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Abstract
Recent studies have shown that systems combining mathematical modeling and Bayesian

inference methods can be used to generate real-time forecasts of future infectious disease

incidence. Here we develop such a system to study and forecast respiratory syncytial virus

(RSV). RSV is the most common cause of acute lower respiratory infection and bronchioli-

tis. Advanced warning of the epidemic timing and volume of RSV patient surges has the

potential to reduce well-documented delays of treatment in emergency departments. We

use a susceptible-infectious-recovered (SIR) model in conjunction with an ensemble

adjustment Kalman filter (EAKF) and ten years of regional U.S. specimen data provided by

the Centers for Disease Control and Prevention. The data and EAKF are used to optimize

the SIR model and i) estimate critical epidemiological parameters over the course of each

outbreak and ii) generate retrospective forecasts. The basic reproductive number, R0, is

estimated at 3.0 (standard deviation 0.6) across all seasons and locations. The peak mag-

nitude of RSV outbreaks is forecast with nearly 70% accuracy (i.e. nearly 70% of forecasts

within 25% of the actual peak), four weeks before the predicted peak. This work represents

a first step in the development of a real-time RSV prediction system.

Author Summary

Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory
infection and bronchiolitis. Prompt treatment of RSV is necessary to prevent damage to
lung tissue, complications from prolonged oxygen deprivation, and the potential develop-
ment of reactive airway disorders. Another respiratory disease, influenza, has been simu-
lated and forecast with high accuracy, using an epidemiologicalmodel and data
assimilation methods. Here, we adapt such a model-filter system to simulate and forecast
RSV epidemics in the United States. We find that the timing and volume of RSV epidemics
can be forecast with high accuracy. Advance warning of the epidemic timing and volume
of RSV patients has the potential to help medical centers prepare for a surge in infected
patients and thus reduce delays to treatment in emergency departments.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005133 October 7, 2016 1 / 15

a11111

OPENACCESS

Citation: Reis J, Shaman J (2016) Retrospective

Parameter Estimation and Forecast of Respiratory

Syncytial Virus in the United States. PLoS Comput

Biol 12(10): e1005133. doi:10.1371/journal.

pcbi.1005133

Editor: Claus O. Wilke, University of Texas at

Austin, UNITED STATES

Received: April 2, 2016

Accepted: September 8, 2016

Published: October 7, 2016

Copyright: © 2016 Reis, Shaman. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: To enable access to

public health researchers, while ensuring the

confidentiality of participating laboratories, data

collected through the National Respiratory and

Enteric Surveillance System (NREVSS) are

available from the Center for Disease Control and

Prevention (CDC), by request via their website or

email nrevss@cdc.gov.

Funding: This work was supported by US NIH

grants GM100467 and GM110748, as well as

NIEHS Center grant ES009089, and the Defense

Threat Reduction Agency contract HDTRA1-15-C-

0018. The funders had no role in study design, data

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005133&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:nrevss@cdc.gov


Introduction

Respiratory Syncytial Virus (RSV) infects nearly all children within the first two years of life,
and is the most common cause of respiratory infection and bronchiolitis requiring hospitaliza-
tion for infants under the age of one [1]. The rate of hospitalization for RSV infection, esti-
mated at 1.3–3% for children under four [2,3], is greatest in infants younger than three months
old [4], whose immune response can inundate and block smaller airways, leading to wheezing
and difficulty breathing. Infants at risk for developing severe RSV infection are injectedwith
the antibody prophylaxis palivizumab each month prior to anticipated RSV exposure. Palivizu-
mab is highly rationed, primarily because of its high cost, so the scheduling of immunoprophy-
laxis is very important [5]; however, even though RSV activity cycles seasonally, the precise
timing and magnitude of RSV incidence varies each year. This variability not only complicates
effective infant dosing of immunoprophylaxis but also may contribute to well-documented
delays in emergency departments (ED) [6]. RSV infections constitute 2% of hospital patients
under age one on an annual basis [7] and often coincide with the influenza season.
The toll of RSV on the elderly is also high. RSV hospitalization rates in New York City are

