
RESEARCH ARTICLE

Biomarkers of erosive arthritis in systemic

lupus erythematosus: Application of machine

learning models

Fulvia CeccarelliID
1☯*, Marco Sciandrone2☯, Carlo Perricone1, Giulio GalvanID

2,

Enrica Cipriano1, Alessandro GalligariID
2, Tommaso LevatoID

2, Tania Colasanti1,

Laura Massaro1, Francesco Natalucci1, Francesca Romana Spinelli1,

Cristiano Alessandri1, Guido Valesini1, Fabrizio Conti1

1 Lupus Clinic, Rheumatology, Dipartimento di Medicina Interna e SpecialitàMediche, Sapienza Università di

Roma, Rome, Italy, 2 Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Florence, Italy

☯ These authors contributed equally to this work.

* fulviaceccarelli@gmail.com

Abstract

Objective

Limited evidences are available on biomarkers to recognize Systemic Lupus erythematosus

(SLE) patients at risk to develop erosive arthritis. Anti-citrullinated peptide antibodies

(ACPA) have been widely investigated and identified in up to 50% of X-ray detected erosive

arthritis; conversely, few studies evaluated anti-carbamylated proteins antibodies (anti-

CarP). Here, we considered the application of machine learning models to identify relevant

factors in the development of ultrasonography (US)-detected erosive damage in a large

cohort of SLE patients with joint involvement.

Methods

We enrolled consecutive SLE patients with arthritis/arthralgia. All patients underwent joint

(DAS28, STR) and laboratory assessment (detection of ACPA, anti-CarP, Rheumatoid Fac-

tor, SLE-related antibodies). The bone surfaces of metacarpophalangeal and proximal inter-

phalangeal joints were assessed by US: the presence of erosions was registered with a

dichotomous value (0/1), obtaining a total score (0–20). Concerning machine learning tech-

niques, we applied and compared Logistic Regression and Decision Trees in conjunction

with the feature selection Forward Wrapper method.

Results

We enrolled 120 SLE patients [M/F 8/112, median age 47.0 years (IQR 15.0); median dis-

ease duration 120.0 months (IQR 156.0)], 73.3% of them referring at least one episode of

arthritis. Erosive damage was identified in 25.8% of patients (mean±SD 0.7±1.6), all of them

with clinically evident arthritis. We applied Logistic Regression in conjunction with the For-

ward Wrapper method, obtaining an AUC value of 0.806±0.02. As a result of the learning
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procedure, we evaluated the relevance of the different factors: this value was higher than

35% for ACPA and anti-CarP.

Conclusion

The application of Machine Learning Models allowed to identify factors associated with US-

detected erosive bone damage in a large SLE cohort and their relevance in determining

this phenotype. Although the scope of this study is limited by the small sample size and its

cross-sectional nature, the results suggest the relevance of ACPA and anti-CarP antibodies

in the development of erosive damage as also pointed out in other studies.

Introduction

Joint involvement is one of the most common features in patients affected by Systemic Lupus

Erythematosus (SLE): a high proportion of patients (69–95%) could experience this manifesta-

tion during disease course. A great heterogeneity characterizes this manifestation, moving

from arthralgia to more severe arthropathy, with possible development of erosive damage [1].

For a long time, the presence of an erosive arthritis in SLE patients has been considered a

rare condition and generally identified in subjects overlapping with Rheumatoid Arthritis

(RA). The introduction of more sensitive imaging techniques in the assessment of inflamma-

tory arthritis, such as ultrasonography (US), allowed the identification of erosive damage in up

to 40% of patients with SLE-related arthritis [2].

Nevertheless, few data are available concerning specific biomarkers able to recognize

patients at risk to develop erosive damage. Several studies investigated the role of RA specific

autoantibodies, moving from their relevance in the identification of individuals at risk to

develop RA and in determining erosive arthritis [3].

The presence of anti-citrullinated peptide antibodies (ACPA) has been analyzed in SLE

patients, identifying this biomarker in up to 50% of SLE patients with X-ray detected erosive

arthritis [1,4,5]. Conversely, few data are available concerning the association between anti-

carbamylated proteins antibodies (anti-CarP) and bone erosions: Ziegelasch and colleagues

have recently identified a significant association between X-ray detected erosive damage and

anti-CarP in a small SLE cohort [6]. More recently, we confirmed this association in a large

SLE population with joint involvement in which the damage was assessed by US [7].

