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Much effort has been devoted to assess disease risk based on large-scale protein-protein

network and genotype-phenotype associations. However, the challenge of risk prediction

for complex diseases remains unaddressed. Here, we propose a framework to quantify

the risk based on a Voronoi tessellation network analysis, taking into account the disease

association scores of both genes and variants. By integrating ClinVar, SNPnexus, and

DISEASES databases, we introduce a gene-variant map that is based on the pairwise

disease-associated gene-variant scores. This map is clustered using Voronoi tessellation

and network analysis with a threshold obtained from fitting the background Voronoi

cell density distribution. We define the relative risk of disease that is inferred from the

scores of the data points within the related clusters on the gene-variant map. We identify

autoimmune-associated clusters that may interact at the system-level. The proposed

framework can be used to determine the clusters that are specific to a subtype or

contribute to multiple subtypes of complex diseases.
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INTRODUCTION

Rapid advances in exome sequencing technology combined with the development of novel genomic
annotation approaches in the last two decades have provided important vistas for assessing the
risk of complex disorders (McCarthy et al., 2008; Majewski and Pastinen, 2011). Understanding
the genotype-phenotype interactions via genome-wide association studies (GWAS) and large-scale
protein-protein network and functional pathways, has been the focus of much research in risk
assessment (Leiserson et al., 2013; van der Sijde et al., 2014). Complex diseases, however, are
tightly associated with rare variants, often with a low minor allele frequency but high-penetrance
(Fearnhead et al., 2004, 2005; Bodmer and Bonilla, 2008; Manolio et al., 2009), which challenges the
current GWAS, focusing on common variants (Satake et al., 2009; Jia et al., 2010). Understanding
the combinatory effects of variants on complex disorders and the interactions between them are
critical in disease risk modeling (Okser et al., 2013). Therefore, the inclusion of both common and
rare variants in the network, based on their association with the disease, is essential to modeling
and quantifying the risk of complex disorders.

Several network and systems biology approaches have recently been developed to infer the
risk of disease based on the integration of genome-wide expression data (Parikshak et al., 2015),
identification of disease-causative variants via large-scale genome-wide analysis (Krawczyk et al.,
2010; Gratten et al., 2014), mapping protein-protein interaction information (Rual et al., 2005;
Wang et al., 2012), statistical inference on the connectivity between molecular nodes (Goh et al.,
2007; Gilman et al., 2011, 2012; Chang et al., 2015), and functional annotation using pathway
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databases (Parikshak et al., 2013). Such databases include Kyoto
Encyclopaedia of Genes and Genome Elements (KEGG) (Ogata
et al., 1999; Kanehisa and Goto, 2000) and Gene Ontology (GO)
(Ashburner et al., 2000). However, these approaches mainly
deal with network analysis at the gene level without specifically
considering the disease-associated scores of variants in clustering
or risk assessment.

On the gene level, complex diseases are affected by various
perturbations in the genetic architecture that integrates the
functional pathways and interactions between genes (Carter et al.,
2013). Substantial efforts have beenmade to identify critical genes
clusters as the potential causes of disease development. These
include predicting protein-protein interaction (PPI) network and
subnetworks using Markov cluster algorithm (Rual et al., 2005;
Stelzl et al., 2005; Sun et al., 2011), or using background network
based on the likelihood of genetic interactions and phenotype
association to identify functional clusters associated with disease-
related de novo CNVs (Gilman et al., 2011, 2012). However,
integrative approaches that incorporate the contribution of both
genes and variants to infer disease risk quantitatively are still
lacking.