1.5 times greater for individuals 75 and older than for 1-4-year-olds [7]. Older patients account
for 25% of all ED visits [8], and as populations in the developedworld age, the proportion of
elderly in the ED, some infected with RSV, is likely to grow. Indeed, ED crowding has been
linked to delays in treatment and reduced efficacy of care for asthma and respiratory distress
[9]. Prompt administration of oxygen is key to the treatment of bronchiolitis, although the
minimum level of oxygen saturation (SO2) recommended for children varies from 90%–95%
[10–13]. Children with prolonged oxygen deprivation in the range 90%–94% SO2, due to a
variety of causes, were found to be at risk for long-lasting cognitive damage and associated
behavioral issues [14–16]. The immune response to bronchiolitis can in some cases damage
lung tissue [17,18]. Accurate forecasts of RSV incidence could thus be used by health care man-
agement to develop data-driven strategies that are more effective and better timed for patient
demand [19,20]. Here we present the development and validation of a model-inference system
for forecasting the timing and magnitude of RSV outbreaks.
The core component of our forecasting system is a dynamic model describing the propagation

of RSV through a simulated population.Many of the dynamic models previously developed for
simulation of RSV are compartmental constructs that divide a population into the different states
associatedwith the chain of infection: susceptible, infected, and recovered (SIR), as well as con-
structs additionally accounting for partial immunity (SIRS) and exposure (SEIRS) [21–23]. Epi-
demiological parameters within thesemodel structures govern the rates of transition between
compartments. Typically, such parameters are either designated a priori based on clinical and
laboratory estimates, or estimated from historical incidence, using a compartmental model struc-
ture and transmission dynamics. RSV parameter estimates derived using these different methods
or data, however, can vary widely. For example, the parameter that represents the duration of
infection,D, has been identified variously through antigen detection as 6.7 days [24], using
RT-PCR assay as 11.2 days [25] and as nearly three months in immunocompromised individuals
[26]. Similarly, for the basic reproductive number, R0, one study in Florida foundmean R0 values
of 1.7 and 7.4 using an SIRS model and modified SEIRSmodel, respectively [21], while others in
the same state found a mean R0 above 9 using a SIRS that accounted for repeated infections, wan-
ing immunity, and/or age structure [22,23]. Much of this variation reflects the use of different
model structures, and in part it may stem from the quality, abundance, and spatial and temporal
resolution of the RSV data used to make these inferences.
Here, the same model-inference system developed for the generation of RSV forecasts is

also used to infer critical RSV epidemiological parameters. We apply this system at a broad
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scale using regional RSV data from the U.S. and in so doing attempt to further resolve RSV
parameter estimates. To perform this work, and as has been performed for other infectious dis-
ease systems [27–29], we combine a simple dynamical disease transmission model with a data
assimilation filter that updates the model state variables and parameters using time series
observations.Here, we present this RSVmodel-filter system, the resulting parameter estimates,
and retrospective forecasts generated for the United States. We have built this predictive system
for a variety of RSV data streams. It can be deployed at the beginning of the annual RSV win-
tertime season and used to help reduce delays in health care and enable broader access to pre-
ventative medication.

Materials and Methods

Data

RSV specimen data were provided by the Centers for Disease Control and Prevention (CDC).
These data, sampled via antigen detection, viral isolation, and polymerase chain reaction, are
collected and administered by laboratories and other medical facilities that participate in the
National Respiratory and Enteric Virus Surveillance System (NREVSS). The number of sam-
ples tested for RSV each week and the number of positive results were recorded, since July
2004 at the census division and Health and Human Services (HHS) region geographic scales
(the states in each regional classification system are listed in S1 and S2 Tables). The RSV season
runs from week 27 (around July 10th) through week 26 of the following year, with at least 20
tests per week during this season. Over the first ten weeks of the RSV season, incidence is low
and testing is often limited; consequently, we omitted these first ten weeks and began all simu-
lations on week 37, in mid-September, when the number of RSV tests administered typically
begins to rise. To scale the number of positive tests to regions with very different reporting
magnitudes, we divide by the number of laboratories reporting to each region each season.
With these data, we estimated RSV incidence over nine census divisions, ten HHS regions, and
ten RSV seasons. Census division RSV is presented in S1 Fig, along with a histogram of actual
peak timing (S2 Fig).

