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Abstract: About 160 years ago, the concept of entropy was introduced in thermodynamics by Rudolf
Clausius. Since then, it has been continually extended, interpreted, and applied by researchers in
many scientific fields, such as general physics, information theory, chaos theory, data mining, and
mathematical linguistics. This paper presents The Entropy Universe, which aims to review the many
variants of entropies applied to time-series. The purpose is to answer research questions such as:
How did each entropy emerge? What is the mathematical definition of each variant of entropy? How
are entropies related to each other? What are the most applied scientific fields for each entropy? We
describe in-depth the relationship between the most applied entropies in time-series for different
scientific fields, establishing bases for researchers to properly choose the variant of entropy most
suitable for their data. The number of citations over the past sixteen years of each paper proposing a
new entropy was also accessed. The Shannon/differential, the Tsallis, the sample, the permutation,
and the approximate entropies were the most cited ones. Based on the ten research areas with the
most significant number of records obtained in the Web of Science and Scopus, the areas in which
the entropies are more applied are computer science, physics, mathematics, and engineering. The
universe of entropies is growing each day, either due to the introducing new variants either due to
novel applications. Knowing each entropy’s strengths and of limitations is essential to ensure the
proper improvement of this research field.

Keywords: entropy measures; information theory; time-series; application areas

1. Introduction

Despite its long history, to many, the term entropy still appears not to be easily
understood. Initially, the concept was applied to thermodynamics, but it is becoming
more popular in other fields. The concept of entropy has a complex history. It has been
the subject of diverse reconstructions and interpretations making it very confusing and
difficult to understand, implement, and interpret.

Up to the present, many different types of entropy methods have emerged, with a
large number of different purposes and possible application areas. Various descriptions
and meanings of entropy are provided in the scientific community, bewildering researchers,
students, and professors [1–3]. The miscellany in the research papers by the widespread use
of entropy in many disciplines leads to many contradictions and misconceptions involving
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entropy, summarized in Von Neumann’s sentence, “Whoever uses the term ‘entropy’ in a
discussion always wins since no one knows what entropy really is, so in a debate, one always has the
advantage” [4,5].

Researchers have already studied entropy measurement problems, but there are still
several questions to answer. In 1983, Batten [6] discussed entropy theoretical ideas that
have led to the suggested nexus between the physicists’ entropy concept and measures
of uncertainty or information. Amigó et al. [7] presented a review of only generalized
entropies, which from a mathematical point of view, are non-negative functions defined on
probability distributions that satisfy the first three Shannon–Khinchin axioms [8]. In 2019,
Namdari and Zhaojun [9] reviewed the entropy concept for uncertainty quantification of
stochastic processes of lithium-ion battery capacity data. However, those works do not
present an in-depth analysis of how entropies are related to each other.

Several researchers, such as the ones of reference [10–19], consider that entropy is
an essential tool for time-series analysis and apply this measure in several research areas.
Nevertheless, the choice of a specific entropy is made in an isolated and unclear way. There
is no complete study on the areas of entropies application in the literature to the best of our
knowledge. We believe that a study of the importance and application of each entropy in
time-series will help researchers understand and choose the most appropriate measure for
their problem.

Hence, considering entropies applied to time-series, the focus of our work is to
demystify and clarify the concept of entropy, describing:

1. How the different concepts of entropy arose.
2. The mathematical definitions of each entropy.
3. How the entropies are related to each other.
4. Which are the areas of application of each entropy and their impact in the scien-

tific community.

2. Building the Universe of Entropies

In this section, we describe in detail how we built our universe of entropies. We
describe the entropies, mathematical definitions, the respective origin, and the relationship
between each other. We also address some issues with the concept of entropy and, its
extension to the study of continuous random variables.

Figure 1 is the timeline (in logarithmic scale) of the universe of entropies covered in
this paper. Although we have referred to some entropies in more than one section, in the
Figure 1, the colors refer to the section where each entropy has been defined.

Figure 1. Timeline of the universe of entropies discussed in this paper. Timeline in logarithmic scale and colors refer to the
section in which each entropy is defined.
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Boltzmann, Gibbs, Hartley, quantum, Shannon and Boltzmann-Gibbs-Shannon en-
tropies, the first concepts of entropy are described in Section 2.1. Section 2.2 is dedicated to
entropies derived from Shannon entropy such as differential entropy (Section 2.2.1), spectral
entropy (Section 2.2.2), tone-entropy (Section 2.2.3), wavelet entropy (Section 2.2.4), empiri-
cal mode decomposition energy entropy (Section 2.2.5), and ∆-entropy (Section 2.2.6).

Kolmogorov, topological, and geometric entropies are described in Section 2.3. Section 2.4
describes the particular cases of Rényi entropy (Section 2.4.1), ε−smooth Rényi entropy
(Section 2.4.2), and Rényi entropy for continuous random variable and the different defini-
tion of quadratic entropy (Section 2.4.3). Havrda–Charvát structural α-entropy and Tsallis
entropy are detailed in Section 2.5 while permutation entropy and related entropies are
described in Section 2.6.

Section 2.7 is dedicated to rank-based and bubble entropies while topological infor-
mation content, graph entropy and horizontal visibility graph entropy are detailed in
Section 2.8. In Section 2.9,are described the approximate, the sample, and related entropies
such as the quadratic sample, coefficient of the sample, and intrinsic mode entropies
(Section 2.9.1), dispersion entropy and fluctuation-based dispersion entropy (Section 2.9.2),
fuzzy entropy (Section 2.9.3), modified sample entropy (Section 2.9.4), fuzzy measure
entropy (Section 2.9.5), and kernel entropies (Section 2.9.6).

2.1. Early Times of the Entropy Concept

In 1864, Rudolf Clausius introduced the term entropy in thermodynamics from the
Greek word Entropein for transformation and change [20]. The concept of entropy arises,
providing a statement of the second law of thermodynamics. Later, statistical mechanics
provided a connection between thermodynamic entropy and the logarithm of the number
of microstates in the system’s macrostate. This work is attributed to Ludwig Boltzmann
and the Boltzmann entropy [21], S, was defined as

S = kB · ln(W) (1)

where kB is the thermodynamic unit of the measurement of the entropy and is the Boltz-
mann constant, W is called the thermodynamic probability or statistical weight and is
the total number of microscopic states or complexions compatible with the macroscopic
state of the system. The Boltzmann entropy, also known as Boltzmann-Gibbs entropy [22]
or thermodynamic entropy [23], is a function on phase space and is thus defined for an
individual system. Equation (1) was originally formulated by Boltzmann between 1872
and 1875 [24] but later put into its current form by Max Planck in about 1900 [25].

In 1902, Gibbs published Elementary Principles in Statistical Mechanics [26], where
he introduced Gibbs entropy. In contrast to Boltzmann entropy, the Gibbs entropy of a
macroscopic classical system is a function of a probability distribution over phase space,
i.e., an ensemble. The Gibbs entropy [27] in the phase space of system X, at time t, is
defined by the quantity, SG(t):

SG(t) = −kB

∫
X

ft(x)[log ft(x)− 1]dx (2)

where kB is the Boltzmann’s constant and ft is the density of the temporal evolution of the
probability distribution in the phase space.

Boltzmann entropy was defined for a macroscopic state of a system, while Gibbs
entropy is the generalization of the Boltzmann entropy for over an ensemble, which is over
the probability distribution of macrostates [21,28].

In 1928, the electrical engineer Ralph Hartley [29] proposed that the amount of infor-
mation associated with any finite set of entities could be understood as a function of the
set’s size. Hartley defined the amount of information h(X) associated with the finite set
X as the logarithm to some base b of the X′s size, as shown in Equation (3). This amount
is known as Hartley entropy and is related to the particular cases of Rényi entropy (see
Section 2.4.1).
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h(X) = logb|X| (3)

In 1932, Von Neumann generalized Gibbs entropy to quantum mechanics, and it is
known as Von Neumann entropy (quantum Gibbs entropy or quantum entropy) [30]. The
quantum entropy was initially defined as Shannon entropy associated with the density
matrix’s eigenvalues, but sixteen years before Shannon entropy was defined [31]. Von
Neumann entropy is the quantum generalization of Shannon entropy [32].

In 1948, the American Claude Shannon published “A mathematical theory of commu-
nication” in July and October issues of Bell System technical journal [33]. He proposed
the notion of entropy to measure how the information within a signal can be quantified
with absolute precision as the amount of unexpected data contained in the message. This
measure is known as Shannon entropy (SE) and is defined as:

SE(X) = −∑
i

pi · ln(pi) (4)

where X = {xi, i = 1, . . . , N} is a time-series, 0ln0 = 0 by convention and pi represents the
probability of xi, i = 1, . . . , N. Therefore pi > 0 ∀i and ∑ pi = 1.

