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Stroke activates neural stem cells in the ventricular-subventricular zone (V/SVZ) of the lateral ventri-
cle, which increases neuroblasts and oligodendrocyte progenitor cells (OPCs). Within the ischemic 
brain, neural stem cells, neuroblasts and OPCs appear to actively communicate with cerebral endo-
thelial cells and other brain parenchymal cells to mediate ischemic brain repair; however, stroke-in-
duced neurogenesis unlikely plays any significant roles in neuronal replacement. In this mini-review, 
we will discuss recent findings how intercellular communications between stroke-induced neuro-
genesis and oligodendrogenesis and brain parenchymal cells could potentially facilitate brain repair 
processes.
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Introduction

In the adult mammalian brain, there are at least two neuro-
genic regions: the ventricular-subventricular zone (V/SVZ) of the 
lateral ventricle and the subgranular zone of the dentate gyrus.1-5 
Neural stem cells within these two neurogenic niches generate 
new neurons throughout the life of the animal.6 Within the adult 
rodent V/SVZ, the largest germinal niche, quiescent and activat-
ed neural stem cells coexist.7-9 Activated neural stem cells divide 
to expand intermediate progenitor cells.7-9 Neuroblasts generated 
by differentiation of the neural progenitor cells travel via the 
rostral migratory stream to the olfactory bulb, where they differ-
entiate into granule and periglomerular neurons.1 Adult neural 
stem cells in the V/SVZ also generate oligodendrocyte progenitor 
cells (OPCs) that disperse to the gray and white matter.10-13 Focal 
cerebral ischemia in the adult rodent increases neurogenesis 
mainly in the V/SVZ, and augmented neuroblasts migrate from 
the V/SVZ to the ischemic boundary.2,14-16 Stroke-induced neuro-

genesis has also been demonstrated in the adult human brain.17-19 

In addition, preclinical studies show that stroke also increases 
OPCs in the V/SVZ and these OPCs disperse to the peri-infarct 
region of the corpus callosum to differentiate into myelinating 
oligodendrocytes.20-24 These findings, in particular neurogenesis, 
have led to a hope for re-establishment of damaged neuronal 
circuitry mediated by integration of stroke-induced new neu-
rons.2,14-16 However, subsequent experimental studies show that 
only a fraction of neuroblasts in the peri-infarct regions become 
mature neurons with phenotypes of interneurons, and these new 
neurons eventually die.25-27 On the other hand, stroke continu-
ously induces neuroblasts which migrate to peri-infarct regions 
for at least one year,28 and ablation of neuroblasts after stroke 
reduces ischemic brain repair and exacerbates functional recov-
ery.29 Together, these data suggest that stroke-increased neuro-
genesis is involved in the brain repair process via mechanisms 
that are independent of replacement of dead neurons to re-wire 
neuronal circuitry. In this review, we will detail the effect of 
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stroke-induced neuroblasts and OPCs on brain parenchymal cells 
in ischemic brain with a focus on the brain repair processes. 

Coupling of neural stem cells, 
cerebrospinal fluid (CSF), and cerebral 
endothelial cells