Dynamical Model, Filter, and Forecasting System

Model. The RSV data used in this study are not resolved by age. As a consequence, we use
a simpler, perfectly-mixed compartmental model to describeRSV transmission dynamics. Fur-
thermore, each RSV location and season is simulated and forecast independently. While rein-
fection with RSV is common, RSV antibodies only decline by 25–30% per year [30], indicating
that waning immunity and consequent reinfectionwithin the time frame of a single season is
not likely to be significant [3,31]. Consequently, we chose to work with an SIR rather than an
SIRS model.We used the followingmodel form:

dS
dt
¼ �

R0 IS
DN

ð1Þ

dI
dt
¼

R0 IS
DN
�

I
D

ð2Þ

where S is the susceptible population, I is the number of infected,R0 is the basic reproductive
number, D is the mean infection period, and N is the population, which is held constant at an
arbitrary size of 500,000 people. For all simulations, a 300-member ensemble was integrated in
conjunction with data assimilationmethods (see description below). For each ensemble mem-
ber, the initial combination of model state variables and parameters was randomly selected
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from prescribed ranges using Latin hypercube-generated uniform distribution sampling (S3
Table).
Mapping data to number infected. To estimate RSV in the population model, we mapped

the positive specimen data divided by the number of contributing laboratories, which is a pas-
sive sample of positive RSV tests among persons seekingmedical care for RSV, to the incidence
of RSV infections in the total model population. Specifically, we used a scaling factor, γ, to map
the RSV data to incidence data in the population,N, i.e.:

p RSVð Þ ¼ N
pðgÞ

pðgjRSVÞ
p RSVjgð Þ≅g RSV ð3Þ

Here, p(RSV) is the probability of an RSV infection (RSV incidence in the SIR model), p
(g) is the probability of access to RSV testing among the entire population, p(RSV|g) is the
probability that someone with access to RSV testing is infected with RSV, and p(g|RSV) is the
probability of access to a RSV testing facility if a person is infected with RSV. As shown in Eq
3, γ is defined as p(g)/ p(g|RSV).We experimentedwith a range of possible values and
selected a single value for simplicity, γ = 0.001, that produces RSV forecasts with the lowest
RMSE errors.
Filter. We used the ensemble adjustment Kalman filter (EAKF) [32–34] to assimilate

RSV data into the SIR model [35]. Starting from a 300-member ensemble of randomly ini-
tialized parameter values (S3 Table), we integrated this ensemble of SIR simulations for-
ward in time to the first observation of the season. This model-generated estimate, of both
the observed infections and the unobserved state space variables and parameters, is the
Bayesian prior. The EAKF is then used to update these state variable and parameter esti-
mates for all ensemble members, thereby generating a posterior. The ensemble is then inte-
grated forward again to the next observation and the update process is repeated. Through
this iterative process of integration and update, the ensemble of simulations is optimized by
the EAKF [32].

Calibration and Simulation

The random initialization of state variables and parameters for each 300-member ensemble
simulation adds an element of stochastic variation to the otherwise deterministic EAKF. To
account for any effects of initialization, each 300-member ensemble simulation was repeated
ten times, in each instance with a new random selection of initial state variables and parame-
ters. We explored the sensitivity of the model-inference system to other components of the sys-
tem, including the scaling factor γ (as described above), observational error variance (OEV),
the use of inflation, and range of initial state variables.
The EAKF uses OEV to describe uncertainty in the observeddata, and weighs it against the

variance of the SIR model simulations, which is estimated directly from the spread of the 300
ensemble simulations. More specifically, OEV is used by the EAKF to weigh the observations
(RSV) and model prior estimation of RSV incidence, and to produce the model posterior esti-
mation of both the state variables and parameters. As for influenza, the OEV for RSV was
assumed to be small when observations over the prior 3 weeks (OBS) had been small and to
increase as observedRSV increased. Specifically,

OEV ¼ OEV0 þ
OBS2

a
ð4Þ

whereOEV0 is a minimumOEV and a is a constant. This form represents the increasing uncer-
tainty of clinical data as epidemic infectiousness increases [32]. In vetting the RSVmodel-
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inference system we tested a range of values for OEV, and based on lowest RMSE, selected
OEV0 and a, respectively, as 104 and 50.
The EAKF successively adjusts the ensemble of simulations and in so doing iteratively

reduces the variance of the ensemble. Should this variance become too small, the EAKF algo-
rithm puts too much weight on the simulations and ignores the observations.As a conse-
quence, the simulations begin to ‘diverge’ from the truth. To counteract this divergence, an
inflation algorithm can be applied that increases the ensemble variance a small amount prior to
each filter update. We applied a type of inflation calledmultiplicative inflation [34,36] and
tested whether it improved forecast accuracy;however, we found that divergence was not an
issue for our RSV simulations and that forecast accuracywas highest without inflation.We
therefore present results for simulations without inflation.
In all we tested over 600 unique combinations of the scaling factor, inflation, OEV, and the

