are factors
other than the severity of the stroke that determine the
incidence of spontaneous pneumonia in mice. In our
studies, bacterial infection without inoculation was either
absent or below detectable levels.

3.2 | Alterations of the resident innate
immune cell niche in the lungs following
ischemic stroke

Resident innate immune cells such as macrophages and
dendritic cells (DCs) are the first line of defense during
pulmonary bacterial infection. We first determined the
quantitative changes of lung‐resident alveolar and inter-
stitial macrophages, CD11b+ and CD103+ conventional
dendritic cells, plasmacytoid dendritic cells (pDCs),
and eosinophils 24 and 72 hours following tMCAO by flow
cytometry (Table 1). The total number of cells
and the percentage of CD45+ cells in the lungs were
slightly lower but did not reach statistical significance
(Figure 3A‐C). Given that some of these innate immune
cells only contribute to less than 0.1% of the total lung cells,
data is presented as percent change within the CD45+
population. Twenty‐four hours following ischemic stroke,
we found a significant increase of alveolar macrophages

and CD11b+ DCs in the lungs, whereas eosinophils were
reduced (Figure 3D‐G). The increase of alveolar macro-
phages persisted up to 72 hours following ischemic stroke,
albeit to a lesser extent (Figure 3D,E). However, at 72 hours
the number of CD11b+ DCs and eosinophils were
comparable to mice with sham‐operation (Figures 3D and
3F). The percentages of interstitial macrophages, CD103+
DCs, and pDCs were unchanged at both time points (Figure
3D,H‐K). These data suggest that ischemic stroke alters
specific subsets of immune cells in the pulmonary
environment, particularly 24 hours poststroke.

3.3 | Increased infiltration of
neutrophils but not monocytes to the
lungs following ischemic stroke despite
an elevation of CCL2

In addition to the activation of resident innate
immune cells, neutrophil, and monocyte infiltration
to the lungs plays a critical role in bacterial
clearance.16-18 We determined whether ischemic
stroke affects trafficking of these cells to the lungs.
Flow cytometric analysis revealed an increase of
neutrophils in the lungs 24 and 72 hours following
tMCAO (Figure 4A,B), whereas the percentage of

FIGURE 2 Increase in the number of alveolar macrophages in the BALF 24 hours postischemic stroke. A, Total number of cells recovered from
BALF 24 and 72 hours following tMCAO (filled circle) or sham operation (open circle). B, Cellular compositions of BALF 24 and 72 hours following
tMCAO. B, Representative plots showing percentage of CD45+ cells (left) and alveolar macrophages (right), which are defined as CD45+ Siglec
F+ CD11b−. C‐E, Graphs showing percentage of CD45+ cells (C); percentage (D) and number (E) of alveolar macrophages of individual animals
described in (B). tMCAO (filled circle) and sham operation (open circle). Data shown are combined results from two independent experiments with
n=6 animals per group (sham 24 hours; tMCAO 24hours; sham 72 hours; tMCAO 72hours). *P< .05; **P< .01. BALF, bronchoalveolar lavage
fluid; NS, not statistically different; tMCAO, transient middle cerebral artery occlusion

332 | FARRIS ET AL.