In 1949, at the request of Shannon employer, Warren Weaver, the paper of Shannon is
republished as a book [34], preceded by an introductory exhibition by Weaver. Weaver’s
text [35] attempts to explain how Shannon’s ideas can extend far beyond their initial
objectives to all sciences that address communication problems in the broad sense. Weaver
is sometimes cited as the first author, if not the only author of information theory [36].
Nevertheless, as Weaver himself stated: “No one could realize more keenly than I do that my
own contribution to this book is infinitesimal as compared with Shannon’s” [37]. Shannon and
Weaver, in the book "The Mathematical Theory of Communication" [38], referred to Tolman
(1938), who in turn attributes to Pauli (1933), the definition of entropy Shannon used [39].

Many authors [7,40,41] used the term Boltzmann-Gibbs-Shannon entropy (BGS), gen-
eralizing the entropy expressions of Boltzmann, Gibbs, and Shannon and following the
ideas of Stratonovich [42] in 1955:

SBGS(p1, . . . , pw) = −kB

W

∑
i=1

pi · ln(pi) (5)

where kB is the Boltzmann constant, W is the number of microstates consistent with the
macroscopic constraints of a given thermodynamical system and pi is the probability that
the system is in the microstate i.

In 1957, Khinchin [43] proposed an axiomatic definition of the Boltzmann entropy,
based on four requirements, known as the Shannon-Khinchin axioms [8]. He also demon-
strated that Shannon entropy is generalized by

H(X) = −k ∑
i

pi · log(pi) (6)

where k is a positive constant representing the desired unit of measurement. This property
enables us to change the logarithm base in the definition, i.e., SEb(X) = logbSEa(X).
Entropy can be changed from one base to another by multiplying by the appropriate
factor [44]. Therefore, depending on the application area, instead of the natural logarithm
in Equation (4), one can use logarithms from other bases.

There are different approaches to the derivation of Shannon entropy based on different
postulates or axioms [44–47].

Figure 2 represents the origin of the universe of entropies that we propose in this
paper, as well as the relationships between the entropies that we describe in this section.
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Figure 2. Origin of The Entropy Universe.

2.2. Entropies Derived from Shannon Entropy

Based on Shannon entropy, many researchers have been devoted to enhancing the per-
formance of Shannon entropy for more accurate complexity estimation, such as differential
entropy, spectral entropy, tone-entropy, wavelet entropy, empirical mode decomposition
energy entropy, and ∆−entropy. Throughout this paper, other entropies related to Shannon
entropy have been analyzed, such as Rényi, Tsallis, permutation, and dispersion entropies.
However, due to its context, we decided to include them in other sections.

In Figure 3, we represent how the entropies described below are related to each other.

Figure 3. Entropies related to Shannon entropy.

2.2.1. Differential Entropy

Shannon entropy was formalized for discrete probability distributions. However, the
concept of entropy can be extended to continuous distributions through a quantity known
as differential entropy (DE) (also referred to as continuous entropy). The concept of DE
was introduced by Shannon [33] like a continuous-case extension of Shannon entropy [44].
However, further analysis reveals several shortcomings that render it far less useful than
it appears.

The information-theoretic quantity for continuous one-dimensional random variables
is differential entropy. The DE for a continuous time-series X with probability density p(x)
is defined as:

DE(X) = −
∫

S
pi · ln(pi) (7)

where S is the support set of the random variable.
In the discrete case, we had a set of axioms from which we derived Shannon entropy

and, therefore, a collection of properties that the measure must present. Charles Marsh [48]
stated that “continuous entropy on its own proved problematic,” the differential entropy is not
a limit of the Shannon entropy for n→ ∞ . On the contrary, it differs from the limit of the
Shannon entropy by an infinite displacement [48]. Among other problems, continuous
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entropy can be negative, while discrete entropy is always non-negative. For example,
when the continuous random variable U is uniformly distributed over the interval (a, b),
p(u) = 1/(b− a) Equation (7) results in:

DE(U) = ln(b− a). (8)

The entropy value obtained in Equation (8) is negative when the length of the interval
is < 1.

2.2.2. Spectral Entropy

In 1992, Kapur et al. [49] proposed spectral entropy (SpEn) that uses the power
spectral density P̂( f ) obtained from the Fourier transformation method [50]. The power
spectral density represents the distribution of power as a function of frequency. Thus,
the normalization of P̂( f ) yields a probability density function. Using the definition of
Shannon entropy, SpEn can be defined as:

SpEn =
fh

∑
i= fl

pi · log(pi) (9)

where [ fl , fh] is the frequency band. Spectral entropy is usually normalized SpEn/logN f ,
where N f is the number of frequency components in the range [ fl , fh].

2.2.3. Tone-Entropy

In 1997, Oida et al. [51] proposed the tone-entropy (T-E) analysis to characterize the
time-series of percentage index (PI) of heart period variation. In this paper, the authors
used the tone, and the entropy to characterize the time-series PI. Considered a time-series
X = {xi, i = 1, . . . , N}, PI is defined as:

PI(i) =
(xi − xi+1)100

xi
. (10)

The Tone is defined as the first-order moment (arithmetic average) of this PI time-
series as:

Tone =
1

N − 1

N

∑
i=1

PI(i). (11)

Entropy is defined from the PI’s probability distribution using Shannon’s Equation (4)
with log2 instead of ln.

2.2.4. Wavelet Entropy

Wavelet entropy (WaEn) was introduced by Rosso and Blanco [52] in 2001. The
WaEn is an indicator of the disorder degree associated with the multi-frequency signal
response [11]. The definition of WaEn is given as follows:

WaEn = −∑
i<0

pi · log(pi) (12)

where pi denotes the probability distribution of time-series, and i represents different
resolution levels.

2.2.5. Empirical Mode Decomposition Energy Entropy

In 2006, Yu et al. [53] proposed the Empirical Mode Decomposition Energy entropy
(EMDEnergyEn) that quantifies the regularity of time-series with the help of the intrinsic
mode functions (IMFs) [12] obtained by the empirical mode decomposition (EMD).

Assume that we have obtained n IMFs, three steps are required to obtain the EMDEn-
ergyEn as follows:
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1. Calculate Ei energy for each ith IMFs ci:

Ei =
m

∑
j=1
|ci(j)|2 (13)

where m represents the length of IMF.
2. Calculate the total energy of these n efficient IMFs:

E =
n

∑
i=1

Ei. (14)

3. Calculate the energy entropy of IMF:

Hen = −
n

∑
j=1

pi · log(pi) (15)

where Hen denotes the EMDEnergyEn in the whole of the original signal, and pi =
Ei
E

denotes the percentage of the energy of the IMF number i relative to the total energy
entropy.

2.2.6. ∆−Entropy

In 2011, the ∆−entropy was introduced by Chen et al. [54]. This measure is sensitive
to the dynamic range of the time-series. The ∆−entropy contains two terms, in which
the first term measures the probabilistic uncertainty obtained with Shannon entropy. The
second term measures the dispersion in the error variable:

H∆(X) = −∑
i

pi · log(pi) + log∆(X) (16)

where X = {xi, i = 1, . . . , N} is the time-series and ∆(X) = 1
N−1 ∑N−1

i=1 |xi+1 − xi|.
The ∆−entropy converges to DE when the scale (∆(X)) tends to zero. When the scale

defaults to the natural numbers (∆(X) = 1 and therefore log(∆(X)) = 0) the ∆−entropy is
indistinguishable from SE.

2.3. Kolmogorov, Topological and Geometric Entropies

In 1958, Kolmogorov [55] introduced the concept of entropy in the dynamical system
as a measure-preserving transformation and studied the attendant property of completely
positive entropy (K-property). In 1959, his student Sinai [56,57] formulated Kolmogorov-
Sinai entropy (or metric entropy or Kolmogorov entropy [58]) that is suitable for arbitrary
automorphisms of Lebesgue spaces. The Kolmogorov-Sinai entropy is equivalent to a
generalized version of SE under certain plausible assumptions [59].

For the case of a state space, it can be partitioned into hypercubes of content εm

in an m-dimensional dynamical system and observed at time intervals δ, defining the
Kolmogorov-Sinai entropy as [60]:

HKS = − lim
δ→0

lim
ε→0

lim
n→∞

1
nδ ∑

K1,...,Kn

p(K1, . . . , Kn) · ln(p(K1, . . . , Kn)) = lim
δ→0

lim
ε→0

lim
n→∞

1
nδ

Hn (17)

where p(K1, . . . , Kn) denote the joint probability that the state of the system is in the
hypercube k1 at the time t = δ, k2 at t = 2δ, . . ., in the hypercube kn at t = nδ and Hn =
H(X1, . . . , Xn) = ∑n

i=1 H(Xi|Xi−1, . . . , X1). For stationary processes it can be shown that

HKS = − lim
δ→0

lim
ε→0

lim
n→∞

(Hn+1 − Hn). (18)
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It is impossible to calculate Equation (17) for n → ∞ because different estimation
methods have been proposed, such as approximate entropy [61] and Rényi entropy [62],
and compression [63].