Machine learning methodologies have already been applied in the medical setting. Artificial

Neural Networks (ANNs) have been used in SLE cohorts to predict specific outcomes, such as

chronic damage development or 3 years kidney graft survival in recipients affected by SLE

[8,9].

Moreover, these mathematical models can be used to select the factors able to identify the

presence of a specific outcome and to rate the relevance or ranking of different factors in deter-

mining it. Similar approaches have also been exploited in specific medical conditions, such as

gene selection task in DNA microarray datasets, selection of genes associated with diffuse large

B-cell lymphoma, and, finally, in the analysis of Alzheimer’s disease progression [10–12].

Moving from these premises, we considered the application of machine learning models to

identify relevant factors in the development of US-detected erosive damage in a large single

center cohort of 120 SLE patients with joint involvement. In this study, we employed Logistic

Regression and Decision Trees, both machine learning models for classification which are
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easily interpretable, in conjunction with an iterative feature selection technique, in order to

recognize factors associated with erosive bone damage.

Materials and methods

Consecutive SLE patients with a clinical history of joint involvement, attending at the Lupus

Clinic of the Rheumatology Unit, Sapienza University of Rome (Sapienza Lupus Cohort) were

enrolled in the present study. SLE diagnosis was performed according to the revised 1997

American College of Rheumatology (ACR) criteria [13].

The study was performed according to the protocol and good clinical practice principles

and Declaration of Helsinki statements and was approved by the Ethic committee of the

Sapienza University of Rome, Policlinico Umberto I, Rome, Italy. All the patients signed an

informed consent.

The clinical and laboratory data of enrolled patients were collected in a standardized com-

puterized electronically filled form, including demographics, past medical history with the

date of diagnosis, co-morbidities, previous and concomitant treatments, serological status

[C3/C4 levels (radial immunodiffusion), ANA (IIF on HEp-2), anti-dsDNA (IIF on Crithidia
Luciliae), anti-Ro/SSA, anti-La/SSB, anti-Sm, and anti-RNP, anti-Cardiolipin (anti-CL) and

anti-β2 Glycoprotein-I (anti-β2GPI) (ELISA assay), lupus anticoagulant (LA) according to the

guidelines of the International Society on Thrombosis and Hemostasis].

Patients were divided according to the presence of arthralgia and arthritis. Arthralgia was

defined as the presence of recurrent (minimum three episodes) or persistent (minimum 6

weeks) pain or stiffness (lasting at least 30 minutes) of at least one joint during patient’s clinical

history; arthritis as the occurrence of at least 1 episode of clinical synovitis (swelling, effusion

or tenderness) and at least 30 minutes of morning stiffness of at least 1 joint.

The activity of joint involvement was assessed by using the disease activity score on 28

joints (DAS28) and the swollen to tender ratio (STR), both previously applied in SLE cohorts

with joint involvement [14,15].

SLE Disease Activity Index 2000 (SLEDAI-2k) was used to assess disease activity, while

chronic damage was evaluated by SLICC Damage Index (SDI) [16,17].

Each subject underwent peripheral blood sample collection. Rheumatoid Factor (RF) and

ACPA were detected by using commercial ELISA kits (Diamedix, Miami, USA; DELTA BIO-

LOGICALS, Rome, Italy, respectively): the results were evaluated according to the manufac-

turers’ instructions. For ACPA, values above 25 U/mL were considered positive, while for RF,

values above 10 U/mL.

Anti-CarP antibodies were detected by a home-made ELISA using carbamylated foetal calf

serum (Ca-FCS) and non-modified FCS as antigens. Ca-FCS was obtained using the method

described by Shi et al [18]. A titration curve of two positive reference sera with medium–high

ELISA immunoreactivity for Ca-FCS was performed to show the performance of the tests and

to transform the absorbance of Ca-FCS to arbitrary units per milliliter (aU/mL). The cut-off

was established as the mean OD + 3 standard deviations (SD) of fifty-six age- and sex-matched

healthy subjects (blood donors) and then the obtained value was converted into aU/mL (corre-

sponding to 340 aU/mL).

US imaging was performed in all SLE patients by using a MyLab70 XVG machine (Esaote

S.p.A., Florence, Italy) equipped with a 6–18 MHz multifrequency linear array transducer. By

using a fixed 18-MHz frequency, bone surfaces of metacarpophalangeal (MCP) and proximal

interphalangeal (PIP) were studied on multiplanar scans, according with the EULAR US

guidelines [19]. Each joint was scanned in both the longitudinal and transverse planes from

the medial to lateral sides on both volar and dorsal aspects to enable maximum coverage of the
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joint surface area. At each joint, according with OMERACT definition, the presence of ero-

sions was registered with a dichotomous value (0/1), allowing the possibility to obtain a total

score, ranging from 0 to 20 [20].