FIGURE 3 Alterations in the resident innate immune cell niche in the lungs following ischemic stroke. Lung tissues were excised
24 and 72 hours following tMCAO (filled circle) or sham operation (open circle), resident innate immune cells in the lungs were analyzed
by flow cytometry, defined by surface markers listed on Table 1. A, Graph showing total number of cells in the lungs of individual animals.
B, Representative plots showing percentage of CD45+ cells. C, Graph showing percentage of CD45+ cells in the lungs of individual animals.
D, Representative plots showing the identification of alveolar macrophages (L1), eosinophils (L2), CD103+ DCs (L3), CD11b+ DCs (L4),
and interstitial macrophages (L5). CD103+ DCs were first gated on CD103+ CD11b− cells (*). CD11b+ DCs and interstitial macrophages
were first gated on CD11b hi CD103− cells (**). E‐G, Graphs showing percentage of alveolar macrophages (E), CD11b+ DCs (F), and
eosinophils (G) of individual animals. H, Representative plots showing that identification of pDCs (L6), and B cells (L7, discussed in
Figure 5). I‐K, Graphs showing percentage of interstitial macrophages (I), CD103+ DCs (J), and pDCs (K) of individual animals. Data shown
are combined results from three independent experiments with n= 12 animals per group (sham 24 hours; tMCAO 24 hours; sham 72 hours;
tMCAO 72 hours). **P< .01; ***P< .001. NS, not statistically different; pDC, plasmacytoid dendritic cell; tMCAO, transient middle cerebral
artery occlusion
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FIGURE 4 Increased infiltration of neutrophils but not monocytes to the lungs following ischemic stroke despite an elevation of CCL2.
A‐C, Lung tissues were excised 24 and 72 hours following tMCAO or sham operation. Monocytes/moDCs and neutrophils in the lungs were
analyzed by flow cytometry, defined by surface markers listed on Table 1. A, Representative plots showing the identification of monocytes/
moDCs (L8) and neutrophils (L9) in the lungs. Monocytes/moDCs were defined as CD45+ Ly6C hi (*) CCR2 hi (middle) and Ly6C
intermediate (**) CCR2+/− (right). Neutrophils were defined as CD45+ Ly6C intermediate (**) Ly6G+ (right). B‐C, Graphs showing
percentage of neutrophils (B) and monocytes/moDCs (C) of individual animals 24 and 72 hours following tMCAO (filled circle) or sham
operation (open circle). D, Lung tissues were homogenized 24 and 72 hours following tMCAO (filled circle) or sham operation (open circle),
level of CCL2 was determined by multiplex bead array. E‐G, Brain tissues were excised 24 and 72 hours following tMCAO or sham operation,
monocytes/moDCs and neutrophils in the brains were analyzed by flow cytometry. E, Representative plots showing the identification of
monocytes/moDCs and neutrophils in the brains, which were defined as in (A). F,G, Graphs showing number of monocytes/moDCs (F) and
neutrophils (G) of individual animals 24 and 72 hours following tMCAO (filled circle) or sham operation (open circle). Data shown are
combined results from three independent experiments with n= 12 animals per group (sham 24 hours; tMCAO 24 hours; sham 72 hours;
tMCAO 72 hours). *P< .05; **P< .01. moDC, monocyte‐derived dendritic cell; NS, not statistically different; tMCAO, transient middle
cerebral artery occlusion
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monocytes and monocyte‐derived dendritic cells
(moDCs) was not changed (Figures 4A and 4C),
despite an increase in the monocyte chemoattractant
CCL2 (Figure 4D). Interestingly, there was a massive
infiltration of monocytes and moDCs to the brain

following ischemic stroke (Figure 4E,F), however, the
number of neutrophils in the brain was unchanged
(Figures 4E and 4G). These data suggest that ischemic
stroke differentially directs monocyte and neutrophil
trafficking into the brain and lungs, respectively.

FIGURE 5 Ischemic stroke leads to a significant loss of lymphocytes in the lungs independent of apoptosis. A, Representative plots
showing the identification of lymphocytes in the lungs by surface markers listed on Table 1. CD4+ (L10) and CD8+ (L11) T cells were first
gated on CD45+ B220− CD11c− cells shown in Figure 3H. NK cells (L12) and NKT cells (L13) were gated on CD4− CD8− cells (*), then
further gated on NK1.1+ cells (**). Representative plots for the identification of B cells shown in Figure 3H. B‐F, Graphs showing percentage
of CD4+ T cells (B), CD8+ T cells (C), B cells (D), NK cells (E), and NKT cells (F) of individual animals 24 and 72 hours following tMCAO
(filled circle) or sham operation (open circle). G‐H, Graphs showing percentage of annexin‐V+ CD4+ T cells (G), CD8+ T cells (H), B cells
(I), and NK cells (J) 24 and 72 hours following tMCAO (filled bar) or sham operation (open bar). Data shown are combined results from
three independent experiments with n= 12 animals per group (sham 24 hours, tMCAO 24 hours, sham 72 hours, tMCAO 72 hours). *P< .05;
***P< .001. NKT, natural killer T; NS, not statistically different; tMCAO, transient middle cerebral artery occlusion
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3.4 | Ischemic stroke leads to a
significant loss of lymphocytes in the lungs
independent of apoptosis