The Kolmogorov-Sinai entropy and conditional entropy coincide for a stochastic
process X, where Xn is the random variable obtained by sampling the process X at the
present time n, and Xn−1 = {X1, . . . , Xn−1} [64].

In this case, conditional entropy quantifies the amount of information in the current
process that cannot be explained by its history. If the process is random, the system
produces information at the maximum rate, producing the maximum conditional entropy.
If, on the contrary, the process is completely predictable, the system does not produce new
information, and conditional entropy is zero. When the process is stationary, the system
produces new information at a constant rate, meaning that the conditional entropy does
not change over time [65]. Note that conditional entropy is, more broadly, the entropy of a
random variable conditioned to the knowledge of another random variable [44].

In 1965, inspired by Kolmogorov-Sinai entropy, the concept of the topological entropy
(TopEn) was introduced by Adler et al. [66] to describe the complexity of a single map
acting on a compact metric space. The notion of TopEn is similar to the notion of metric
entropy: instead of a probability measure space, we have a metric space [67].

After 1965, many researchers proposed other notions of TopEn [68–72]. Most of the
new notions extended the concept to more general functions or spaces, but the idea of
measuring the complexity of the systems was preserved among all these new notions.
In [56], the authors review the notions of topological entropy, give an overview of the
relation between the notions and fundamental properties of topological entropy.

In 2018, Rong and Shang [10] introduced TopEn based on time-series to characterizes
the total exponential complexity of a quantified system with a single number. The authors
began by choosing a symbolic method to transform the time-series X = {xi, i = 1, . . . , N}
into a symbolic sequence Y = {yi, i = 1, . . . , N}. At the same time, consider k the number
of different alphabets of Y and P(n) represents the number of different sets of words with
length n. Note that P(N) = 1 and the TopEn of the time-series was defined as:

hn =
logkP(n)

n
(1 ≤ n ≤ N). (19)

The maximum of P(n) is kn, then TopEn can reach a maximum of 1, while TopEn’s
minimum value is 0, which is reached when n = N. Addabbo and Blackmore [73] showed
that metric entropy, with the imposition of some additional properties, is a special case of
topological entropy and Shannon entropy is a particular form of metric entropy.

In 1988, Walczak et al. [74] introduced the geometric entropy (or foliation entropy) to
study a foliation dynamics, which can be considered as a generalization of TopEn of a single
group [75–77]. Recently, Rong and Shang [10] proposed geometric entropy for time-series
based on the multiscale method (see Section 2.10) and the original definition of geometric
entropy provided by Walczak. To calculate the value of TopEn and geometric entropy in
their work, the authors used horizontal visibility graphs [78] to transform the time-series
into a symbolic series. More details about horizontal visibility graphs in Section 2.8.

In Figure 4, we show the relationships between the entropies described in this section.

Figure 4. Relationship between Kolmogorov, topological and geometric entropies.

2.4. Rényi Entropy

In 1961, Rényi entropy (RE) or q-entropy was introduced by Alfréd Rényi [79] and
played a significant role in information theory. Rényi entropy, a generalization of Shannon
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entropy, is a family of functions of order q (Rq) for quantifying the diversity, uncertainty, or
randomness of a given system defined as:

Rq(X) =
1

1− q
log2 ∑

i
pi

q. (20)

In the following sections, we describe particular cases of Rényi entropy, ε−smooth
Rényi entropy, Rényi entropy for a continuous random variable, and discuss issues with
the different definitions of quadratic entropy.

Figure 5 illustrates the relations between Shannon entropy, Rényi entropy, particular
cases of Rényi entropy, and ε−smooth Rényi entropy.

Figure 5. Relationship between Rényi entropy and its particular cases.

2.4.1. Particular Cases of Rényi Entropy

There are some particular cases of Rényi entropy [80–82], for example, if q = 0,
R0 = 1

1−0 log2 ∑N
i=1 pi

0 = log2N is the Hartley entropy (see Equation (3)).
The Rényi entropy converges to the well-known Shannon entropy, eventually, with

multiplication by a constant resulting from the base change property, i.e., when q→ 1 and
log2 is replaced by ln.

When q = 2, R2 = −log2 ∑N
i=1 pi

2 is called collision entropy [80] and is the negative
logarithm of the likelihood of two independent random variables with the same probability
distribution to have the same value. The collision entropy measures the probability for
two elements drawn according to this distribution to collide. Many papers refers to Rényi
entropy [81] when using q = 2, even when that choice it is not explicit.

The concept of maximum entropy (or Max-Entropy) arose in statistical mechanics
in the nineteenth century and has been advocated for use in a broader context by Edwin
Thompson Jaynes [83] in 1957. The Max-Entropy can be obtained from Rényi entropy when
q→ −∞, and the limit exists, as:

R−∞ = −log2(mini=1,...,N pi), (21)

It is the largest value of Rq, which justifies the name maximum entropy. The particular
cases of Rényi entropy when q→ ∞, and the limit exists as

R∞ = −log2(maxi=1,...,N pi) (22)

is called minimum entropy (or Min-Entropy) because it is the smallest value of Rq. The
Min-Entropy was proposed by Edward Posner [84] in 1975. According to reference [85],
the collision entropy and Min-Entropy are related by Equation by the following:

R∞ ≤ R2 ≤ 2R∞. (23)
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2.4.2. ε−Smooth Rényi Entropy

In 2004, Renner and Wolf [86] proposed the ε-smooth Rényi entropy for character-
izing the fundamental properties of a random variable, such as the amount of uniform
randomness that may be extracted from the random variable:

Rε
q(X) =

1
1− q

inf
Q∈Bε(P)

log2

(
∑
z∈Z

Q(z)q

)
(24)

where Bε(P) = {Q : (∑z |P(z)−Q(z)|)/2 ≤ ε} is the set of probability distributions which
are ε-close to P; P is the probability distribution with range Z; q ∈ [0, ∞] and ε ≥ 0. For the
particular case of a significant number of independent and identically distributed (i.i.d.)
random variables, ε−smooth Rényi entropy approaches the Rényi entropy. In this special
case, if q→ 1 the ε−smooth Rényi entropy approaches the Rényi entropy.

2.4.3. Rényi entropy for Continuous Random Variables and the Different Definition of
Quadratic Entropy

According to Lake [87], if X is an absolutely continuous random variable with density
f , the Rényi entropy of order q (or q-entropy) is defined as:

Rq(X) =
1

1− q
log2

(∫ ∞

−∞
f (x)q

)
(25)

where letting q tend to 1, and using L’Hospitals rule results in differential entropy, i.e.,
DE(x) = R1(X). Lake [87] uses the term quadratic entropy when q = 2.

In 1982, Rao [88,89] gave a different definition for quadratic entropy. He introduced
quadratic entropy as a new measure of diversity in biological populations , which considers
differences between categories of species. For the discrete and finite case, the quadratic
entropy is defined as:

S

∑
i=1

S

∑
j=1

di,j pi pj (26)

where di,j is the difference between the i-th and the j-th category and p1, . . . , ps (∑ pi = 1)
are the theoretical probabilities corresponding to the s species in the multinomial model.

2.5. Havrda–Charvát Structural α−Entropy and Tsallis Entropy

The Havrda–Charvát Structural α−entropy was introduced in 1967 within information
theory [90]. It may be considered as a new generalization of the Shannon entropy, different
from the generalization given by Rényi. The Havrda–Charvát Structural α−entropy, Sα,
was defined as:

Sα =
2α−1

2α−1 − 1

(
1−∑

i
pα

i

)
(27)

for α > 0 and α 6= 1. When α→ 1, the Havrda–Charvát Structural α-entropy converges for
Shannon entropy minus multiplication by a constant (1/ln2).

In 1988, the concept of Tsallis entropy (TE) was introduced by Constantino Tsallis as
a possible generalization of Boltzmann-Gibbs entropy to nonextensive physical systems
and prove that the Boltzmann-Gibbs entropy is recovered as q→ 1 [7,91]. TE is identical in
form to Havrda–Charvát Structural α−entropy and Constantino Tsallis defined it as:

Sq =
k

q− 1

(
1−∑

i
pq

i

)
, q ∈ R (28)

where k is a positive constant [91]. In particular, when q→ 1 implies that
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S1 = lim
q→1

Sq = −k ∑
i

pi · ln(pi) (29)

When k = 1 in Equation (29) we recover Shannon entropy [92]. In Equation (29) if we
consider k to be the Boltzmann constant and pi =

1
N , ∀i, we recover the Boltzmann entropy

to W = N.
Figure 6 summarizes the relationships between the entropies that we describe in

this section.

Figure 6. Relationship between Havrda–Charvát structural α-entropy Tsallis and others entropies.

2.6. Permutation Entropy and Related Entropies

Bandt and Pompe [13] introduced permutation entropy (PE) in 2002. PE is an ordinal
analysis method, in which a given time-series is divided into a series of ordinal patterns
for describing the order relations between the present and a fixed number of equidistant
past values [93].