initial state variable and parameter ranges for each location and year. S3 Fig presents the RMSE
between observations and forecasts from four of these combinations. With the selected combi-
nation, we ran simulations for the nineteen (overlapping) locations and ten years, with ten rep-
etitions of each unique combination to account for stochastic effects. Combined results from
using both CD and HHS regions are presented unless otherwise noted.
Parameter estimation and forecast. We present D and R0 estimates from three time

points during each outbreak: the epidemic peak estimated by the model-filter posterior, two
weeks after the peak, and on the last week of the simulation time period. Retrospective forecasts
were generated for 20 weeks (week 43 in late October to week 9 in early March) for each loca-
tion and year by integrating the latest posterior of updated variables and parameters through to
the end of the season. Forecasts were evaluated relative to lead week, defined here as the week
of forecast minus the predicted peak week of the ensemble mean trajectory (i.e. negative lead
weeks indicate that incidence will peak in the future).
We quantified forecast accuracy using four metrics: i) prediction of RSV outbreak peak tim-

ing, i.e. whether the ensemble mean trajectory prediction of peak timing is within ±1 week of
the actual peak, ii) prediction of RSV outbreak peak intensity, i.e. whether the ensemble mean
trajectory predicted peak outbreak incidence is within ±15% of observedpeak incidence (with
the observed as the denominator), iii) prediction of total RSV attack rate, i.e. whether the
ensemble mean trajectory prediction of the seasonal attack rate, defined as the total number of
cases per year, is within ±15% of observation, and iv) prediction of the onset of the RSV epi-
demic.We define the RSV onset at a threshold of γN for two consecutive weeks, which roughly
corresponds to the CDC defined onset of 10% percent positive RSV cases for two consecutive
weeks. For sensitivity, timing and onset each within ±2 weeks and magnitude and attack rate
each within ±25% are also presented.
These predictionmetrics were also evaluated to determine how forecast accuracy varied as a

function of the ensemble variance [32,35]. Here, we explored whether forecast accuracy
improved as the variance among the 300 ensemble members decreased. Such relationships can
be used to ascribe certainty to a given forecast as it is produced in real time.

Results

Simulation of the RSV

Our simulations of RSV time series using the model-filter system replicated the historical data
well. Fig 1 presents the historical time series and model-filter simulations for RSV at the HHS
regional classification system over ten seasons (2004–2005 through 2013–2014). The mean
RMSE between simulated and observed scaled data over all ten seasons, in both geographical
groupings, ranged from 1.08 to 2.97 (Fig 1 and S4 Fig).
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Estimation of Epidemiological Parameters

Ensemble mean estimates of the epidemiological parametersD and R0 for RSV at outbreak
peak are shown in Fig 2. At the simulated epidemic peak, the mean values of D and R0 were 6.4
days and 3.0, respectively. During the period of forecast, there is little variation of these esti-
mates, though the minimum, 5th percentile, 95th percentile, and maximum parameter values
varymore (S5 Fig). R0 shows some geographic variability and is consistently lower in Census
Division 5 (mean R0 = 2.5), which stretches from Florida to Maryland (S6 and S7 Figs).
Depending on season and location,D and R0 vary between about 5–9 and 1.5–4, respectively
(S7 Fig). Estimates of the parameterD, but not R0, were found to be sensitive to γ (S8 Fig).

Retrospective Forecasts

Fig 3 presents overall forecast accuracy as a function of lead week for RSV. Lead week is defined
as the current week minus the predicted peak week, and onset accuracy is presented as the cur-
rent week minus the onset week. For both regional groupings, the ensemble forecasts of peak
magnitude have nearly 70% accuracy (within ±25%) with a four-week lead-time, and nearly
70% accuracy (±1 week) in forecasting the onset week with a three-week lead (Fig 3). Forecasts
of epidemic peak timing (±1 week) are correct with over 68% accuracywith a one-week lead-
time. Forecasts of epidemic peak timing are within ±2 weeks of the observedpeak 81% of the
time with a two-week lead-time. Forecasts of the seasonal attack rate are accurate 89% of the
time within ±25% of the observed,with a one-week lead-time. Sample forecasts are shown in

Fig 1. The historical time series and model-filter simulations of RSV, for each HHS region in the United States over ten RSV seasons (off-

season weeks were not modeled). The mean RMSE between the observed and simulated scaled data per region over all ten seasons, divided by γN,

is shown in each subplot.

doi:10.1371/journal.pcbi.1005133.g001
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S9 and S10 Figs, and a boxplot presents peak timing accuracy over all ten years for both regions
(S11 Fig).