Previous studies have shown that ischemic stroke leads to
the apoptosis of T cells, B cells, and NK cells in the
spleen, blood, and thymus.3 However, how ischemic
stroke alters the lymphocyte population in the lungs is
not clear. We found that the percentage of CD4+ T cells,
CD8+ T cells, and B cells were significantly reduced 24
and 72 hours following tMCAO (Figures 3H and 5A‐D).
NK cells were reduced at 24 but not 72 hours following
tMCAO (Figures 5A and 5E), whereas NKT cells were
unaltered in both time points (Figures 5A and 5F). We
speculated that the loss of lymphocytes in the lungs was
caused by increased apoptosis as was previously
described in other tissues. We determined the percentage
of apoptotic cells by annexin V staining. The percentage
of apoptotic CD4+ T cells, CD8+ T cells, B cells, and NK
cells were comparable in sham‐operated and tMCAO‐
induced mice (Figure 5G‐J), suggesting that unlike other
tissues, ischemic stroke leads to a significant loss of
lymphocytes in the lungs but it is unrelated to the
induction of apoptosis. Correspondingly, activation of
caspase‐3 was not detected in the lung tissues following
tMCAO by immunohistochemistry, but it was detected in
the spleens, as previously described3 (Figures 6 and S2).
We then investigated whether the reduction of lympho-
cytes in the lungs was caused by cell trafficking to the
brain after ischemic stroke. Surprisingly, the number of
CD4+ T cells, CD8+ T cells, B cells, and NK cells in the

brain was either unchanged or reduced poststroke,
indicating that the loss of lymphocytes in the lungs
following tMCAO likely does not the result from cell
infiltration to the brain (Figure 7A‐E).

3.5 | Ischemic stroke suppresses the
production of multiple chemokines and
cytokines in the lungs

Chemokine and cytokine expression play a key role in
regulating immune‐cell trafficking and function. Using
multiplex bead arrays, we measured the expression of a
total of 25 chemokines and cytokines in the lungs
following ischemic stroke that are known to control
inflammatory responses. Among the 13 chemokines we
detected, the levels of CCL3, CCL5, CCL22, CXCL5,
CXCL9, and CXCL10 were significantly reduced at
both 24‐ and 72‐hour time points following tMCAO
(Figure 8A‐F). The levels of CCL4, CCL17, and CCL20
were reduced only at one time point (Figure 8G‐I). The
suppression of chemokine production was not caused
by a general lung dysfunction as the levels of CCL11,
CXCL1, and CXCL13 were comparable between the
sham‐operated and tMCAO mice (Figure 8J‐L). Interest-
ingly, CCL2 was the only chemokine measured that was
increased in the lungs following tMCAO (Figure 4D). In
contrast to the lung tissues, chemokine levels in the
BALF were mostly unchanged following tMCAO, except
for a reduction in CCL22 at both time points and CCL20
at 72 hours poststroke (Figure S3).

FIGURE 6 Ischemic stroke does not
induce the activation of caspase 3 in the
lungs. Spleen and lung tissues were
dissected 72 hours following tMCAO or
sham operation. The cleaved (activated)
form of caspase 3 was measured by
immunohistochemistry assay. Shown are
representative images with n= 6 per
group for the lung tissues and n= 3 per
group for the spleens. Spleen samples
following tMCAO serve as positive
control. Brown color indicates positive
signal. The tissues were counterstained
with hematoxylin. Lung images from all
animals are shown in Figure S2. tMCAO,
transient middle cerebral artery occlusion
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Proinflammatory cytokines such as IL‐1β, TNF‐α, and
IL‐6 are critical for promoting bacterial clearance during lung
infections.19,20 IFN‐γ and IL‐17A are signature cytokines of
Th1 and Th17 cells, both of which support innate‐cell
activation and migration.21,22 We found that the levels of
IL‐1β, TNF‐α, IFN‐γ, IL‐17A, and IL‐27 were reduced
72 hours following ischemic stroke (Figure 9A‐E). Impor-
tantly, we found that IL‐1α was abundantly expressed in the
lungs of the sham‐operated mice relative to other cytokines
we measured (~50 pg/mg of tissue), but its level was
significantly reduced at both 24‐ and 72‐hour time points
postischemic stroke (Figure 9F). Levels of IL‐6, IL‐12p70,
IL‐23, IL‐10, IFN‐β, and granulocyte‐macrophage colony‐

stimulating factor (Figure 9G‐L) were unaltered following
tMCAO. Significant changes in cytokine levels in BALF
following tMCAO were not observed (Figure S4). Overall,
these data suggest that ischemic stroke creates an immuno-
suppressive milieu in the lungs by decreasing the production
of multiple proinflammatory chemokines and cytokines.