In an attempt to develop such an approach, we integrated
databases of disease-associated genes and variants scores and
applied the well-established method of Voronoi tessellation in
the Euclidean coordinate for clustering and network analysis
(Ebeling and Wiedenmann, 1993; Ramella et al., 2001; Edla and
Jana, 2011). Given a set of data points, a Voronoi diagram is a
partition of the space into cells, where a cell corresponding to a
given data point is a locus of all points of space closest to this
data point. Voronoi tessellation is commonly used in various
fields of natural and medical sciences (Okabe et al., 1992, 2000;
Aurenhammer, 1993; Ebeling and Wiedenmann, 1993; Ramella
et al., 2001; Dupanloup et al., 2002; Wieland et al., 2007; Bishnu
and Bhattacherjee, 2009; Kao et al., 2010; Edla and Jana, 2011),
and in geographic information systems to define the partition
cell, or catchment areas containing individual sites by their
influence (Okabe et al., 1992, 2000).

In recent years, there has been a surge of interest in using
Voronoi-based clustering for biological data. For instance, Edla
et al. (Edla and Jana, 2011) presented Voronoi clustering
algorithms that filtered the Voronoi neighbors of biological
data points based on the distance between neighbors. Bishnu
(Bishnu and Bhattacherjee, 2009) used Voronoi tessellation to
cluster centroids following initial clustering via K-meansmethod.
Ramella et al. (Ebeling and Wiedenmann, 1993; Ramella et al.,
2001) determined the threshold of clustering for biological data
by using Kiang distribution fitted to the background Voronoi
cell density distribution. Building on the previous literature, in
this study, we propose a framework to quantitatively infer disease
risk based on the clusters identified by Voronoi tessellation and
network analysis of a score-based gene-variant map.

MATERIALS AND METHODS

To develop our quantitative method, we parsed distinct databases
and integrated the information necessary for clustering based

on genes and variants scores. To identify the clusters, we
applied Voronoi tessellation network analyses, which have been
widely used for data aggregation and clustering (Wieland et al.,
2007; Balcan et al., 2009). Here we propose the relative risk
using a Voronoi network algorithm that identifies disease-
associated clusters containing genes, whose Voronoi cell densities
were above a certain threshold, obtained from the Chi-square
distribution fitted to the background data.

Integration of Databases on Genes and
Variants
The disease associated information of variants was obtained
from the integration of various databases. These databases
contained information on the clinical relevance of the variants
from ClinVarFullRelease_00-latest.xml file in ClinVar12, and
the functional scores of the variants from SNPnexus (Chelala
et al., 2009; Dayem et al., 2012, 2013). The xml file from
ClinVar was parsed via customized scripts using ElementTree in
open source software Python3. The phenotypes for each variant
were obtained from “Trait/Name” under “TraitSet” from the
ClinVar database, including the preferred or alternative disease
descriptions with various degrees of association for the variants
(Table S1, Supplementary Information). We used rsID from
dbSNP4 as the identifier to extract the disease terms for the
variants from ClinVar, SIFT, Polyphen scores, and the genes
associated with the variants from SNPNexus (Chelala et al., 2009;
Dayem et al., 2012, 2013). A higher score of 1-SIFT or Polyphen
suggests a higher damaging effect of the variants (Chelala et al.,
2009; Dayem et al., 2012, 2013). Due to the possibility of multiple
variations at some variant loci, we compared various methods
to integrate the variant scores for a particular locus, specifically
using 1-SIFT or Polyphen scores in combination with the range
or the mean score for each variant locus. The gene-variant map
with the mean score was applied in the Voronoi-based network
analysis to obtain autoimmune associated clusters (Figure 1,
Supplementary Information).

The disease terms for subtypes of autoimmune were obtained
from the American Autoimmune Related Disease Association
(AARDA)5, and the autoimmune diseases fact sheet6, while
some were manually curated from the ClinVar1,2 and DISEASES
(Pletscher-Frankild et al., 2015) databases. The scores for variants
were normalized as the ratio of the sum of the disease-related
scores of variants for each chosen gene, divided by the sum of
the scores for all variants of the gene. The gene scores were
normalized by their maximum scores, which were derived from
a single database, i.e., DISEASES (Pletscher-Frankild et al., 2015).
We performed the analysis using open source software Python3.