Forecast Calibration

To generate calibrated forecasts, we used ensemble variance to infer the expected accuracy of
predicted outcomes [35]. Forecast accuracy for each metric is plotted versus ensemble variance,
grouped by lead week (Fig 4). Variance is binned by percentile intervals of 10% (making ten
bins), and only bins containing at least 70 runs are shown. For the onset criterion, variance is
computed only from forecasts that begin before the onset. These plots show that forecast accu-
racy for all four metrics generally increases as ensemble variance decreases. That is, as within-
ensemble agreement rises, the forecasts are more accurate. These relationships can be used to
infer the expected accuracy of a real-time forecast. Further evaluation of forecast accuracy as a
function of week of forecast and lead week is also presented (S12 Fig).
Fig 5 presents the relative absolute error of magnitude and attack rate, and the absolute

error for timing and onset. Error for the lowest two quartiles of ensemble variance is plotted.
Forecast accuracy exceeds the mean historical error for magnitude and attack rate at least eight
weeks before the predicted peak. The model-filter forecasts exceed the historical mean peak
timing predictionmore than two weeks before the predicted peak for the lowest two quartiles,
and the onset prediction exceeds the historical mean at 4 weeks lead for the lowest quartiles
(Fig 5). For onset, this 50th percentile corresponds to a mean ensemble variance of 3.8, meaning
that model-filter forecasts with this variance or below should be trusted over the historical

Fig 2. A boxplot of ensemble mean estimates for epidemiological parameters D (days) and R0 at the observed peak, 2

weeks after the peak, and on the last week of simulation for all seasons and regions. The central line indicates the median,

the box provides the interquartile range, and the whiskers give the extrema (outliers are shown, defined as 1.5 times greater the

interquartile range).

doi:10.1371/journal.pcbi.1005133.g002
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mean when predicting onset four weeks in the future. A scatter plot shows the model-filter
forecast error subtracted from the historical mean forecast plotted as a function of observed
regional RSV standard deviation for peakmagnitude, peak timing, attack rate, and onset (S13
Fig). This figure, which includes only forecasts falling in the lowest 50th ensemble variance,
shows that in regions with greater year-to-year RSV variability, the model-filter forecasts
increasingly outperform historical expectance. Linear regressions for each criterion and lead
week grouping are also plotted on S13 Fig. S4 Table provides these regression slopes and inter-
cepts and their statistical significance. S4 Table could be used to decide between the historical
mean and model-filter forecasts, based on the region’s standard deviation.

Discussion

Many of the state-of-the-art forecast systems developed for respiratory pathogens such as influ-
enza use ensemble predictions generated with a mathematical model of disease transmission,
such as an SIR model, that has been optimized using Bayesian inference methods [27,33,35,37–
39]. These inference methods enable estimation of model state variables (e.g. number of sus-
ceptible and infected) and critical epidemiological parameters (e.g. R0). Here we paired an SIR
model with the EAKF to predict RSV incidence.We have shown that the model-filter forecasts
are generally more accurate than historical expectance (Fig 5), and that forecast accuracy can
be distinguished using ensemble variance (Fig 4). This latter finding enables distinction of fore-
cast reliability in real time.
The improvement over historical expectance is particularly important. The scaled RSV posi-

tive data used in this study varies in magnitude substantially from year-to-year; however, the
observedmean error for peak timing is only about 1.5 weeks and thus fairly regular, allowing

Fig 3. The fraction of RSV forecasts accurate for prediction of peak magnitude, peak timing, attack rate,

and onset. Peak magnitude, peak timing, and attack rate are shown as a function of the predicted peak timing

lead (current week minus predicted peak); onset is shown relative to predicted onset lead.