A time-series, as a set of N consecutive data points, is defined as X = {xi, i = 1, . . . , N}.
PE can be obtained by the following steps. From the original time-series X, let us define
the vectors Xτ

m(i) as:

Xi = Xτ
m(i) = (xi, xi+τ , xi+2τ , . . . , xi+(m−1)∗τ) (30)

with i = 1, . . . , N − (m − 1) ∗ τ, where m is the embedding dimension, and τ is the
embedding lag or time delay. Reconstruct the phase space so that the time-series maps to a
trajectory matrix Xτ

m,

Xτ
m = (X1, X2, . . . , XN−(m−1)∗τ)

Γ. (31)

Each state vector Xi has an ordinal pattern. It is determined by a comparison of
neighboring values. Sort Xi in ascending order, and the ordinal pattern πi is the ranking of
Xi. The trajectory matrix Xτ

m is thus transformed into ordinal pattern matrix,

π = (π1, π2, . . . , πN−(m−1)∗τ)
Γ (32)

It is called permutation because there is a transformation from Xi to πi and for a given
embedding dimension m, at most m! permutations exist in total.

Select all distinguishable permutations and number them πj, j = 1, 2, . . . , m!. For all
the m! possible permutations πj, the relative frequency is calculated by

p(πj) =
#
{

Xi|Xi has ordinal pattern πj
}

N − (m− 1)τ
(33)

where 1 ≤ i ≤ N − (m− 1)τ and # represents the number of elements.
According to information theory, the information contained in πj is measured as

−ln
(

p(πj)
)

and PE is finally computed as:

H(m) = −
m!

∑
j=1

p(πj) · ln
(

p(πj)
)
. (34)
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Since H(m) can maximally reach ln(m!), PE is generally normalized as:

PE(m) = −
∑m!

j=1 p(πj) · ln
(

p(πj)
)

ln(m!)
. (35)

This is the information contained in comparing m consecutive values of the time-series.
Bandt and Pompe [13] defined the permutation entropy per symbol of order m (pe(m)),
dividing by m− 1 since comparisons start with the second value:

pe(m) =
PE(m)

m− 1
(36)

In reference [13], “Permutation entropy — a natural complexity measure for time-series” the
authors also proposed the sorting entropy (SortEn) defined as: dm = H(m)− H(m− 1),
d2 = H(2) . This entropy determines the information contained in sorting the mth value
among the previous m− 1 when their order is already known.

Based on the probability of the permutation pj = p(πj), other entropy can be defined,
e.g., Zhao et al. [14], in 2013, introduced Rényi permutation entropy (RPE) as:

RPEq =
1

1− q
log2

m!

∑
j=1

pj
q. (37)

Zunino et al. [92], based on the definition of TE, proposed the normalized Tsallis
permutation entropy (NTPE) and defined it as:

NTPEq =
∑m!

j=1

(
pj − pq

j

)
1−m!1−q . (38)

In Figure 7, we showed how Tsallis, Rényi, Shannon and the entropies described in
this section are related to each other. The rank-based and bubble entropies, described the
Section 2.7, are related to permutation entropy and are also represented in the Figure 7.

Figure 7. Entropies related to permutation entropy.

2.7. Rank-Based Entropy and Bubble Entropy

Citi et al. [94] proposed the rank-based entropy (RbE), in 2014. The RbE consists of
an alternative entropy metric based on the amount of shuffling required for ordering the
mutual distances between m-long vectors when the next observation is considered, that is,
when the corresponding m + 1-long vectors are considered [94]. Operationally, RbE can be
defined by the following steps:

1. Compute, for 1 ≤ i < j ≤ N−m, the mutual distances vectors: dk(i,j) =
∥∥vm,i − vm,j

∥∥
∞

and d
′
k(i,j) =

∣∣xi+m − xj+m
∣∣ where ‖vm,i‖∞ is the infinity norm of vector vm,i =

{xi, xi+1, . . . , xi+m−1} that is, ‖vm,i‖∞ = max1≤l≤i+m−1|xl | and k = k(i, j) is the in-
dex assigned for each (i, j) pair, with 1 ≤ k ≤ K = (N −m− 1)(N −m)/2.

2. Consider vector dk and find the permutation π(k) such that the vector Sk = dπ(k) is
sorted in ascending order. Now, if the system is deterministic, we expect that if the
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vectors vm,i and vm,j are close, then the new observation from each vector xi+m, xj+m

should be close too. In other words, S
′
k = d

′
π(k) should be almost sorted too. Compute

inversion count which is a measure of a vector‘s disorder.
3. Determine the largest index kρ satisfying Skρ

< ρ and compute the number I of

inversion pairs (k1, k2) such that k1 < kρ, k1 < k2 and S
′
k1

> S
′
k2

.
4. Compute the RbE as:

RbE = −ln

(
1− I(

2K− kρ − 1
)
kρ/2

)
. (39)

The concept of bubble entropy (BEn) was introduced by Manis et al. [95] in 2017 and
it is based on permutation entropy (see Section 2.6), where the vectors in the embedding
space are ranked and this rank is inspired by rank-based entropy.

The computation of BEn is as follows:

1. Sort each vector Xi, defined in Equation (30), of m− 1 elements in ascending order,
counting the number of swaps ni necessary. The ni number is obtained by bubble
sort [96]. For more details about bubble sort see paper [97].

2. Compute an histogram from ni values and normalize it by N − m, to obtain the
probabilities pi (describing how likely a given number of swaps ni is).

3. Consider RPEm−1
2 according to Equation (37) for q = 2 and from pi compute the

RPEm−1
swaps [98]:

RPEm−1
swaps = −log2

n

∑
i=1

pi
2. (40)

4. Repeat steps 1 to 3 to compute RPEm
swaps.

5. Compute BEn by:

BEn =

(
RPEm

swaps − RPEm−1
swaps

)
log2

( m
m−2

) . (41)

2.8. Topological Information Content, Graph Entropy and Horizontal Visibility Graph Entropy

In the literature, there are variations in the definition of graph entropy [99]. Inspired by
Shannon’s entropy, the first researchers to define and investigate the entropy of graphs were
Rashevsky [100], Trucco [101], and Mowshowitz [102–105]. In 1955, Rashevsky introduced
the information measures for graphs G = (V, E) called topological information content
and defined as:

VI(G) = −
k

∑
i=1

|Ni|
|V| log

(
|Ni|
|V|

)
(42)

where |Ni| denotes the number of topologically equivalent vertices in the ith vertex orbit of
G and k is the number of different orbits. Vertices are considered as topologically equivalent
if they belong to the same orbit of a graph G. In 1956, Trucco [101] introduced similar
entropy measures applying the same principle to the edge automorphism group.

In 1968, Mowshowitz [102–105] introduced an information measure using chromatic
decompositions of graphs and explored the properties of structural information mea-
sures relative to two different equivalence relations defined on the vertices of a graph.
Mowshowitz [102] defined graph entropy as:

I(G) = minV̂

{
−

h

∑
i=1

ni(V̂)

|V| log
(

ni(V̂)

|V|

)}
(43)

where V̂ = {Vi|1 ≤ i ≤ h}, |Vi| = ni(V) denotes an arbitrary chromatic decomposition of
a graph G, h = χ(G) is the chromatic number of G.
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In 1973, János Körne [106] introduced a different definition of graph entropy linked to
problems in information and coding theory. The context was to determine the performance
of the best possible encoding of messages emitted by an information source where the
symbols belong to a finite vertex set V. According to Körne, the graph entropy of G,
denoted by H(G) is defined as:

H(G) = min
X,Y

I(X; Y) (44)

where X is chosen uniformly from V, Y ranges over independent sets of G, the joint
distribution of X and Y is such that X ∈ Y with probability one, and I(X; Y) is the mutual
information of X and Y. We will not go deeper into the analysis of the graph entropy
defined by Körner because it involves the concept of mutual information.

There is no unanimity in the research community regarding the first author that
defined graph entropy. Some researchers consider that graph entropy was defined by
Mowshowitz in 1968 [50,99] but other researchers consider that it was introduced by János
Körne in 1973 [107,108]. New entropies have emerged based on both concepts of graph
entropy. When the term graph entropy is mentioned, care must be taken and understand
the underlying definition.

The concept of horizontal visibility graph entropy, a measure based on one definition
of graph entropy and in the concept of horizontal visibility graph, was proposed by
Zhu et al. [109], in 2014. The horizontal visibility graph is a type of complex network,
based on a visibility algorithm [78], and was introduced by Luque et al. [110], in 2009. Let
a time-series X = {xi, i = 1, . . . , N} be mapped into a graph G(V, E) where a time point xi
is mapped into a node vi. The relationship between any two points (xi, xj) is represented
by an edge eij, which are connected if and only if the maximal values between xi and xj are
less than both of them. Therefore, each edge can be defined as [111]:

ei,j =


1 xj > max(x[(j + 1) . . . (i− 1)])
1 j + 1 = i
0 other cases

where eij = 0 implies that the edge does not exist, otherwise it does.
The graph entropy, based on either vertices or edges, can be computed as follows:

GE = −
n

∑
i=1

p(k) · log(p(k)) (45)

where p(k) is a probability degree k over a degree sequence of the graph G. It is obtained by
counting the number of nodes having degree k divided by the size of the degree sequence.
Notice that, the more fluctuating the degree sequence is, the larger the graph entropy is.
There are others graph entropy calculation methods based on either vertices or edges [99].