Statistical analysis

The statistical analyses were performed using the version 5.0 of the GraphPad statistical

package (La Jolla, California). Normally distributed variables were summarized using the

mean ± SD, and non-normally distributed variables by the median and interquartile range

(IQR). Frequencies were expressed by percentage.

Machine learning

In order to understand factors leading to the development of erosive damage in SLE patients,

we employed machine learning techniques. In particular we used binary classification models,

which can be applied to learn a function that partitions of the data in two groups: in our case

the two groups were SLE patients with and without bone erosions. The separating function

depends on the features describing the data. Once a function has been identified, we can

deepen our understanding on the factors more influencing the function behavior and on the

modality by which the function relates to the different features.

One question naturally arises: what is the degree of trust we have in the so identified fac-

tors? Of course, the relevance of the factors which are extracted by looking at the separating

function is only good as the function itself. For this reason, a model has to be evaluated on

a test set, as it is usually done in machine learning. Better models will lead to more reliable

identified factors and the test accuracy can be used to measure the goodness of the obtained

ranking.

In light of the possible influence in the performance of machine learning models due to the

presence of irrelevant features in the data, especially when few cases (patients) are available, a

feature selection technique was employed, in order to select among all the available features a

smaller subset of meaningful ones.

After the application of feature selection, the model tailored on the selected subset of fea-

tures can be applied to gain insights on the relative importance of each selected feature. In the

following, we describe the Logistic Regression and Decision Treemodels for classification, and

the Forward Wrapper feature selection technique. We choose these two models for two rea-

sons: 1) their natural interpretability, a desirable characteristic when the goal is to assess the

importance of each feature in the outcome produced by the model and 2) more complex mod-

els, such as neural networks, usually have poor performances when the sample size is small.

Classification. A classification model is trained with a dataset of m examples[(xi, yi,

I = 1, . . ., m], where xi contains the variables (called features) of patient i and yi is a binary

variable which indicates whether such patient has developed erosion or not. Once a model is

trained, we can evaluate its generalization capabilities by testing it on unseen data.

Logistic Regression. Logistic Regression is a linear classifier which aims to find a function

hw,b such that

hw;bðx
iÞ � yi8i ¼ 1; : : :;m:

In particular, the function hw,b(x) takes the following form:

hw;b xð Þ ¼
1

1þ e� ðwTxþbÞ

where the weight vector w and bias b are learned parameters, tuned with an iterative
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procedure. To avoid over-fitting the training data, the model also employs a penalty term l(w),

to control the complexity of the model. Here we use l(w) = λ||w||2, where λ> 0 is an hyper-

parameter which has to be tuned during model selection. Such procedure is performed by eval-

uating different configurations of hyper-parameters on a held-out portion of the train set (or

several different portions, as in “leave-one-out” or k-fold). Here we select the hyper-parameter

configurations among a grid of candidates (grid-search).

After the training phase, the value hw,b(x) can be seen as a probability estimate on the

class of the input vector x: if hw,b(x)� 0.5; we classify x as positive; otherwise, we classify it as

negative.

The weight vector w of the fitted Logistic Regressionmodel can be used to measure the

“importance” of each feature. Several approaches to determine the relative importance of the

explanatory variables from the coefficients of a logistic regression model exists in the literature.

Here we follow the method proposed in [21].

Decision Trees. A Decision Tree is a non-parametric machine learning model. It is struc-

tured as a tree where each internal node, including the root, is a decision test over one of the

features. In particular, for continuous features, the test is of the form xi� alpha for some value

alpha For categorical features, instead, the test is of the form xi = C, where c is one of the possi-

ble categories. The training phase is responsible for choosing the right decision tests, i.e., the

feature that define a node and its associated “threshold”. After the tree is constructed, starting

from the root, an example x is recursively assigned to a subtree, according to the the different

decision tests that are applied at each visited node. In the end,x will be assigned to one of the

terminal nodes of the tree, also called “leaves”. Each leaf has an associated response y, chosen

with a majority vote over the values yi corresponding to the training examples xi that end up in

the leaf in question. A number of different regularization techniques can be used. For example,

we can limit the maximum depth of the tree, and the minimum number of training examples

that define a leaf. These techniques help in reducing over-fitting, which is of real concern

given the fact that decision trees are non-parametric. The maximum depth and the minimum

number of examples in a leaf are hyper-parameters that, as in the logistic regression case, must

be tuned during model selection. Decision Trees are also naturally interpretable. The features

appear in a hierarchical fashion in the tree, where the features closer to the root can be seen as

more important than the ones appearing in the lower part of the tree. Moreover, a tree implic-

itly performs feature selection: some features may not be present in any of the nodes of the

tree.