doi:10.1371/journal.pcbi.1005133.g003
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reasonable forecast with the historical mean. Still the model-filter forecasts exceed the accuracy
of the historical mean more than two weeks prior to the predicted peak (Fig 5). In addition, the
improvement of the model-filter forecasts over the historical mean predictions, as measured by
the difference in error, is correlated with observed standard deviation within a region (S13 Fig);
for example, model-filter forecasts of epidemic peakmagnitude provide a greater reduction of
error in regions with greater standard deviation of peakmagnitude. Thus, regions with greater
observedvariability see a greater improvement of forecast accuracy from the model-filter sys-
tem over historical expectance.
RSV patients in medical care are overwhelmingly the very young and the elderly, because of

the small size of their lungs or less-effective immune response [40,41]. Yet despite this bimodal
age distribution of apparent RSV infection, asymptomatic healthy adults can transmit RSV
[25,42]. As the NREVSS data do not include age-stratified infection,we were unable to simulate
these differences and instead used a single age class model. Should age-stratified infection data
become available, future work should explore forecast and parameter estimation with an age-
stratifiedmodel. Prior work with models that account for age structure, tend to produce higher
estimates of R0 than simpler SIR or SIRS models [21–23]. Our parameter estimates reflect our
use of a simpler model structure and produce estimates similar to those describedby single-
season SIR [43] and SIRS [21] modeling efforts.
Our data regions include up to eight states with distinct climates. Assignment of states to

regions differs between the census division and HHS designations (S1 and S2 Tables), though
there exists considerable overlap. Forecast accuracy did not differ appreciably between census

Fig 4. The fraction of RSV forecasts accurately predicting peak timing (±1 week), magnitude (±25%), attack rate (±25%), and

onset (±1 week), shown as a function of ensemble variance. Forecasts are stratified by lead week, defined as current week

minus predicted peak. The marker size is scaled to the number of runs in each variance bin.

doi:10.1371/journal.pcbi.1005133.g004
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divisions and HHS regions. By simulating both regional grouping systems, we further demon-
strate the reliability of our results. State actors could consider forecasts from both regional clas-
sification systems, particularly for regions including Florida, a populous state in which
typically RSV peaks earlier than other states.
For our results, R0 is estimated with a mean of 3.0, which is within the range of 1.2 to over 9

identified using other dynamical models [21–23,43]. Our estimate no doubt reflects the quality
and geographic scale of the RSV data, as well as the model structure. The mean value of D, the
duration of infection, just over 6 days, is also within the range modeled variously as 5–11 days.
In our SIR model, the duration of infection functions as the duration of infectiousness, which
in our model-filtermay vary by time or by region depending on norms such as the time to
treatment or isolation of symptomatic individuals.We found that the duration of infection,D,
is somewhat sensitive to the choice of γ (S8 Fig). Clinical and experimental data have yet to
identify the viral load needed for significant RSV transmission. These information are needed
to better constrain the mean duration of infectivity. Once this is more definitively established,
D could be fixed while other parameters are estimated by the EAKF.
More doctors and researchers are simultaneously testing for multiple viruses including

RSV, using PCR-based panel assays; yet, as July of 2014, the American Academy of Pediatrics
no longer recommends testing bronchiolitis patients for RSV, because treatment is the same
regardless of etiology. Without widespread RSV testing, the efficacy of an RSV vaccine, several
of which are currently under development [44], may be more difficult to determine. Further,
testing would support both study and forecast of RSV. For example, RSV data derived from
testing of bronchiolitis patients and active sampling, the latter used to estimate RSV incidence

Fig 5. Mean absolute error for each criterion as a function of lead week. The model-filter error is shown for the 1st and 2nd lowest

quartiles of ensemble variance, and the historical mean forecast error is shown for comparison.

doi:10.1371/journal.pcbi.1005133.g005
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across all age groups, would support development of more complicated model structures,
which could be used to generate age-stratified forecasts. Ideally, these forecasts would influence
individual behavior and improve health care preparedness, and thus would serve as a bulwark
against bronchiolitis.
In summary, advanced warning of RSV infections can reduce delays in the care of RSV

patients, who are predominantly infants and the elderly, and hence vulnerable to lingering
damage to lung tissue and other negative outcomes from RSV. Our model-filter system repli-
cates the seasonal dynamics of RSV throughout the United States, and our forecasts predict
multiple outcomes, including epidemic peakmagnitude with more than 60% accuracy five
weeks prior to the predicted peak. Importantly, the high accuracy of forecasts predicting epi-
demic onset one month in advance could allow doctors to better ration the delivery of palivizu-
mab prophylaxis. Further, the near-linear increase in accuracywith decreasing ensemble
variance provides a metric of certainty for each forecast. Our results provide evidence that lev-
els of RSV incidence can be anticipated in time to inform the distribution of prophylactics and
deployment of other protective measures against RSV infection.However, real-time predic-
tions will require that laboratory testing for RSV be resumed.