We selected 1,383 autoimmune associated genes with Z-
scores from the DISEASES database, based on the disease terms

1http://www.ncbi.nlm.nih.gov/clinvar/
2ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/xml/; last updated on 2015-05-07
3Python Language Reference, version 2.7. Available online at: http://www.python.

org
4http://www.ncbi.nlm.nih.gov/SNP/
5https://www.aarda.org/autoimmune-information/list-of-diseases/
6http://womenshealth.gov/publications/our-publications/fact-sheet/

autoimmune-diseases.html
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FIGURE 1 | Gene-variant map of breast cancer, generated based on

the disease association scores at both gene and variant levels. The

x-axis represents the Z-score of genes with breast cancer association. The

y-axis represents the ratio of 1-SIFT scores of variants associated with breast

cancer to that of all variants for each gene.

of autoimmune and subtypes (Supplementary Information)
(Pletscher-Frankild et al., 2015). A total of 1,037 variants with
descriptive terms associated with autoimmune from ClinVar1,2

were selected (Supplementary Information). The integrated
database contains 85 genes, in which the gene and variant scores
reflect the degree of association with autoimmune (Table S2,
Supplementary Information).

Voronoi Tessellation and Voronoi Cell
Density
Autoimmune related genes, ranked by disease association
(Pletscher-Frankild et al., 2015), and the variants for each
gene were plotted in the x-y coordinates of the Voronoi
diagram. Normally distributed mock data were used to test
the Voronoi tessellation and clustering method (Figure S2,
Tabel S4, Supplemental Information). Built-in Voronoi functions
inMatlab7 were used to create tessellation of data, which returned
the indices of the Voronoi cells and vertices.

A Voronoi cell represents an area of influence of the data
point it contains, and thus the local density in the proximity of
a given point can be determined as the inverse of the cell area.
This provides a direct precise measurement of the local density.
Clusters were identified based on the neighboring Voronoi cells
with densities above a certain threshold. Polyarea, a built-in
function in Matlab7, was used to calculate the area for each
Voronoi cell, except for the cells on the boundary of the map with
infinite areas. For Voronoi tessellation with n (finite number of)
cells, the normalized Voronoi cell density (f̃ ) was calculated as
the ratio of the cell density (inverse of cell area) over the inverse

7MATLABR2010. The MathWorks, Inc., Natick, Massachusetts, United States.

of the average cell area (Ebeling and Wiedenmann, 1993)

f̃i =
fi(
n∑n

i= 1 1/fi

) (1)

Parameters were obtained by fitting the Chi-square distribution
to 80% of the normalized Voronoi cell density distribution
(Ebeling and Wiedenmann, 1993). We obtained the threshold
for clustering at the significance level of 90% from the fitted
Chi-square distribution (Ramella et al., 2001).

Identifying Clusters of Voronoi Cells
For the partitioned Voronoi cells, clustering was initiated from a
random Voronoi site (data point) p, with a normalized Voronoi
cell density above the threshold. Then the algorithm visited the
neighbors of that random point. Each pair of Voronoi sites was
connected by an edge of the Delaunay triangulation. A pair of
Voronoi sites was considered as the nearest neighbors if the
middle point of the connecting edge was closer to either site from
this pair than any other Voronoi sites. Delaunay triangulation
via the built-in DelaunayTri function in Matlab7 was applied to
determine the nearest neighbors of the data points. The point p
and its closest neighbors were included in the neighbor list as a
reference for future visit.

A neighbor without prior visit was included in the cluster if its
normalized Voronoi cell density was above the threshold. Once
visited, the point p and its neighbors were added to the visited list
and eliminated from the neighbor list. The process was repeated
until all the direct or indirect neighbors of the point p were
exhausted. The entire algorithm was rerun for another random
data point without any prior visit until all the data points were
exhausted (Edla and Jana, 2011).