We summarize how the entropies described in this section are related to each other, in
Figure 8.

Figure 8. Relations between topological information content, graph entropy and horizontal visibility
graph entropy.

2.9. Approximate and Sample Entropies

Pincus [112] introduced the approximate entropy (ApEn), in 1991. ApEn is derived
from Kolmogorov entropy [113] and it is a technique used to quantify the amount of
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regularity and the unpredictability of fluctuations over time-series data [114]. In order
to calculate the ApEn the new series of a vector of length m (embedding dimension) are
constructed, X1

m, based on Equation (30). For each vector X1
m(i), the value Cr

m(i), where r is
referred as a tolerance value, is computed as:

Cr
m(i) =

number of d[X1
m(i), X1

m(j)] ≤ r
N −m + 1

, ∀j. (46)

Here the distance between the vector X1
m(i) and its neighbor X1

m(j) is:

d[X1
m(i), X1

m(j)] = maxk=1,...,m|x(i + k− 1)− x(j + k− 1)|. (47)

The value Cr
m(i) can also be defined as:

Cr
m(i) =

1
N −m + 1

N−m+1

∑
j=1

θ(maxk=1,...,m|x(i + k− 1)− x(j + k− 1)| − r) (48)

where θ is the Heaviside function

θ(t) =
{

1 if t ≤ 0
0 if t > 0

Next, the average of the natural logarithm of Cr
m(i) is computed for all i:

Φr
m =

1
N −m + 1

N−m+1

∑
i=1

ln(Cr
m(i)). (49)

Since in practice N is a finite number, the statistical estimate is computed as:

ApEn(m, r) =
{

Φr
m −Φr

m+1 for m > 0
−Φr

1 for m = 0

The disadvantages of ApEn are: it lacks relative consistency, its strong dependence
on data length and is often lower than expected for short records [15]. To overcome the
disadvantages of ApEn, in 2000 Richman and Moorman [15] proposed the sample entropy
(SampEn) to replace ApEn by excluding self-matches and thereby reducing the computing
time by one-half in comparison with ApEn. For the SampEn [15] calculation, the same
parameters defined for the ApEn, m, and r are required. Considering A as the number
of vector pairs of length m + 1 having d[X1

m(i), X1
m(j)] ≤ r, with i 6= j and B as the total

number of template matches of length m also with i 6= j, the SampEn is defined as:

SampEn = −ln
A
B

. (50)

Many entropies related to ApEn and SampEn have been created. In Figure 9, some
entropies related to ApEn and SampEn are represented, which are described in the
following sections.

2.9.1. Quadratic Sample Entropy, Coefficient of Sample Entropy and Intrinsic Mode Entropy

The SampEn has a strong dependency on the size of the tolerance r. Normally, smaller
r values lead to higher and less confident entropy estimates because of falling numbers of
matches of length m and, to an even greater extent, matches of length m + 1 [16].
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Figure 9. Entropies related to sample entropy.

In 2005, Lake [87] introduced the concept of quadratic sample entropy (QSE) (Lake
called it quadratic differential entropy rate) to solve the aforementioned problem. QSE
normalizes the value of r and allows any r for any time-series and the results to be compared
with any other estimate. The QSE is defined as follows:

QSE = −ln

(
A
B
2r

)
= SampEn + ln(2r). (51)

where A is the number of vector pairs of length m + 1 having d[X1
m(i), X1

m(j)] ≤ r, with
i 6= j and B is the total number of template matches of length m also with i 6= j, as in
SampEn calculation.

In 2010, derived from QSE it was introduced the coefficient of sample entropy
(COSEn) [16]. This measure was first devised and applied to the detection of atrial fibrilla-
tion through the heart rate. CosEn is computed similarly as QSE:

COSEn = −ln

(
A
B
2r

)
= SampEn− ln(2r)− ln(µ) (52)

where µ is the mean value of the time-series.
In 2007, Amoud et al. [115] introduced the intrinsic mode entropy (IME). The IME

is essentially the SampEn computed on the cumulative sums of the IMF [12] obtained by
the EMD.

2.9.2. Dispersion Entropy and Fluctuation-Based Dispersion Entropy

The SampEn is not fast enough, especially for long signals, and PE, as a broadly used
irregularity indicator, considers only the order of the amplitude values and hence some
information regarding the amplitudes may be discarded. In 2016, to solve these problems,
Rostaghi and Azami [18] proposed the dispersion entropy (DispEn) applied to a univariate
signal X = x1, x2, ..., xN whose algorithm is as follows:
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1. First, xj(j = 1, 2, . . . , N) are mapped to c classes, labeled from 1 to c. The classified
signal is uj(j = 1, 2, . . . , N). To do so, there are a number of linear and nonlinear
mapping techniques. For more details see [116].

2. Each embedding vector Uτ,c
m (i) with m embedding dimension and τ time delay is

created according to Uτ,c
m (i) = (uc

i , uc
i+τ , uc

i+2τ , . . . , uc
i+(m−1)τ) with i = 1, . . . , N −

(m − 1)τ. Each time-series Uτ,c
m (i) is mapped to a dispersion pattern πv0v1 ...vm−1 ,

where uc
i = v0, uc

i+τ = v1, . . . , uc
i+(m−1)τ = vm−1. The number of possible dispersion

patterns that can be assigned to each time-series Uτ,c
m (i) is equal to cm, since the signal

has m members and each member can be one of the integers from 1 to c [18].
3. For each cm potential dispersion patterns πv0v1 ...vm−1 , their relative frequency is ob-

tained as follows:

p(πv0v1 ...vm−1) =
#
{

i|i ≤ N − (m− 1)τ, has type πv0v1 ...vm−1

}
N − (m− 1)τ

(53)

where # represents their cardinality.
4. Finally, the DispEn value is calculated, based on the SE definition of entropy, as follows:

DispEn(X, m, c, τ) = −
cm

∑
π=1

p(πv0v1 ...vm−1) · ln
(

p(πv0v1 ...vm−1)
)
. (54)

In 2018, Azami and Escudero [116] proposed the fluctuation-based dispersion entropy
(FDispEn) as a measure to deal with time-series fluctuations. FDispEn considers the
differences between adjacent elements of dispersion patterns. According to the authors,
this forms vectors with length m− 1, which each of their elements changes from −c + 1
to c− 1, soon, becoming (2c− 1)m−1 potential fluctuation-based dispersion patterns. The
only difference between DispEn and FDispEn algorithms is the potential patterns used in
these two approaches [116].

2.9.3. Fuzzy Entropy

The uncertainty resulting from randomness is best described by probability theory,
while the aspects of uncertainty resulting from imprecision are best described by the fuzzy
sets introduced by Zadeh [117], in 1965. In 1972, De Luca and Termini [118] used the concept
of fuzzy sets and introduced a measure of fuzzy entropy that corresponds to Shannon’s
probabilistic measure of entropy. Over the years, other concepts of fuzzy entropy have been
proposed [119]. In 2007, Chen et al. [120] introduced fuzzy entropy (FuzzyEn), a measure
of time-series regularity, for the characterization of surface electromyography signals. In
this case, FuzzyEn is the negative natural logarithm of the probability that two similar
vectors for m points remain similar for the next m + 1 points. This measure of FuzzyEn is
similar to ApEn and SampEn, replaces the 0-1 judgment of Heaviside function associated
with ApEn and SampEn by a fuzzy relationship function [121], the family of exponential
functions exp(−dn

ij/r), to get a fuzzy measurement of the two vectors similarity based on
their shapes. This measure also comprises the removal of the local baseline which may
allow for minimizing the effect of non-stationarity in the time-series. Besides possessing
the good properties of SampEn superior to ApEn, FuzzyEn also succeeds in giving an
entropy definition for the case of small parameters. The method can also be applied to
noisy physiological signals with relatively short databases [50]. Consider a time-series
{xi, i = 1, . . . , N}with embedding dimension m to calculate FuzzyEn form vector sequence
as follows:

Xm(i) = {xi, xi+1, xi+2, . . . , xi+m−1} − x0(i) (55)
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with i = 1, . . . , N − m + 1. In Equation (55), Xm(i) represents m consecutive x values,
starting with the ith point and generalized by removing a baseline:

x0(i) =
1
m

m−1

∑
j=0

xi+j. (56)