Feature selection. Starting from the entire set of features, the feature selection is per-

formed with the aim of selecting a subset of relevant features. The main reasons concern the

simplification of the resulting model, the individuation of the most important features and the

achievement of a higher generalization capability of the machine learning models.

Since an extensive search among all 2n possible subsets of features, where n is the total num-

ber of features, is generally impracticable, several methods have been proposed in the machine

learning literature in order to overcome this limitation. These methods can be divided into

three main classes [22]:

• Filter Methods: the selection of the features does not rely on the use of a model and gener-

ally a score is assigned to each feature in order to obtain a ranking.

• Wrapper Methods: several subsets of features are evaluated and compared by assigning

a score based on the accuracy achieved with a predictive model; among methodical, stochas-

tic and heuristic search processes of the subsets; an example is the forward (or backward)

method where features are iteratively added (or removed) based on the obtained model

accuracy.
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• Embedded Methods: this class of methods tries to combine the advantages of both previous

methods, in which feature selection is embedded in the learning process.

The Forward Wrapper belongs to the class of wrapper methods. It starts with an empty set

of features. Then, at each iteration, all the features not included in the current feature set are

added independently and the one which leads to the best performance of the employed predic-

tive model is inserted.

The process is not stopped in case the insertion of a new feature leads to a worse perfor-

mance score. Thus, the process requires an overall number of steps equal to the total number

of features. At the end, the overall best score achieved through iterations is considered and the

correspondent subset of features is chosen as the result of the feature selection.

Results

We enrolled 120 SLE patients with joint involvement [M/F 8/112, median age 47.0 years

(IQR 15.0); median disease duration 120.0 months (IQR 177.0)]. Eighty-eight patients (73.3%)

referred at least one episode of arthritis during disease history. The main clinical, laboratory

and therapeutic features of the whole cohort were described in Table 1.

At the time of the study enrollment, a median SLEDAI-2k of 2.0 (IQR 4.0) was registered.

Concerning the joint involvement activity, the whole population showed a median DAS28

of 3.42 (IQR 2.2) and a median STR of 0.08 (IQR 0.68). By using US assessment, an erosive

Table 1. Demographic features, clinical and laboratory manifestations and treatment of 120 SLE patients.

Clinical manifestations—N (%)

Skin involvement 88 (73.3)

Serositis 21 (17.5)

Hematological manifestations 72 (60.0)

Neuropsychiatric involvement 11 (9.2)

Renal involvement 28 (23.3)

Laboratory manifestations—N (%)

Anti-DNA 86 (71.7)

Anti-Sm 19 (15.8)

Anti-SSA 43 (35.8)

Anti-SSB 26 (21.7)

Anti-RNP 17 (14.2)

Anti-Cardiolipin IgG/IgM 44 (36.7)

Anti-β2 Glycoprotein I IgG/IgM 30 (25.0)

Lupus Anticoagulant 34 (28.3)

Low C3/C4 levels 66 (55.0)

Treatments—N (%)

Glucocorticoids 108 (90.0)

Hydroxychloroquine 112 (93.3)

Cyclosporine A 28 (23.3)

Methotrexate 41 (34.2)

Cyclophosphamide 6 (5.0)

Mycophenolate Mofetil 31 (25.8)

Azathioprine 26 (21.7)

Rituximab 5 (4.2)

Belimumab 5 (4.2)

https://doi.org/10.1371/journal.pone.0207926.t001
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damage was identified in 31 SLE patients (25.8%) with a mean ±SD of 0.7±1.6 (range 1–9). All

these patients referred at least one episode of clinically evident arthritis.