Voronoi-Based Disease Risk
The risk of disease was inferred from the scores of the data points
and their corresponding clusters on the gene-variant map. The
cluster score was defined as the sum of Voronoi cell densities for
all the cells within the cluster. For each gene within a cluster, we
considered the product of its cell density and the cluster score,
and defined the relative risk as the ratio of the corresponding
products for different disease-associated genes. For two data
points (corresponding to candidate genes from patients i and j),
the relative risk is thus expressed as

Relative Risk =
fi

∑
fi

fj
∑

fj
(2)

To investigate the contribution of the gene clusters to a disease,
the cumulative product of gene scores (SGi or SGj ) and variant
scores (SVi or SVj ) for each cluster was calculated, and the relative
disease association for the clusters was defined by

Relative Disease Association =

∑
SGiSVi∑
SGjSVj

(3)
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RESULT

Breast Cancer Associated Genes-Variants
Map
We mapped 15 breast cancer genes with disease association
gene Z-scores and the normalized variant scores on the gene-
variant map (Figure 1, Figure S1, and Table S3, Supplementary
Information). The localization of the genes at the top-right corner
of the gene-variant map suggests a high level of association with
the disease at both gene and variant levels, implying the relevance
to cancer (i.e., high gene scores suggest the relevance to cancer
in general) as well as the specificity to breast cancer (i.e., high
variant scores). The spatial localization of BRCA1, BRCA2 (Miki
et al., 1994; Hofmann and Schlag, 2000), RAD51 (Martin et al.,
2007), agrees with the known specificity of these genes to breast
cancer, and physical or predicted interactions with each other
(Warde-Farley et al., 2010; Zuberi et al., 2013). TP53, the tumor
suppressor (Baker et al., 1989; Rivlin et al., 2011), PIK3CA kinase
(Karakas et al., 2006), and the epidermal growth factor receptor
ErbB-2 and EGFR (Tebbutt et al., 2013), reported in multiple
subtypes of cancer, are localized at the bottom right corner of the
gene-variant map, suggesting the contribution of these genes to
cancer in general with lower specificity to breast cancer compared
to BRCA1 and BRCA2 (Figure 1). This map illustrates a spatial
segregation of the data points (Figure 1), which may implicate
the localization of disease-specific genes. The currently available
data pertinent to breast cancer are inadequate for the network
analysis of Voronoi tessellation proposed in this study.

Voronoi Based Clustering of Autoimmune
Data
We mapped 85 autoimmune genes and their associated
variants based on the Z-scores and normalized 1-SIFT scores
(Table S2, Supplementary Information). We performed Voronoi
tessellation and used 80% of the normalized Voronoi cell
densities that were lower than or equal to 5.3 as the background
distribution (Table S2, Supplementary Information). Voronoi
cells with densities above the threshold 3.96 were considered
as the candidates for clustering (Figure 2). This threshold was

obtained by fitting the Chi-square distribution χPDF

(
cxb, a

)
to

the background distribution at the significance level of 90%. The
parameters of this distribution were estimated to be a = 0.78,
b = 3, and c = 0.04.

Four clusters associated with autoimmune diseases were
detected on the gene-variant map by the Voronoi tessellation
network analysis. In cluster 1, the normalized variant and gene
(V,G) scores for PRF1, WAS, SLC4A1, AIRE were (0.28,0.41),
(0.27,0.43), (0.21,0.4), and (0.23,0.39), respectively. CRYAB,
TCAP were found in cluster 2 with normalized (V,G) scores
of (0.52,0.46), (0.52,0.45), respectively. The normalized (V,G)
scores for FOXP3 and MYL3 in cluster 3 were (0.52,0.56) and
(0.51,0.61). In cluster 4, the (V,G) scores for GLA, TMPO,
MYPN, JUP, TINF2 were (0.07,0.42), (0.03,0.47), (0.13,0.38),
(0.15,0.36), and (0.04,0.41), respectively (Figures 3A,B, Table S2,
Supplementary Information). The cluster scores for clusters one
to four were 39.41, 16.97, 13.63, and 40.06, respectively (Table

FIGURE 2 | Identification of the threshold for clustering based on the

Chi-square model fitting to the background distribution of the

normalized Voronoi cell density of the autoimmune associated

gene-variant map. The red curve represents the fit by the Chi-square

distribution to the cumulative distribution of the background (80% of the

normalized Voronoi cell density) of autoimmune associated data points (blue

circle). The threshold (dashed line) was determined at 3.96, and at the

significance level of 90%. The subplot shows the identified threshold (dashed

line) on the cumulative distribution of the normalized Voronoi cell density of the

entire data points associated with autoimmune.