4 | DISCUSSION

Our study demonstrated that ischemic stroke directly
impacts the immune cell niche, and the availability of
multiple chemokines and cytokines in the lungs, which was

FIGURE 7 Loss of lymphocytes in the lungs following tMCAO is not the result of cell migration to the brain. A, Representative plots
showing the identification of CD4+ T cells (CD4+ TCR‐β+, top left); CD8+ T cells (CD8+ TCR‐β+, top right); B cells (B220+ CD11c−,
bottom left); and NK cells (NK1.1+ TCR‐β−, bottom right) in the brains. Cells were first gated on CD45 hi cells shown in Figure 4E. B‐E,
Graph showing number of CD4+ T cells (B), CD8+ T cells (C), B cells (D), and NK cells (E) of individual animals 24 and 72 hours following
tMCAO (filled circle) or sham operation (open circle). Data shown are combined results from three independent experiments with n= 12
animals per group (sham 24 hours, tMCAO 24 hours, sham 72 hours, tMCAO 72 hours). *P< .05; **P< .01. NS, not statistically different.
TCR, T‐cell receptor; tMCAO, transient middle cerebral artery occlusion
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previously unexplored. These changes were unlikely due to
the spontaneous bacterial infection that reported in other
studies.3,15 Consistent with our observations, recent studies
have also shown that severe ischemic stroke in mice does not
cause spontaneous bacterial infection.23 Using tMCAO
model, Stanley et al15 showed that SAP is caused by the
translocation and dissemination of commensal bacteria from
the intestinal tracts to lungs, and SAP does not occur in mice
housed in a germ‐free environment. These observations
strongly suggest that the incidence of SAP is determined by
the composition of gut microbiota, and this speculation is

further supported by the fact that mice with different genetic
backgrounds develop SAP with various severity.11 The
incidence of SAP may also depend on factors other than
genetic backgrounds such as the source of the animals and
hygiene condition of the housing facility, which is commonly
observed in many animal disease models.24 Importantly, it is
still unclear whether gut bacterial translocation to the lungs
is the cause of clinical SAP. While some SAP‐causative
pathogens such as Klebsiella pneumoniae and Escherichia coli
are commonly found in the gut microflora, Staphylococcus
aureus, Pseudomonas aeruginosa, and Streptococcus

FIGURE 8 Ischemic stroke
suppresses the production of multiple
chemokines in the lungs. A‐L, Lung
tissues were homogenized 24 and
72 hours following tMCAO (filled circle)
or sham operation (open circle), level of
CCL3 (A), CCL5 (B), CCL22 (C), CXCL5
(D), CXCL9 (E), CXCL10 (F), CCL4 (G),
CCL17 (H), CCL20 (I), CCL11 (J), CXCL1
(K), CXCL13 (L) in the lungs of individual
animals was determined by multiplex
bead array. Data shown are combined
results from three to four independent
experiments with n= 12‐15 animals per
group (sham 24 hours, tMCAO 24 hours,
sham 72 hours, tMCAO 72 hours).
*P< .05; **P< .01; ***P< .001. NS, not
statistically different; tMCAO, transient
middle cerebral artery occlusion
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pneumoniae are not.25 It is possible that clinical SAP results
from a combination of nosocomial infection and bacterial
translocation from the gut microflora. This possibility can be
explored by comparing the composition of the gut microflora
of patients with severe ischemic stroke that develop SAP
with those patients that do not develop SAP.

Currently, it is still unclear how ischemic stroke‐
mediated immune‐cell dysfunctions in remote tissues
such as the spleen and the thymus lead to pneumonia.
Our data suggested that alterations in the pulmonary

immune cell niche following ischemic stroke may partly
explain the lung‐specific immunodeficiency. A recent
study has shown that neutrophils from the mouse bone
marrow have an impaired chemotactic ability poststroke
in an in vitro model.9 However, neutrophil infiltration to
the lungs was observed in both spontaneous‐ or aspira-
tion‐induced pneumonia following tMCAO.3,5 We
observed an increase in alveolar macrophages and the
infiltration of neutrophils in the lungs following tMCAO,
but their bacterial clearance capability remains to be