Moving to the application of machine learning for the characterization of the erosive dam-

age in SLE patients, we evaluated the generalization capabilities of the Logistic Regression and

Decision Trees using 100 Monte Carlo repeated trials. Namely, we partition the data in 80%

train and 20% test, preserving the positive-negative ratio, train the model using the training

set and evaluate such model on the test set. We used two different metrics to evaluate the mod-

els, the area under the ROC curve (AUC) and the Matthews Correlation Coefficient (MCC),

defined as

MCC ¼
TPxTN � FPxFN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ2

p ;

where TP, TN, FP, FN are true positives, true negatives, false positives and false negatives,

respectively. Both metrics are suitable for binary classification when the number of positives

and negatives are of different sizes. AUC takes values in [0, 1] while MCC in [-1, 1]. Specifi-

cally, random predictions yield an AUC and MCC equal to 0.5 and 0, respectively, while for

prefect predictions we have both metrics equal to 1.

The process is repeated 100 times collecting, at each trial, AUC and MCC values. At the

end, we extract mean and confidence intervals for both metrics.

To choose the hyper-parameters of the model (at each trial) we employed, instead, a “leave-

one-out” procedure since the number of examples that are available for training after the initial

split is limited. Such procedure is, in fact, often employed when the number of available data is

limited, thus, making it impracticable to separate a sufficiently large train-set to build robust

models and a validation-set for evaluating their performances. “leave-one-out” procedure

overcomes these problems excluding a single example from the train-set, training the model

on the slightly reduced dataset and computing the prediction of the model on the example that

was excluded.

In the first experiment, we employed the implementations of Logistic Regression and Deci-
sion Tree available in the 0.18 version of the scikit-learn library, using all the available features.

The results are reported in Table 2.

Next, in order to improve the generalization capability, we used the Forward Wrapper
method with both Logistic Regression and Decision Trees. We used MCC as the metric to evalu-

ate each subset of features at each step of the algorithm. Table 3 reports the numerical results

for the subset of features selected by Forward Wrapper.

Table 2. AUC and MCC values (mean ± CI) obtained by Logistic Regression and Decision Tree.

Model AUC [0, 1] MCC [-1, 1]

Logistic Regression 0.728±0.02 0.257±0.04

Decision Tree 0.719±0.02 0.274±0.04

https://doi.org/10.1371/journal.pone.0207926.t002

Table 3. Comparison between Logistic Regression and Decision Trees with the ForwardWrapper method.

Model Feature selection AUC [0, 1] MCC [-1, 1]

Logistic Regression Forward Wrapper 0.806±0.02 0.481±0.03

Decision Tree Forward Wrapper 0.752±0.02 0.301±0.04

https://doi.org/10.1371/journal.pone.0207926.t003
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We note that the employment of the feature selection approach resulted in an improvement

of the generalization capability both in terms of AUC and MCC for both models, although

Logistic Regression performs better w.r.t. both metrics.

The mean MCC score for each step of the feature selection process, for Logistic Regression,

is reported in Supplementary material (S1 Fig). The subset of features selected by the algorithm

includes anti-CarP, ACPA, arthralgia, Jaccoud’s arthropathy, anti-Sm, and neurological

manifestations.

Since the obtained results in terms of generalization capability are satisfactory, the Logis-
tic Regressionmodel combined with the feature selection is able to characterize well the

relation between the erosive damage and the selected features. Thus, such model can be con-

fidently used to evaluate the relevance of each feature in the development of erosive damage

in SLE patients, which is the primary aim of the analysis. To do this, we considered the fea-

tures selected by the Forward Wrapper and Logistic Regression and we trained a new model

on all the available data obtaining a weight vector. The hyper-parameters for this final

model have been chosen with a leave-one-out scheme performed on all the available exam-

ples. The relative importance of the selected feature is computed analyzing such weight

vector. Fig 1 reports the relative importance (%) of the selected features. Note that the coeffi-

cients of the model can be further used to determine if a feature is positively (blue colored

in Fig 1) associated with the development of bone erosion or negatively associated (orange

colored).

As reported in Fig 1, anti-CarP, ACPA and arthralgia resulted the most relevant features for

our model. We note that while a patient with high levels of anti-CarP and ACPA will be likely

classified as positive by the model, arthralgia, instead, has an inverse effect, confirming the

observation that only SLE patients with at least one arthritis episode develop erosive damage.

The combination of the 6 features reported in Fig 1 (anti-CarP, ACPA, Jaccoud’s arthropa-

thy, anti-Sm, arthralgia, neurological manifestations) identified an AUC value of 0.806±0.02

and a MCC value of 0.481±0.03. To compare our results whit those obtained by Verheul and

colleagues, we also performed a test with the three antibodies anti-CarP, ACPA and RF [3].

This test showed a decrease in AUC (0.676±0.02) and MCC value (0.22±0.05).