S2, Supplementary Information). The localization of cluster 4 on
the left bottom corner of the gene-variant map suggests that this
cluster contributes less significantly to autoimmune compared
with cluster 1, which may in part be explained by its indirect
association with autoimmune (Figures 3A,B).

Risk Assessment Framework
The multiplication of the normalized Voronoi cell density and its
corresponding cluster score provides a disease risk score, from
which the risk between patients could be compared (Equation 2).
For instance, if a patient with a risk score of 112.71 [identified
with mutations in CRYAB, a gene associated with multiple
sclerosis (Chauhan et al., 2013)] is compared with another patient
who has a risk score of 506.11 [with mutations in TINF2, a gene
associated with Idiopathic pulmonary fibrosis (Donahoe et al.,
2015)], the relative risk of the former to the latter is 0.22 (Table
S2, Supplementary Information). This suggests that the risk of
autoimmune diseases would be approximately 5 times higher in
the second patient compared with the first patient.

Since the disease association in the gene-variant map is
reflected at both gene and variant levels, the contribution of genes
identified within a cluster to autoimmune could be calculated
as the multiplication of the gene score and the variant score
(Equation 3). For instance, the relative risk associated with
autoimmune of CRYAB in cluster 2 with the score of SG1 ×

SV1 = 0.24, compared to TINF2 in cluster 4 with the score of
SG2 × SV2 = 0.02 is 12 (Table S2, Supplementary Information),
suggesting a higher relative autoimmune association of CRYAB.
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FIGURE 3 | Autoimmune associated clusters identified by the Voronoi tessellation network analysis. (A) Voronoi tessellation of data points, in which four

detected clusters are highlighted in colored cells. (B) Genes of data points belonging to the same clusters identified by Voronoi tessellation in (A).

DISCUSSION

Quantifying the risk of developing a disease based on network
analyses of the associated genes, has received much attention
over the past two decades. Still, the heterogeneity of complex
diseases and synergistic interactions across the network pose
enormous challenges for the risk assessment of complex diseases,
such as autoimmune. GWAS studies, which mainly focused
on common variants, suffer from the shortcomings of missing
causal rare variants with low allele frequencies and moderate
effects in complex diseases (Bodmer and Bonilla, 2008; Mitchell,
2012). The method of Voronoi tessellation proposed here
does not apply any filtering on the frequency of variants
available in the databases, and therefore includes both common
and rare variants in the score-based clustering. A network
analysis that focuses on physical protein-protein interactions
or gene co-expressions (Rual et al., 2005; Bettencourt et al.,
2016) generally lacks sufficient information on the system-level
interactions, which are critical to the understanding of complex
diseases.

In this study, we provided a new approach to integrate
disease association databases at both gene and variant scales
to assess the risk of disease at the system-level, in addition
to detecting the associated clusters via a Voronoi tessellation
analysis. Previous studies on protein-protein network analyses
(Ideker and Sharan, 2008; Kuzmanov and Emili, 2013), integrated
with GO annotation and biomedical literature mining (Sam et al.,
2007), shed lights on the molecular interactions and underlying
pathways essential to disease occurrence. GWAS have also been
widely used to identify disease-associated variants (Leiserson
et al., 2013; van der Sijde et al., 2014). Furthermore, network

analyses on protein-protein interactions have been applied with
a scoring algorithm to quantitatively analyze the association
between diseases (Suratanee and Plaimas, 2015). Therefore, the
current surge of interest in quantifying the risk of disease builds
on these studies with methods of score-based clustering at the
molecular level. Here, we integrated the information available
for gene and variant scores with disease association from various
repositories and databases to generate a gene-variant map with
a spatial gene segregation, in which disease related clusters
were identified by a Voronoi tessellation network analysis. For
example, the localization of cluster 1 in the center of the map
in Figure 3 implies a close association of genes in cluster 1
with autoimmune, corroborating biological pathways (Warde-
Farley et al., 2010; Zuberi et al., 2013). This spatial separation of
the clusters can provide additional information for comparisons
between clusters and their association with the disease, which is
critical for the risk assessment.