FIGURE 9 Ischemic stroke
suppresses the production of multiple
cytokines in the lung. A‐L, Lung tissues
were homogenized 24 and 72 hours
following tMCAO (filled circle) or sham
operation (open circle), level of IL‐1β (A),
TNF‐α (B), IFN‐γ (C), IL‐17A (D), IL‐27
(E), IL‐1α (F), IL‐6 (G), IL‐12p70 (H),
IL‐23 (I), IL‐10 (J), IFN‐β (K), GM‐CSF (L)
in the lungs of individual animals was
determined by multiplex bead array. Data
shown are combined results from three to
four independent experiments with n= 12
to 15 animals per group (sham 24 hours,
tMCAO 24 hours, sham 72 hours, tMCAO
72 hours). *P< .05; **P< .01. GM‐CSF,
granulocyte‐macrophage colony‐
stimulating factor; IFN, interferon;
IL, interleukin; NS, not statistically
different.different; tMCAO, transient
middle cerebral artery occlusion;
TNF‐α, tumour necrosis factor α
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elucidated. Oxidative burst and NETosis were reduced
in neutrophils isolated from patients who experienced
ischemic stroke.26 To connect these functional deficits
with SAP, we are currently investigating the antibacterial
activity of alveolar macrophages and neutrophils in the
lungs following ischemic stroke using reporter mouse
strains coupled with live‐imaging techniques. In addition,
recruitment of monocytes during lung infection is critical
for bacterial clearance.27 Clinically, reduction of HLA‐DR
expression in monocytes is a prognostic marker of stroke‐
induced immune suppression and SAP.2,28,29 Interest-
ingly, we found that ischemic stroke increases the
expression of the monocyte chemoattractant CCL2 in
the lungs, yet monocyte infiltration into the lungs was
not observed. Conversely, following ischemic stroke, we
observed a massive infiltration of monocytes into the
brain, which may account for temporal peripheral
immune exhaustion following ischemic stroke.

This study is the first report showing a significant
reduction of lymphocytes in the lungs following ischemic
stroke that was not caused by the induction of cell death,
but was coincided with the decreased production of
multiple chemokines. The effect of ischemic stroke on
regulating chemokine expression in the lungs is not
known. Our data suggest that suppression of chemokine
expression may “pre‐condition” the lungs to become
vulnerable to bacterial infections. Particularly, CCL5 and
CCL22 were abundantly expressed in the sham‐operated
mice (>100 pg/mg of tissue), but their levels were
significantly reduced following tMCAO. CCL5 is a potent
chemoattractant of T cells to the site of inflammation,
which may explain the reduction of these cells in the lungs
following tMCAO. CCL5 antibody treatment in mice
challenged with S. pneumoniae caused reductions in
CD4+ and CD8+ T lymphocytes, resulting in dysregulation
of a critical phase of the adaptive response. The loss of
CCL5 ultimately led to a switch in bacteria from carrier
state to lethal state of infection.30 CCL22 is known to
promote Th2‐mediated immune responses such as airway
hypersensitivity, atopic dermatitis, and eosinophilic pneu-
monia,31-33 but its role in bacterial infections is unclear.
CCL22 is mainly produced by macrophages and DCs33,34;
reduction of CCL22 in the lungs indicates a possible
functional impairment of these cells following ischemic
stroke, which warrants further investigation.

There is an urgent need to develop effective immunother-
apeutic strategies for SAP. Elucidating dysregulations in the
pulmonary immune cell niche and the functions of the cells
within this niche is a critical first step to achieve this
goal. We demonstrated that ischemic stroke directly impacts
pulmonary immunity. Restoration of the chemokine
availability in the lungs may potentially prevent SAP in
stroke patients.

ACKNOWLEDGMENTS

This study was supported by NIH grant P20GM109098 to
Edwin Wan and Xuefang Ren, NIH grant 5U54GM104942
and the American Heart Association Scientist Development
Grant 16SDG31170008 to Xuefang Ren. Flow Cytometry
experiments were performed in the WVU Flow Cytometry
& Single Cell Core Facility, which is supported by NIH
grants S10OD016165, U57GM104942, P30GM103488, and
P20GM103434. Imaging experiments were performed in
the WVU Imaging Facilities, which is supported by the
WVU Cancer Institute, the WVU HSC Office of Research
and Graduate Education, and NIH grants P20RR016440,
P30GM103488, P20GM121322, U54GM104942, and
P20GM103434. We thank Sarah Milne for technical support.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS

EW and BF designed and performed experiments,
analyzed data, and wrote the paper. KM, WZ, CA, and
AA performed experiments and analyzed data. HH and
XR performed experiments. JC analyzed data. EW
supervised the project.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.