To summarize, the overall process applied in the present study consisted in

1. selecting the best subset of features with the Forward Wrapper coupled with Logistic Regres-
sion and Decision Tree;

2. fitting the best model on all the available data;

Fig 1. Relative importance (%) of the selected features. Blue colored ones are positively associated with the development of bone erosions while

orange ones are negatively associated.

https://doi.org/10.1371/journal.pone.0207926.g001
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3. use such model to assess the relative importance of the selected feature.

The complete process is sketched in Fig 2.

Discussion

To the best of our knowledge, this is the first study aimed at applying theMachine Learning
models in order to identify factors associated with US-detected erosive bone damage in a large

SLE cohort and their relevance in determining this specific phenotype.

In particular, decision trees model was compared with logistic regression, in conjunction

with forward wrapper feature selection.

Thanks to this approach, we confirm the relevance of ACPA and anti-CarP in determining

SLE-related erosive damage, suggesting their pathogenic role in the development of this phe-

notype. In particular, these autoantibodies showed a positive association and a similar relative

importance, which was higher than 40% for both autoantibodies.

These results reinforce the role of these autoantibodies as biomarkers of bone damage, sug-

gesting a pathological link between their presence and bone erosions development.

Despite the high frequency of SLE-related joint involvement, data concerning pathogenic

mechanisms and specific biomarkers are lacking. In the last years, moving from evidences

deriving from RA, the role of post-translational modifications has been suggested: in particu-

lar, citrullination and carbamylation could be able to induce neo-antigens generation and

autoantibodies production in genetically susceptible individuals [23].

Indeed, ACPA have been frequently observed in SLE patients with X-ray detected erosive

arthritis [1,2,4,5]. Nonetheless, a relevant percentage of SLE patients with erosive arthritis is

ACPA negative, suggesting a different pathogenic scenario. In order to fill this space, also anti-

CarP have been evaluated in SLE cohorts. In a previous study, we found the presence of anti-

CarP in 46.1% of SLE patients with joint involvement, a prevalence similar to that identified in

RA patients and significantly higher respect to healthy controls [24]. Moreover, Ziegelasch and

colleagues identified an association between anti-CarP and radiographically detected erosions

in a small cohort of SLE patients [6].

By using machine learning techniques, in particular the Forward Wrappermethod, we con-

firmed this association, and, interestingly, we estimated the weight of ACPA and anti-CarP in

determining a more aggressive phenotype in SLE-related joint involvement. These results rein-

force the need to better understand the pathogenic mechanisms that could explain this associa-

tion. We could hypothesize that ACPA and anti-CarP exert an action on osteoclasts, leading to

erosive damage development.

Furthermore, a mild relevance was identified for the presence of Jaccoud’s arthropathy in

erosive damage development. This result is in agreement with our previous study specifically

evaluating SLE patients with this arthropathy. We found US-detected erosive damage in

almost 60% of patients evaluated, observed prevalently at level of first and second MCP joint;

moreover, the erosive damage was significantly associated with ACPA [25]. The low relative

Fig 2. Complete pipeline of the method.

https://doi.org/10.1371/journal.pone.0207926.g002
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importance obtained for this feature could be related to its low frequency, ranging from 2 to

35% in described SLE cohorts [25].

On the other hand, if a patient did not present arthritis but only arthralgia during the clini-

cal history, it is unlikely that bone erosions will develop. This is in agreement with previous

studies performed on cohorts of patients with inflammatory arthritis and other diseases such

as inflammatory bowel disease, in which erosions could not be detected by MRI [26].

Of note, in the present study we evaluated the erosive damage by using US assessment: this

imaging technique demonstrated a higher sensitive in comparison of radiographic assessment

in the evaluation of bone erosions at level of MCP and PIP in RA patients, especially during

early disease phase [27].

A limit of this study is the cross-sectional design. The realization of a longitudinal analysis,

in fact, is certainly needed in order to further understand the importance of the different prog-

nostic factors of SLE-related erosive damage. Moreover the relatively small sample size dis-

courages the use of more complex machine learning models that, when trained with large

datasets, could arguably perform better than the simpler methods we consider here. Finally a

larger sample size could surely lead to more robust results.

In conclusion, despite the small sample size and the cross-sectional design of this study, the

application of machine learning models provides a new point of view in the research of bio-

markers for SLE-related erosive arthritis, confirming the possible role of ACPA and anti-CarP

on this specific phenotype.
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