GeneMANIA suggests that the members of cluster 1 are
related to a very tight network, contributing to the Fc receptor
signaling pathway and the immune response regulation (Warde-
Farley et al., 2010; Zuberi et al., 2013). Cluster 1, localized
in the middle of the gene-variant map, implies that its
contribution to autoimmune depends on both gene and variant
scores (Figures 3A,B). CRYAB was found to be expressed
predominantly in multiple sclerosis lesions, suggesting its close
association with autoimmune (Ousman et al., 2007). This gene
was also identified in cluster 2 containing TCAP (Hayashi et al.,
2004), which corroborates previous findings on the co-expression
of the two genes (Warde-Farley et al., 2010; Zuberi et al., 2013).
GeneMANIA also suggests that cluster 4 belongs to a network
functioning in telomere maintenance, recently found to be
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associated with autoimmune, such as insulin-dependent diabetes
mellitus caused by the delayed death of white cells (Jeanclos et al.,
1998; Hohensinner et al., 2011). As complex diseases are highly
affected by the system-level interactions, our study proposes a
network analysis method to identify genes that could potentially
contribute to a disease. This presents an important vista for future
directions in the field of disease biology network analysis, which
currently focuses mainly on direct physical interactions (Bader
et al., 2004; Goehler et al., 2004; Gandhi et al., 2006; Chatr-
aryamontri et al., 2007; Goh et al., 2007). Furthermore, using
the framework presented in this study, the association of genes
with different disorders could be modeled by bipartite graph
(Goh et al., 2007; Liu et al., 2015) to unravel the contribution
of gene clusters to various diseases. While our study aimed to
develop a framework that could be used for the disease risk
assessment, further investigation is needed to address specificity
and sensitivity of the proposed method, given the availability of
sufficient amount of patient data (Husmeier, 2003). Nevertheless,
our results for clustering autoimmune associated genes presented
here show that the method is useful for extracting biologically
relevant information.

Our study has several limitations, highlighting the need to
improve databases with information of disease association at the
variant level. The ambiguous definition of disease terms classified
as autoimmune poses a particular challenge for obtaining the
associated genes and variants. We obtained such variants from
descriptive terms in the xml file (Trait section) of the ClinVar
database1,2, in which only a subset of the variants are identified
as pathogenic for clinical significance. Further investigations on
the association of variants with diseases are needed to provide
more accurate variant scores. With improved data quality,
our framework could identify clusters associated with various
diseases more accurately, which could be used to predict the
relative risk based on the proposed network analysis. Depending
on the nature of databases and the number of data points,
a limitation of our approach, shared with other methods, is
identifying the threshold for clustering based on the distribution
derived from the selected background data. For example, were
a larger amount of data points for genes and variants associated
with breast cancer available, our analysis could be used to cluster
and segregate data points on the score-based gene-variant map.

Furthermore, we have only considered Voronoi cells with finite
areas, disregarding possible clustering of data points on the
boundary of Voronoi diagram. Despite these limitations, our
study highlights the importance of integrating variant scores to
the network analysis to identify the contribution of both rare and
common variants to disorders. Moreover, the spatial segregation
of genes associated with breast cancer from genes related to
multiple subtypes of cancer in the Voronoi diagram (Figure 1)
suggests that the framework could be used to distinguish subtype-
specific genes of complex diseases. These considerations merit
further investigation, and our study presents the first step in this
direction.
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