ORCID

Breanne Y. Farris http://orcid.org/0000-0002-0901-2230
Kelly L. Monaghan http://orcid.org/0000-0002-3298-
8485
Edwin C. K. Wan http://orcid.org/0000-0003-4783-3029

REFERENCES

1. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and
stroke statistics‐2017 update: a report from the American Heart
Association. Circulation. 2017;135:e146‐e603.

2. Hoffmann S, Harms H, Ulm L, et al. Stroke‐induced
immunodepression and dysphagia independently predict
stroke‐associated pneumonia—The PREDICT study. J Cereb
Blood Flow Metab. 2017;37:3671‐3682.

3. Prass K, Meisel C, Hoflich C, et al. Stroke‐induced immuno-
deficiency promotes spontaneous bacterial infections and is
mediated by sympathetic activation reversal by poststroke T
helper cell type 1‐like immunostimulation. J Exp Med. 2003;
198:725‐736.

340 | FARRIS ET AL.

http://orcid.org/0000-0002-0901-2230
http://orcid.org/0000-0002-3298-8485
http://orcid.org/0000-0002-3298-8485
http://orcid.org/0000-0003-4783-3029


4. Offner H, Subramanian S, Parker SM, Afentoulis ME,
Vandenbark AA, Hurn PD. Experimental stroke induces
massive, rapid activation of the peripheral immune system.
J Cereb Blood Flow Metab. 2006;26:654‐665.

5. Prass K, Braun JS, Dirnagl U, Meisel C, Meisel A. Stroke
propagates bacterial aspiration to pneumonia in a model of
cerebral ischemia. Stroke. 2006;37:2607‐2612.

6. Maier IL, Karch A, Mikolajczyk R, Bahr M, Liman J. Effect of beta‐
blocker therapy on the risk of infections and death after acute
stroke—a historical cohort study. PLOS One. 2015;10:e0116836.

7. Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D,
Veltkamp R. The immunology of acute stroke. Nat Rev Neurol.
2012;8:401‐410.

8. Wong CH, Jenne CN, Lee WY, Leger C, Kubes P. Functional
innervation of hepatic iNKT cells is immunosuppressive
following stroke. Science. 2011;334:101‐105.

9. Nicholls AJ, Wen SW, Hall P, Hickey MJ, Wong CHY.
Activation of the sympathetic nervous system modulates
neutrophil function. J Leukoc Biol. 2018;103:295‐309.

10. Clark WM, Lessov NS, Dixon MP, Eckenstein F. Monofilament
intraluminal middle cerebral artery occlusion in the mouse.
Neurol Res. 1997;19:641‐648.

11. Schulte‐Herbruggen O, Klehmet J, Quarcoo D, Meisel C, Meisel
A. Mouse strains differ in their susceptibility to poststroke
infections. Neuroimmunomodulation. 2006;13:13‐18.

12. Liesz A, Dalpke A, Mracsko E, et al. DAMP signaling is a key
pathway inducing immune modulation after brain injury.
J Neurosci. 2015;35:583‐598.

13. Liesz A, Hagmann S, Zschoche C, et al. The spectrum of systemic
immune alterations after murine focal ischemia: immunodepres-
sion versus immunomodulation. Stroke. 2009;40:2849‐2858.

14. Chiu NL, Kaiser B, Nguyen YV, Welbourne S, Lall C, Cramer
SC. The volume of the spleen and its correlates after acute
stroke. J Stroke Cerebrovasc Dis. 2016;25:2958‐2961.

15. Stanley D, Mason LJ, Mackin KE, et al. Translocation and
dissemination of commensal bacteria in post‐stroke infection.
Nat Med. 2016;22:1277‐1284.

16. Casson CN, Doerner JL, Copenhaver AM, et al. Neutrophils
and Ly6Chi monocytes collaborate in generating an
optimal cytokine response that protects against pulmonary
Legionella pneumophila infection. PLOS Pathog. 2017;
13:e1006309.