For computing FuzzyEn, consider a certain vector Xm(i), define the distance function
dm,ij between Xm(i) and Xm(j) as the maximum absolute difference of the corresponding
scalar components:

dm,ij = d[Xm(i), Xm(j)] = maxk=0,...,m−1|xi+k − x0(i)− xj+k − x0(j)| (57)

with i, j = 1, . . . , N −m, j 6= i.
Given n and r, calculate the similarity degree Dm,ij between Xm(i) and Xm(j) through

a fuzzy function:
Dm,ij = µ(dm,ij, n, r) (58)

where the fuzzy function µ(dm,ij, n, r) is the exponential function

µ(dm,ij, n, r) = exp

(
−

dn
ij

r

)
. (59)

For each vector Xm(i), averaging all the similarity degree of its neighboring vectors
Xm(j), we get:

Bm(n, r, i) =
1

N −m

N−m

∑
j=1,j 6=i

Dm,ij. (60)

Determine the function Bm(n, r) as:

Bm(n, r) =
1

N −m

N−m

∑
i=1

Bm(n, r, i). (61)

Similarly, form the vector sequence {Xm+1(i)} and get the function Am(n, r):

Am(n, r, i) =
1

N −m

N−m

∑
j=1,j 6=i

Dm+1,ij (62)

Am(n, r)=
1

N −m

N−m

∑
i=1

Am(n, r, i). (63)

Finally, we can define the parameter FuzzyEn(m, n, r) of the sequence as the negative
natural logarithm of the deviation of Bm(n, r) from Am(n, r):

FuzzyEn(m, n, r) = lim
N→∞

(lnBm(n, r)− lnAm(n, r)) (64)

which, for finite databases, can be estimated from the statistic:

FuzzyEn(m, n, r, N) = lnBm(n, r)− lnAm(n, r) = −ln
(

Am(n, r)
Bm(n, r)

)
. (65)

There are three parameters that must be fixed for each calculation of FuzzyEn. The
first parameter m, as in ApEn and SampEn, is the length of sequences to be compared. The
other two parameters, r and n, determine the width and the gradient of the boundary of
the exponential function respectively.
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2.9.4. Modified Sample Entropy

The measure SampEn may have some problems in the validity and accuracy because
the similarity definition of vectors is based on the Heaviside function, of which the bound-
ary is discontinuous and hard. The sigmoid function is a smoothed and continuous version
of the Heaviside function.

In 2008, a modified sample entropy (mSampEn), based on the nonlinear Sigmoid
function, was proposed to overcome the limitations of SampEn [17]. The mSampEn is
similar to FuzzyEn, the only differences is that instead of Equation (59), mSampEn uses the
fuzzy membership function:

Dm,ij = µ(dm,ij, r) =
1

1 + exp[(dm,ij − 0.5)/r]
. (66)

2.9.5. Fuzzy Measure Entropy

In 2011, based on FuzzyEn definition, the fuzzy measure entropy (FuzzyMEn) was
proposed by Liu and Zhao [122]. FuzzyMEn combines local and global similarity in a time-
series and allows a has discrimination for time-series with different inherent complexities.
It is defined as:

FuzzyMEn(m, rL, rG, nL, nG, N) = FuzzyEn(m, nL, rL, N) + FuzzyEn(m, nG, rG, N) (67)

where FuzzyEn(m, nL, rL, N) and FuzzyEn(m, nG, rG, N) are obtained by Equation (65)
considering in the Equation (55) the local vector sequence XLm(i) and global vector
sequence XGm(i):

XLm(i) = Xm(i) = {xi, xi+1, xi+2, . . . , xi+m−1} − x0(i) (68)

XGm(i) = {xi, xi+1, xi+2, . . . , xi+m−1} − x. (69)

The vector XLm(i) represents m consecutive x(i) values but removing the local base-
line x0(i), which is defined in Equation (56). The vector XGm(i) also represents m consecu-
tive x(i) values but removing the global mean value x which is defined as:

x =
1
N

N

∑
i=1

xi. (70)

2.9.6. Kernel Entropies

In 2005, Xu et al. proposed another modification of ApEn, the approximate entropy
with Gaussian kernel [19]. It exploits the fact that the Gaussian kernel function can be
used to give greater weight to nearby points by replacing the Heaviside function, in
Equation (48), by k(i, j, r). The first kernel proposed k(i, j, r) is defined as:

k(i, j, r) = exp

(
−‖x(i)− x(j)‖2

10r2

)
(71)

and the kernel-based entropy (KbEn) [123] is given as:

KbEn(m, r) = Φr
m −Φr

m+1 (72)

where Φr
m was defined in Equation (49).

Therefore, if k(i, j, r) = θ(maxk=1,...,m|x(i + k− 1)− x(j + k− 1)| − r) and θ is the
Heaviside function then the resulting entropy value is the ApEn. The same procedure of
changing the distance measure can be applied to define the sample entropy with Gaussian
kernel [61].
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In 2015, Mekyska et al. [124] proposed 6 other kernels based in approximate and
sample entropies: exponential kernel entropy (EKE):

k(i, j, r) = exp
(
−‖x(i)− x(j)‖

2r2

)
; (73)

Laplacian kernel entropy (LKE):

k(i, j, r) = exp
(
−‖x(i)− x(j)‖

r

)
; (74)

circular kernel entropy (CKE):

k(i, j, r) =
2
π

arccos
(
−‖x(i)− x(j)‖

r

)
− 2

π

‖x(i)− x(j)‖
r

√
1−

(
‖x(i)− x(j)‖

2r2

)2

(75)

for ‖x(i)− x(j)‖ < r, and zero otherwise; spherical kernel entropy (SKE):

k(i, j, r) = 1− 3
2
‖x(i)− x(j)‖

r
+

1
2

(
‖x(i)− x(j)‖

2r2

)3

(76)

for ‖x(i)− x(j)‖ < r, and zero otherwise; Cauchy kernel entropy (CauchyKE):

k(i, j, r) =
1

1 + ‖x(i)−x(j)‖2

r

(77)

for ‖x(i)− x(j)‖ < r, and zero otherwise; triangular kernel entropy (TKE):

k(i, j, r) = 1− |x(i)− x(j)|
r

(78)

for |x(i)− x(j)| < r, zero otherwise.
Zaylaa et al. [123], called Gaussian entropy, exponential entropy, circular entropy,

spherical entropy, Cauchy entropy and triangular entropy to kernels entropies based
in ApEn.

2.10. Multiscale Entropy

The multiscale entropy approach (MSE) [60,125] was inspired by Zhang’s proposal [126],
and considers the information of a system’s dynamics on different time scales. Multiscale
entropy algorithms are composed of two main steps. The first one is the construction
of the time-series scales: using the original signal, a scale, s, is created from the original
time-series, through a coarse-graining procedure, i.e., replacing s non-overlapping points
by their average. In the second step, the entropy (sample entropy, permutation entropy,
fuzzy entropy, dispersion entropy, and others) is computed for the original signal and for
the coarse-grained time-series to evaluate the irregularity for each scale. For this reason,
methods of multiple scale entropy (such as entropy of entropy [127], composite multiscale
entropy [128], refined multiscale entropy [129], modified multiscale entropy [130], general-
ized multiscale entropy [131], multivariate multiScale entropy [132], and others) were not
explored in this paper.

3. The Entropy Universe Discussion

The Entropy Universe is presented in Figure 10.



Entropy 2021, 23, 222 21 of 35

Figure 10. The Entropy Universe.

Entropy is the uncertainty of a single random variable. We can define conditional
entropy H(X|Y), which is the entropy of a random variable conditional on another random
variable’s knowledge. The reduction in uncertainty due to the knowledge of another
random variable is called mutual information.

The notion of Kolmogorov entropy as a particular case of conditional entropy includes
various entropy measures, and estimates proposed to quantify the complexity of a time-
series aimed at the degree of predictability of the underlying process. Measures such
as approximate entropy, sample entropy, fuzzy entropy, and permutation entropy are
prevalent for estimating Kolmogorov entropy in several fields [65].
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Other measures of complexity are also related to entropy measures such as the Kol-
mogorov complexity. The original ideas of Kolmogorov complexity were put forth in-
dependently and almost simultaneously by Kolmogorov [133], Solomonoff [134], and
Chaitin [135]. Teixeira et al. [136] studied relationships between Kolmogorov complexity
and entropy measures. Consequently, in Figure 10 a constellation stands out that relates
these entropies.

The concept of entropy has a complicated history. It has been the subject of diverse
reconstructions and interpretations, making it difficult to understand, implement, and
interpret. The concept of entropy can be extended to continuous distributions. However,
as we mentioned, this extension can be very problematic.

Another problem we encountered was the use of the same name for different measures
of entropy. The quadratic entropy was defined by Lake [87] and by Rao [89], but despite
having the same name, the entropies are very different. The same is valid with graph
entropy, which was defined differently by Mowshowitz [102] and by János Körne [106].
Different fuzzy entropies have been proposed over time, as mentioned in Section 2.9.3, but
always using the same name. On the other hand, we find different names for the same
entropy. It is common in the literature to find thermodynamic entropy, differential entropy,
metric entropy, Rényi entropy, geometric entropy, and quantum entropy with different
names (see Figure 10). Moreover, the same name is used for a family of entropies and a
particular case. For example, the term Rényi entropy is used for all Rényi entropy families
and to the particular case q = 2.