Supporting Information

S1 Fig. ScaledRSV for the nine U.S. CensusDivisions and ten RSV seasons.
(TIF)

S2 Fig. A histogramof actual peak timing for each census division and year.
(TIF)

S3 Fig. The overall RMSE between the observations and forecasts shown for two γ and
OEV combinations. The variable OEV was computed with Eq 4, withOEV0 and a equal to 104

and 50, respectively.
(TIF)

S4 Fig. Scatterplot of simulated RSV infections versus observed infections for the 9 census
divisions and all 10 seasons,multiplied by γN as described in the text. The red line is 1:1.
(TIF)

S5 Fig. Estimates of the parametersR0 andD shown as a time series during the 20 weeks of
forecast.All regions and seasons are shown.
(TIF)

S6 Fig. Boxplots of weeklyR0 estimates for each census division across all 10 seasons.
(PDF)

S7 Fig. The mean values ofD and R0 for RSV for each year and census division.These esti-
mates remain similar from year to year and location. Overall, the smallest mean R0 is 2.5, in
Census Division 5, which contains Florida, and the largest mean R0 is 3.4 in Census Division 4.
(TIF)

S8 Fig. Boxplots of ensemblemean estimates for the parametersD and R0 at the epidemic
peak using RSV and γ = 0.00075 and 0.0001.
(TIF)

S9 Fig. RSV observed (O) and forecasts for 2007–2008, for each census division. Each fore-
cast shown is the mean of 300 ensemble members. The thick black line is observedRSV. The
thin colored lines represent the ensemble mean trajectories of successive weekly forecasts,
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beginningWeek 43 throughWeek 10.
(TIF)

S10 Fig. RSV observed (Obs) and forecasts for 2011–2012, for each census division. Each
forecast shown is the mean of 300 ensemble members. The thick black line is observedRSV.
The thin colored lines represent the ensemble mean trajectories of successive weekly forecasts,
beginningWeek 43 throughWeek 10.
(TIF)

S11 Fig. Peak timing forecast accuracy(for both census division and HHS regions) over the
ten seasons of RSV epidemics.All forecasts, regardless of ensemble variance, are shown.
(TIF)

S12 Fig. The error of RSV forecast for magnitude, timing error, attack rate, onset for each
week of forecast and lead week. Blanks indicate week and lead week combinations without
forecasts. Error decreases as both week of forecast and lead week increase. Including week of
forecast along with ensemble variance and lead week could refine prediction calibration.
(TIF)

S13 Fig. Historical mean prediction error minus model-filter forecasts error, plotted by
region as a function of regional RSV standard deviation, and grouped by leadweek. Scatter
points above the zero line represent forecasts that outperform the historical mean. Both census
division (CD) and HHS regions are plotted. Only forecasts with ensemble variance in the bot-
tom 50th percentile, taken over the entire forecast period for each region, are shown; during
some lead weeks, there are no forecasts in the bottom 50th percentile, hence some regions do
not have all four lead week groupings (e.g. 7–8 weeks before the predicted onset). Positive sig-
nificant linear correlations (alpha = 0.05) between difference in error and observed standard
deviation are found for each forecast criterion at least four weeks in advance of the predicted
peak or onset. S4 Table lists the regression line slope estimates for each regression and statisti-
cal significance.
(TIF)

S1 Table. US geographic partitions comprising each of the 10 US Department of Health
and Human Servicesregions.
(DOCX)

S2 Table. US states comprising each of the 9 US CensusDivisions.
(DOCX)

S3 Table. State variables and parameters estimated using the SIRS-EAKF system and the
range of values employed for random initialization.
(DOCX)

S4 Table. Statistics for the difference between the historical regionalmean and model-filter
forecasts error regressedupon the observedstandard deviation of each criterion (plotted in
S12 Fig).Only forecasts with ensemble variance in the lowest 50th percentile were included.
(DOCX)
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