In the adult V/SVZ neurogenic niche, cerebral blood vessels 
form a distinctive planar vascular plexus, and these blood vessels 
differ from the vascular structure in other brain regions, and per-
mit small molecules to pass the blood brain barrier and to enter 
the SVZ.11,30,31 Adult neural stem cells bridge the ventricle and the 
rich plexus of blood vessels in the SVZ via the apical single cilium 
of neural stem cells anchored on the ventricular surface and 
make direct contact with the CSF, whereas long basilar processes 
of neural stem cells eventually reach and directly contact blood 
vessels of this plexus in the SVZ.10,32 Given this unique architec-
ture, neural stem cells are well positioned to sample secreted 
factors in the CSF and to communicate with cerebral endothelial 
cells. Within the V/SVZ neurogenic niche, direct contact between 
neural stem cells and endothelial cells is essential to maintain 
adult neural stem quiescence.33 Endothelial cells suppress active 
proliferation of neural stem cells via endothelial ephrinB2 and 
Jagged1 to interact with neural stem cell Notch and Eph, respec-
tively.33 Cerebral vasculature also releases factors, such as integ-
rin α6 and β1, to regulate neural stem and progenitor cell bio-
logic function.30,31 Actively proliferating intermediate neural pro-
genitor cells in the SVZ are localized to blood vessels.11 These 
data indicate coupling of adult neural stem cells with cerebral 
endothelial cells.34 Stroke robustly increases neural stem cells 
and new blood vessels within the V/SVZ niche.32 Increased neural 
stem cell contact with the CSF and augmented blood vessels just 
beneath the ependymal layer suggest that quiescent adult neural 
stem cells in the V/SVZ niche may be recruited to an active pool 
to increase the neurogenic process in response to ischemic in-
sult.32 In vitro studies have demonstrated that primary cerebral 
endothelial cells isolated from ischemic brain promote prolifera-
tion and neuronal differentiation of non-ischemic SVZ neural 
progenitor cells, and neural progenitor cells isolated from isch-
emic SVZ enhance in vitro angiogenesis of non-ischemic cerebral 
endothelial cells.35 The vascular endothelial growth factor/vascu-
lar endothelial growth factor receptor 2 signaling pathway me-
diates coupling of neural progenitor cells and cerebral endotheli-
al cells.35 In addition to the V/SVZ niche, increased neuroblasts 
induced by stroke in the V/SVZ migrate along cerebral blood ves-
sels to peri-infarct regions where angiogenesis occurs.36-40 Solu-
ble molecules and their receptors mediate vascular-coupled 
neuroblast migration in ischemic brain, such as angiopoietin-1 

(Ang1)/Tie2, stromal-derived factor-1α/chemokine receptor 4 
(CXCR4), and among others.35-40 Although new interneurons dif-
ferentiated from neuroblasts in the peri-infarct regions eventu-
ally die, ablation of neuroblasts after stroke has an adverse effect 
on ischemic brain repair and worsens functional recovery.29 These 
data suggest that increased neuroblasts are involved in brain re-
pair processes after stroke.

Emerging data indicate that exosomes can also mediate the 
coupling of neural stem cells, CSF, and cerebral endothelial cells 
within the V/SVZ niche (Figure 1). Exosomes are endosome-de-
rived nanovesicles and carry proteins, lipids, and genetic materi-
als.41,42 Exosomes play essential roles in intercellular communica-
tion by transferring their cargo between source and target cells 
under physiological and pathophysiological conditions.41,42 There 
is evidence that exosomes in the CSF of rats and humans pro-
mote neural stem cell proliferation, possibly via delivering exo-
somal cargo protein and miRNA components of the insulin-like 
growth factor signaling pathway to neural stem cells.43 Exo-
somes derived from ischemic cerebral endothelial cells facilitate 
proliferation and neuronal differentiation of adult neural pro-
genitor cells, whereas exosomes harvested from ischemic neural 
progenitor cells increase in vitro angiogenesis.44 These data sug-
gest that exosomes mediate interactions between neural stem 
cells and cerebral endothelial cells under ischemic conditions. 
Thus, exosomes released by stroke-triggered neural stem cells 
and neuroblasts could communicate with brain parenchymal 
cells to amplify ischemic brain repair.

The effect of neural stem cells/
neuroblasts on axonal remodeling 

Neuronal circuitry regulates adult neural stem cell quiescence 
in the subgranular zone.45 Axons from serotonergic (5HT) neu-
rons in the raphe nuclei directly contact adult neural stem cells 
in the V/SVZ niche and regulate neural stem cell proliferation 
through the interaction of 5HT2 and 5HT2C receptor in neural 
stem cells.46 However, it is unknown whether neural stem cells 
and neuroblasts have an impact on axons and neuronal circuitry. 
During cortical development, SVZ intermediate progenitor cells 
facilitate intracortical progression of thalamocortical axons 
through the stromal-derived factor-1α/CXCR4 signaling path-
way.47 Adult SVZ neural progenitor cells express stromal-derived 
factor-1α and CXCR4.48 In addition to the chemokine signals, 
adult neural stem cells in the V/SVZ release exosomes.44,49 Cul-
tured axons of cortical neurons can take up exosomes and miR-
NAs from internalized exosome cargo which thereby regulate 
axonal growth.50 Stroke induces limited axonal sprouting in the 
peri-infarct region.21,22,51,52 Extra-cellular factors and intrinsic sig-
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nals of axons mediate axonal regeneration after axonal injury.53 