It is also common to have slightly different definitions of some entropies. The Tsallis
entropy formula in some papers appears with k, but in other papers, the authors consider
k = 1, which is not mentioned in the text.

Depending on the application area, different log bases are used for the same entropy.
In this paper, in the Shannon entropy formula, we use the natural logarithm, and in the
Rényi entropy formula, we use base 2 logarithm. However, it is common to find these
entropies defined with other logarithmic bases in the scientific community, which needs to
be considered when relating entropies.

In this paper, we study only single variables, but many other entropies have not been
addressed. Nonetheless, some entropies were created to measure the information between
two or more time-series. The relative entropy (also called Kullback–Leibler divergence) is a
measure of how one probability distribution is different from a second, reference probability
distribution. The cross-entropy is an index for determining the divergence between two
sets or distributions. Many other like, conditional entropy, mutual information, information
storage [65], relative entropy, will not be covered in this paper. While belonging to the
same universe, they should be considered in a different galaxy.
Furthermore, in the literature, we find connections between the various entropies and
other dispersion and uncertainty measures. Ronald Fisher defined a quantity called
Fisher information as a strict limit on the ability to estimate the parameters that define
a system [137,138]. Several researchers have shown that there is a connection between
Fisher’s information and Shannon’s differential entropy [46,139–141]. The relationship
between the variance and entropies was also explored in many papers such as [141–143].
Shannon defined what he called the derived quantity of entropy power (also called entropy
rate power) to be the power in a Gaussian white noise limited to the same band as the
original ensemble and having the same entropy. The entropy power defined by Shannon is
the minimum variance that can be associated with the Gaussian differential entropy [144].
However, the entropy power can be calculated associated with any given entropy. The
in-depth study of the links between The Entropy Universe and other measures of dispersion
and uncertainty remains as future work. As well as the exploration of the possible log-
concavity of these measures along with the heat flow, for example, as recently established
for Fisher information [145].

Like our universe, the universe of entropies can be considered infinite because it is
continuously expanding.
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4. Entropy Impact in the Scientific Community

The discussion and the reflection on the definitions of entropy and how entropies are
related are fundamental. However, it is also essential to understand each entropy’s impact
in the scientific community and in which areas each entropy applies. The main goals of
this section are two-fold. The first is to analyze the number of citations for each entropy in
recent years. The second is to understand the application areas of each entropy discussed
in the scientific community.

For the impact analysis, we have used the Web of Science (WoS) and Scopus databases.
Those databases provide access to the analysis of citations of scientific works from all
scientific branches and have become an important tool in bibliometric analysis[146]. On
both websites, researchers and the scientific community can access databases, analysis, and
insights. Several researchers have studied the advantages and limitations of using the WoS
or Scopus databases [147–151].

The methodology used was the following in both databases: we searched for the
paper’s title in which entropy was proposed and collected the year publication, the number
of citations total and by year, for the last 16 years. In WoS, we selected in Research Areas
the ten areas with a higher record count, and in Scopus, we selected the ten Documents by
subject area with a larger record count for each entropy.

4.1. Number of Citations

In Table 1, we list the paper in which each entropy was proposed. We also present the
number of citations of the paper in Scopus and WoS since the paper’s publication.

Table 1. Reference and number of citations in Scopus and WoS of the paper that presented each entropy.

Name of Entropy Reference Year Scopus Web of Science

Boltzmann entropy [25] 1900 5 -
Gibbs entropy [26] 1902 1343 -

Hartley entropy [29] 1928 902 -
Von Newmann entropy [30] 1932 1887 -

Shannon/differential entropies [33] 1948 34,751 32,040
Boltzmann-Gibbs-Shannon [42] 1955 8 7

Topological information content [100] 1955 204 -
Maximum entropy [83] 1957 6661 6283

Kolmogorov entropy [55] 1958 693 662
Rényi entropy [79] 1961 3149 -

Topological entropy [66] 1965 728 682
Havrda–Charvát structural

α-entropy [90] 1967 744 -

Graph entropy [102] 1968 207 195
Fuzzy entropy [118] 1972 1395 -

Minimum entropy [84] 1975 22 17
Geometric entropy [74] 1988 71 -

Tsallis entropy [91] 1988 5745 5467
Approximate entropy [112] 1991 3562 3323

Spectral entropy [49] 1992 915 26
Tone-entropy [51] 1997 85 76

Sample entropy [15] 2000 3770 3172
Wavelet entropy [52] 2001 582 465

Permutation/sorting entropies [13] 2002 1900 1708
Smooth Rényi entropy [86] 2004 112 67
Kernel-based entropy [19] 2005 15 13

Quadratic sample entropy [87] 2005 65 68
Empirical mode decomposition

energy entropy [53] 2006 391 359
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Table 1. Cont.

Name of Entropy Reference Year Scopus Web of Science

Intrinsic mode
dispersion entropy [115] 2007 59 55

Tsallis permutation entropy [92] 2008 35 37
Modified sample entropy [17] 2008 58 51

Coefficient of sample entropy [16] 2011 159 136
∆−entropy [54] 2011 13 10

Fuzzy entropy [122] 2011 23 18
Rényi permutation entropy [14] 2013 28 26

Horizontal visibility
graph entropy [109] 2014 22 -

Rank-based entropy [94] 2014 6 6
Kernels entropies [124] 2015 46 39

Dispersion entropy [18] 2016 98 84
Buble entropy [95] 2017 25 21

Fluctuation-based
dispersion entropy [116] 2018 16 10

Legend: -paper not found in database.

In general, as expected, the paper that firstly defined each entropy of the universe has
more citations in Scopus than in WoS. Based on the number of citations in the two databases,
the five most popular entropies in the scientific community are the Shannon/differential,
maximum, Tsallis, SampEn, and ApEn entropies. Considering the papers published until
2000, only the papers that proposed the Boltzmann, the Boltzmann-Gibbs-Shannon, the
minimum, the geometric, and the tone-entropy entropies have less than one hundred
citations in each database. The papers that proposed the empirical mode decomposition
energy entropy and the coefficient of sample entropy are the most cited ones among the
entropies introduced in the last sixteen years (see Table 1). Of the entropies proposed in
the last five years, the dispersion entropy paper was the most cited one, followed by the
one introducing the kernels entropies.

Currently, the WoS platform only covers the registration and analysis of papers
after 1900. Therefore, we have not found all the documents needed for the analysis
to be developed in this section. Ten papers were not found in the WoS, as shown in
Table 1. In particular, entropies’ papers widely cited in the scientific community were
not found, such as Gibbs, Quantum, Rényi, and Fuzzy entropies. Currently, Scopus
has more than 76.8 million main records: 51.3 million records after 1995 with references
and 25.3 million records before 1996, the oldest from 1788 [152]. We found the relevant
information regarding all papers that proposed each entropy in Scopus.

Next, we analyzed the impact of each entropy on the scientific community in recent
years. Figures 11 and 12 show the number of citations of the paper proposing each entropy
in the last 16 years (from 2004 to 2019), respectively, in the Scopus and WoS databases. Note
that the colors used in the Figures 11 and 12 are in accordance with the colors in Figure 1
and we did not use the 2020 information once we considered that those values were
incomplete at the research time. The range of citations of the papers that introduced each
entropy is extensive; therefore, we chose to use a logarithmic scale in Figures 11 and 12.
For entropies whose paper that introduced it has been cited more than three times in the
past 16 years, we have drawn the linear regression of the number of citations as a function
of the year. In the legends of Figures 11 and 12, we present the slope of the regression
line, b, and the respective p-value. For p < 0.05 the slope was considered significant.
Shannon/Differential paper is the most cited in the last sixteen years, as shown in Figures
and Table 1.
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Figure 11. Number of citations by year in the WoS between 2004 and 2019 of the papers proposing each measure of entropy,
in logarithmic scale (log2(Number of citations)). In the legend, the ordered pair (β, p-value), in papers cited in more than
three years, corresponds to the slope of the regression line, β, and the respective p-value. Statistically significant slopes
(p < 0.05) are marked with *.

In recent years, Shannon/differential, sample, maximum, Tsallis, permutation/sorting,
and approximate were the entropies most cited, as we can see in both Figures. However,
Rényi entropy joins that group in Figure 12. Fluctuation-based dispersion entropy was
proposed in 2018, so we only have citations in 2019 that correspond to the respective values
in Table 1.