17. Craig A, Mai J, Cai S, Jeyaseelan S. Neutrophil recruitment to the
lungs during bacterial pneumonia. Infect Immun. 2009;77:568‐575.

18. Xiong H, Keith JW, Samilo DW, Carter RA, Leiner IM, Pamer
EG. Innate lymphocyte/Ly6C(hi) monocyte crosstalk promotes
Klebsiella Pneumoniae clearance. Cell. 2016;165:679‐689.

19. Zhang P, Summer WR, Bagby GJ, Nelson S. Innate immunity
and pulmonary host defense. Immunol Rev. 2000;173:39‐51.

20. Strieter RM, Belperio JA, Keane MP. Host innate defenses in
the lung: the role of cytokines. Curr Opin Infect Dis.
2003;16:193‐198.

21. Chen K, Kolls JK. T cell‐mediated host immune defenses in the
lung. Annu Rev Immunol. 2013;31:605‐633.

22. Tsai HC, Velichko S, Hung LY, Wu R. IL‐17A and Th17 cells in
lung inflammation: an update on the role of Th17 cell

differentiation and IL‐17R signaling in host defense against
infection. Clin Dev Immunol. 2013;2013:267971.

23. Austin V, Ku JM, Miller AA, Vlahos R. Ischaemic stroke in mice
induces lung inflammation but not acute lung injury. Sci Rep.
2019;9:3622.

24. Sundberg JP, Schofield PN. Living inside the box: environ-
mental effects on mouse models of human disease. Dis Model
Mech. 2018:11. https://doi.org/10.1242/dmm.035360

25. Kishore AK, Vail A, Jeans AR, et al. Microbiological etiologies
of pneumonia complicating stroke: a systematic review. Stroke.
2018;49:1602‐1609.

26. Ruhnau J, Schulze K, Gaida B, et al. Stroke alters respiratory
burst in neutrophils and monocytes. Stroke. 2014;45:794‐800.

27. Goto Y, Hogg JC, Whalen B, Shih CH, Ishii H, Van Eeden SF.
Monocyte recruitment into the lungs in pneumococcal
pneumonia. Am J Respir Cell Mol Biol. 2004;30:620‐626.

28. Urra X, Cervera A, Obach V, Climent N, Planas AM, Chamorro
A. Monocytes are major players in the prognosis and risk of
infection after acute stroke. Stroke. 2009;40:1262‐1268.

29. Zhang DP, Yan FL, Xu HQ, Zhu YX, Yin Y, Lu HQ. A decrease of
human leucocyte antigen‐DR expression on monocytes in periph-
eral blood predicts stroke‐associated infection in critically‐ill
patients with acute stroke. Eur J Neurol. 2009;16:498‐505.

30. Palaniappan R, Singh S, Singh UP, et al. CCL5 modulates
pneumococcal immunity and carriage. J Immunol. 2006;176:
2346‐2356.

31. Nureki S, Miyazaki E, Ando M, Kumamoto T, Tsuda T. CC
chemokine receptor 4 ligand production by bronchoalveolar
lavage fluid cells in cigarette‐smoke‐associated acute eosino-
philic pneumonia. Clin Immunol. 2005;116:83‐93.

32. Katoh S, Fukushima K, Matsumoto N, et al. Accumulation of
CCR4‐expressing CD4+ T cells and high concentration of its
ligands (TARC and MDC) in bronchoalveolar lavage fluid of
patients with eosinophilic pneumonia. Allergy. 2003;58:518‐523.

33. Yamashita U, Kuroda E. Regulation of macrophage‐derived
chemokine (MDC, CCL22) production. Crit Rev Immunol.
2002;22:105‐114.

34. Vulcano M, Albanesi C, Stoppacciaro A, et al. Dendritic cells as
a major source of macrophage‐derived chemokine/CCL22 in
vitro and in vivo. Eur J Immunol. 2001;31:812‐822.

SUPPORTING INFORMATION

Additional supporting information may be found online
in the Supporting Information section.

How to cite this article: Farris BY,
Monaghan KL, Zheng W, et al. Ischemic stroke
alters immune cell niche and chemokine profile
in mice independent of spontaneous bacterial
infection. Immun Inflamm Dis. 2019;7:326–341.
https://doi.org/10.1002/iid3.277

FARRIS ET AL. | 341

https://doi.org/10.1242/dmm.035360
https://doi.org/10.1002/iid3.277