Thus, it will be important to determine whether the stromal-de-
rived factor-1α/CXCR4 signaling pathway and exosomes re-
leased by neural stem cells in the V/SVZ and neuroblasts in peri-
infarct regions regulate axonal remodeling in ischemic brain.

The effect of neural stem cells on 
oligodendrogenesis

In the embryonic brain, OPCs arise from the VZ and migrate 
along vasculature throughout the brain.54 Wnt and CXCR4 sig-
naling mediate OPC-endothelial interactions to coordinate OPC 
migration and differentiation.54 Adult neural stem cells in the V/
SVZ also generate OPCs that comprise ~5% of the total cell 
number in the adult rodent brain and distribute throughout the 
grey and white matter.55-57 OPCs are the most actively proliferat-
ing cells in the adult brain and differentiate into mature oligo-
dendrocytes to myelinate previously unmyelinated axons.58 
Stroke acutely induces mature oligodendrocyte damage, leading 
to loss of myelin,59 which is associated with loss of axons.60,61 
New myelinating oligodendrocytes are generated by differentia-
tion of OPCs. In contrast to neuroblasts, OPCs in ischemic brain 
survive and differentiate into myelinating oligodendrocytes.20-24 

As demonstrated by a cell fate mapping strategy, stroke increases 
neural stem cell-derived OPCs in the V/SVZ and promotes these 
OPCs to differentiate into myelin forming oligodendrocytes in 
peri-infarct white matter.20-24 Thus, adult neural stem cells con-
tribute to oligodendrogenesis after stroke. In addition to myelin-
ation, OPCs act as a surveillance network to detect brain injury 
and couple with cerebral endothelial cells.62,63 Recent studies 
suggest that OPCs interact with microglia via OPC-released exo-
somes to regulate brain immune function.64 Furthermore, OPC-
exosomes promote neuronal survival under conditions of cell 
stress.65 It remains to be investigated whether and how OPCs 
generated by adult neural stem cells are involved in brain repair 
processes other than oligodendrogenesis after stroke.

Astrocytes and microglia also interact with SVZ neural stem 
cells and neuroblasts, which has recently been reviewed.66,67

Conclusions

Stroke activates adult neural stem cell function in the V/SVZ, 
leading to neurogenesis and oligodendrogenesis in the ischemic 
brain. Although new neurons do not replace damaged neurons, 
stroke-increased neural stem cells and neuroblasts seem to par-
ticipate in brain repair processes by communicating with cere-

Figure 1. Diagram outlining inter-cellular communications of exosomes within the neurogenic niche. Panel A shows that the multivesicular body 
(MVB) fuses with the cell membrane (arrow) to release exosomes into the extracellular milieu. Exosomes contain genetic materials, proteins and lip-
ids. Panel B shows the presence of exosomes in cerebrospinal fluid (CSF) and the ventricular-subventricular zone (V/SVZ) neurogenic niche. E, epen-
dymal cells; NS, neural stem cells; NP, neural progenitor cells; NB, neuroblasts; As, astrocytes.
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bral vasculature and other brain parenchymal cells. OPCs gener-
ated by V/SVZ neural stem cells are also involved in ischemic 
brain repair processes. It will be important to investigate how 
neural stem cells, neuroblasts and OPCs communicate among 
themselves and with other brain cells, and in turn, mediate isch-
emic brain repair processes. These preclinical studies will poten-
tially provide new strategies for enhancement of stroke-induced 
neurogenesis and oligodendrogenesis, consequently leading to 
improvement of neurological function after stroke. However, it 
remains to be demonstrated whether these inter-cellular com-
munications between stroke-induced neurogenesis and paren-
chymal cells are involved in brain repair of patients with stroke.
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