In the last sixteen years, there were several years in which Boltzmann-Gibbs-Shannon,
graph, minimum, spectral, kernel-based, Tsallis permutation entropy, ∆−entropy, and
fuzzy measure entropies had not been cited, according to WoS information (Figure 11).
While, Boltzmann, Boltzmann-Gibbs-Shannon, minimum, geometric, ∆−entropy, kernel-
based, Tsallis permutation, and fuzzy measure entropies papers have not been cited in all
years as reported in Scopus (Figure 12). In particular, the paper that introduced Boltzmann-
Gibbs-Shannon entropy, with the least number of citations in the last sixteen years, had
only one quote in 2012 on the WoS platform, and in Scopus, it had three citations (2005,
2010, and 2012).

Figure 11 shows that the number of citations of the paper proposing sample entropy
has increased significantly and is the fastest: the number of citations per year went from
13 in 2004 to 409 in 2019. The permutation/sorting paper had an increasing number of
citations as well; the number of citations per year increased significantly from 3 in 2004
to 300 in 2019. From this information, we infer that these entropies have increased their
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importance in the scientific community. Based on the WoS database, the two entropies
proposed in the last eight years, whose paper has strictly increased the number of citations,
are dispersion and bubble entropies, respectively, from 2 in 2016 to 32 in 2019 and 1 in
2017 to 11 in 2019. However, from the ones proposed in the last eight years, the two most
cited are dispersion and kernels entropies’ papers. Regarding the paper that introduced
the wavelet entropy, and according to Figure 11, the year with the most citations was 2015.
Since then, the number of citations per year has been decreasing.

Figure 12. Number of citations by year in Scopus between 2004 and 2019 of the papers proposing each measure of entropy,
in logarithmic scale (log2(Number of citations)). In the legend, the ordered pair (β, p-value), in papers cited in more than
three years, corresponds to the slope of the regression line, β, and the respective p-value. Statistically significant slopes
(p < 0.05) are marked with *.

The results from Scopus, displayed in Figure 12, show that among the entropy articles
where the number of citations increased significantly are the Shannon/differential (from
754 in 2004 to 2875 in 2019) and the sample (from 16 in 2004 to 525 in 2019). More recently,
the number of citations of the papers that introduced dispersion and bubble entropies
continuously increased from 1 in 2016 to 42 in 2019 and from 3 in 2017 to 13 in 2019,
respectively. In 2014, there were 12 entropy papers more cited than the sample entropy
paper, but in 2019 the sample entropy paper was the second most cited. This progress
implies that the impact of SampEn on the scientific community has increased significantly.
On the other hand, the spectral entropy paper lost positions in 2004, it was the 6th most
cited, and moved to position 16 in 2019 (see Figure 12). The results obtained on the WoS
and Scopus platform on the impact of entropies on scientific communities complement and
reinforce each other.
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4.2. Areas of Application

To understand each entropy’s areas of application in the scientific community, we
consider the ten areas that most cited the paper that introduced the entropy, according to
the largest number of records obtained in Web of Science and the Scopus databases. The
results are displayed in Figures 13 and 14, respectively. The entropies are ordered in the
chronological order of the work that proposed them, meaning the first line corresponds to
the oldest entropy paper. There are ten color tones in the figures representing the range
from 0 (blue) to 10 (red), where 0 is assigned to the research area that least mentioned the
paper that introduced the entropy. In contrast, 10 is assigned to the research area that most
cited the paper.

Figure 13. The ten areas that most cited each paper introducing entropies according to the Research Areas of the WoS. Legend:
range 0 (research area least cited)-10 (research area most cited).
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Figure 14. The ten areas of most cited papers that introduced entropies according to the Documents by subject area of the
Scopus. Legend: range 0 (research area least cited)-10 (research area most cited).

Note that there are papers in which the entropies were proposed that do not have ten
application areas in the databases used. For example, the Rényi permutation entropy has
only nine areas in the WoS, and the ranked-based entropy has only six areas of application
in Scopus.
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Figures 13 and 14 show that, over the years, the set of areas that apply entropies is
increasingly numerous. However, we did not obtain the same results for the two figures.

Based on the ten Research Areas with the largest number of records obtained on the
WoS, we obtained 45 Research Areas (Figure 13).

Initially, the research areas that most cited the entropy papers were Physics, Mathe-
matics, and Computer Science. However, according to data from the WoS, there is a time
interval between 1991 (approximate entropy) and 2007 (intrinsic model entropy) in which
the emerging entropies have more citations in the area of Engineering. Of the thirty works
covered by the WoS database, sixteen were most cited in the Engineering area, nine in the
Physics area, five in the Computer Science area, and two in the Mathematics area. The
second area of research in which the paper that introduced tone-entropy was most cited is
Psychology. The second area in which the paper that proposes Tsallis permutation entropy
was most cited is Geology. According to the WoS database, the papers that introduced
entropies were little cited in medical journals.

Figure 14, based on the top 10 Documents by subject area of Scopus, covers all papers
that proposed each entropy described in this paper. However, this top 10 contains about
half of the Research Areas provided on the WoS (25 Documents by area subject). Also, we
observe that the set of research areas that most cite the works is broader. Of the forty works
covered by the Scopus database, the twelve most cited papers are in the area of Computer
Science, eight in the area of Physics and Astronomy, seven in the area of Engineering, seven
in the area of Mathematics, three in the area of Medicine, one in the area of Chemistry and
two papers with the same number of citations in different areas. Over the years, the papers
that introduced entropies have been most cited in medical journals by the Scopus database.

According to the Scopus platform, areas such as Business, Management and Account-
ing, and Agricultural and Biological Sciences are part of the ten main areas that cite the
papers that proposed the universe’s entropies. When we did the data collection on the
WoS, the paper that introduced minimum entropy was mentioned by papers from only
four areas, but it is complete in the top 10 of Scopus. On the WoS, the papers that proposed
approximate entropy, tone-entropy, and coefficient of sample entropy are the most cited
in the Engineering area. In contrast, in the Scopus database, they are most cited in the
medical field.

There are several differences between the results obtained in the application areas of
the two platforms. However, we also find similarities. Shannon/differential, maximum,
topological, graph, minimum, tone-entropy, wavelet, EMDEnergyEn, intrinsic mode, Rényi
permutation, kernels, dispersion and fluctuation-based dispersion entropies’ introductory
papers show the same application areas with more citations in Scopus and WoS database.

We believe that the differences found may be due to the number of citations in the
papers and the list of areas for each platform being different. Therefore, it is important to
show the results obtained based on the WoS and Scopus since, when the results are the
same, it strengthens, while when the results are different, the two analyzes complement
each other.

5. Conclusions

In this paper, we introduce The Entropy Universe. We built this universe by describing
in-depth the relationship between the most applied entropies in time-series for different
scientific fields, establishing bases for researchers to properly choose the variant of entropy
most suitable for their data and intended objectives. We have described the obstacles
surrounding the concept of entropy in scientific research. We aim that this work help
researchers choosing the best entropy for their time-series analysis. Among the problems,
we discussed and reflected on the extension of the concept of entropy from a discrete
variable to a continuous variable. Also, we point out that different entropies have the same
name and the same entropies have different names.

The papers that proposed entropies have been increasing in the number of citations,
and the Shannon/differential, Tsallis, sample, permutation, and approximate had been
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the most cited entropies. Permutation/sorting entropy were the ones that most increased
the impact on scientific works, in the last sixteen years. Of the entropies proposed in
the past five years, kernels and dispersion entropies are the ones that have the greatest
impact on scientific research. Based on the ten areas, with the largest number of records
of the paper that introduced each new entropy, obtained from WoS and Scopus, the
areas that most applied the entropies are Computer Science, Physics, Mathematics, and
Engineering. However, there are differences between the results achieved by the two
databases. According to the WoS database, the papers that introduced the entropies were
rarely cited in medical journals. However, we did not obtain the same result from the
Scopus database.

The Entropy Universe is an ongoing work since the number of entropies is continu-
ally expanding.
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Abbreviations
The following abbreviations are used in this manuscript:

ApEn approximate entropy
BEn bubble entropy
CauchyKE Cauchy kernel entropy
CKE circular kernel entropy
CosEn coefficient of sample entropy
DE differential entropy
DispEn dispersion entropy
EKE exponential kernel entropy
EMD empirical mode decomposition
EMDEnergyEn empirical mode decomposition energy entropy
FDispEn fluctuation-based dispersion entropy
FuzzyEn fuzzy entropy
FuzzyMEn fuzzy measure entropy
i.i.d. independent and identically distributed
IME intrinsic mode entropy
IMF intrinsic mode functions
InMDEn intrinsic mode dispersion entropy
KbEn kernel-based entropy
LKE Laplacian kernel entropy
mSampEn modified sample entropy
NTPE normalized Tsallis permutation entropy
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PE permutation entropy
QSE quadratic sample entropy
RbE rank-based entropy
RE Rényi entropy
RPE Rényi permutation entropy
SampEn sample entropy
SE shannon entropy
SKE spherical kernel entropy
SortEn sorting entropy
SpEn spectral entropy
TE Tsallis entropy
T-E tone-entropy
TKE triangular kernel entropy
TopEn topological entropy
WaEn wavelet entropy
WoS web of science
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