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Abstract: In this article, we derive an approximate asymptotic analytical expression for
the long-time chronoamperometric current response at an inlaid microband (or laminar)
electrode. The expression is applicable when the length of the microband is much greater
than the width, so that the diffusion of the electrochemical species can be regarded as
two-dimensional. We extend the previously known result for the diffusion-limited current
response (Aoki, K. et al. J. Electroanal. Chem. 1987, 225, 19–32 and Phillips, C.G. J.
Electroanal. Chem. 1992, 333, 11–32) to accommodate quasi-reversible reactions and
unequal diffusion coefficients of the oxidant and the reductant. Comparison with numerical
calculations validates the analytical expression, and we demonstrate that unequal diffusion
coefficients can substantially change the current response. Finally, we discuss the form of the
long-time current response for a one-step, one-electron redox reaction if the rate constants
are modelled in the Butler–Volmer framework, and indicate the importance of choosing the
width of the microband appropriately to allow accurate experimental determination of the
standard kinetic rate constant and the electron transfer coefficient.

Keywords: chronoamperometry; two-dimensional; electrode; band; microband;
lamina; voltammetry
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1. Introduction

Chronoamperometry is a widely used voltammetric technique [1], whereby the potential at an
electrode is initially stepped from a level at which no current is flowing to a level at which the redox
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reaction at the electrode can progress and a current starts to flow. The current is generated by the
exchange of n electrons at the electrode surface according to the following redox reaction with forward
and backward rate constants, k̃f and k̃b (m·s−1):

Ox + n e
k̃f


k̃b

Red (1)

The information accessible from the chronoamperometric current response can be enhanced by utilising
microelectrodes, and in particular ultramicroelectrodes. In addition to reducing the distorting influences
of double-layer capacitance and ohmic drop on the Faradaic current [2,3], the small dimensions of
the electrodes allow access to information about fast redox kinetics that would previously have been
inaccessible [4]. Microelectrodes can be fabricated in many different geometries, such as inlaid disks,
inlaid ring-disks and mounted hemispheres, but here we consider an inlaid microband [5,6] such that its
length, L̃, is much larger than its width, w̃ = 2d̃, as depicted in Figure 1. If the length L̃ is allowed
to be macroscopic, but the width w̃ is kept microscopic, then the overall current response through the
electrode is increased, whilst the advantages of microelectrodes are retained. From a modelling point
of view, the advantage of assuming L̃ � d̃ is that effects due to the ends of the band can be neglected,
and diffusion of the oxidant and the reductant can be regarded as two-dimensional (provided that the
time-scales under consideration are such that t̃ � L̃2/D̃, where D̃ is the typical size of the diffusion
coefficients of the oxidant and the reductant, D̃O and D̃R). By considerations of symmetry, the current
through an equivalent laminar electrode in free space is twice that of the inlaid band electrode, since it
must have identical currents flowing through its upper and lower surfaces.

Figure 1. Cartoon of an inlaid microband electrode of width w̃ = 2d̃ and length L̃. The
axial length, L̃, of the electrode is much greater than the width, w̃, i.e., L̃ � w̃. Then, for
time-scales t̃ such that t̃� L̃2/D̃, where D̃ is the typical size of the diffusion coefficients of
the redox species, this allows the two-dimensional-diffusion approximation to be used, since
contributions to the current from the three-dimensional diffusion at the ends are negligible.

Electrode

L̃

Insulator Insulator

w̃ = 2d̃

The majority of the theoretical modelling for the current response at an inlaid microband electrode
has involved numerical simulations, using a variety of different techniques [7–21]. The geometry of
the electrode makes it more difficult to analyse analytically, due to the discontinuity in the boundary
conditions at the edge of the electrode. Oldham [22] accounted for the edge effects to obtain an
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asymptotic expression for the short-time behaviour in the diffusion-limited regime. Subsequently, Aoki
and co-workers developed analytical expressions using the Wiener–Hopf method for the short- [23] and
long-time [24] chronoamperometric current responses in the same regime. Phillips and Jansons [25] also
derived an analytical expression for the short-time current response using a Brownian motion model for
the diffusion of the redox species, and, as part of a more general article on two-and three-dimensional
diffusion in microelectrode chronoamperometry, Phillips [26] used matched asymptotic expansions to
derive an expression for the long-time current response, which agreed with the first term in the series
derived by Aoki et al. [24]. In both articles [25] and [26], the inlaid microband is a specific case of
more general formulae that can also be applied to many other electrode geometries. Since the short-and
long-time asymptotic expressions break down at intermediate times, Szabo et al. [27] and Aoki et al. [28]
have developed approximate analytical expressions to bridge this gap.

All of the expressions derived previously are only valid for the diffusion-limited regime, either due to
extreme polarization of the electrode, or when the diffusion coefficients of the oxidant and the reductant
are equal, D̃O = D̃R = D̃, and the following non-dimensional reaction rate (cf. [1]) is effectively infinite:

β =
k̃f d̃

D̃O

+
k̃bd̃

D̃R

(2)

To exploit the capacity of microelectrodes to access information about fast redox kinetics, it is invaluable
to understand analytically the effect of the kinetics on the current response. It is also important that the
theory accounts for unequal diffusion coefficients of the oxidant and reductant, since this inequality can
be significant (see for example [29], where the diffusion coefficient ratio for hexaammineruthenium in
different electrolytes is measured to be ≈ 0.71). In this article, we include the effects of finite kinetics
and unequal diffusion coefficients, and derive an asymptotic analytical expression for the long-time-
dependent Faradaic chronoamperometric current response due to two-dimensional diffusion at an inlaid
microband electrode. The solution is valid for time-scales such that d̃2/D̃ � t̃� L̃2/D̃, where D̃ is the
typical size of the diffusion coefficients of the oxidant and the reductant, i.e., it is valid for time-scales
much larger than the diffusive time-scale defined by the width of the electrode, but much shorter than
the diffusive time-scale defined by the length of the electrode, when the assumption of two-dimensional
diffusion ceases to be valid. For the reader who wishes to skip the mathematical derivation, the final
expression for the long-time Faradaic current per unit axial length of the electrode (A·m−1) is detailed
in Equation (57), and the details of the theoretical problem are displayed in Figure 2. The current
depends on a function Q(β), which is found at each value of the parameter β (given by Equation (2))
by solving the integral equation detailed in Equation (41) and substituting the result into Equation (42),
or equivalently by solving the boundary value problem given in Equation (70). This function must be
found numerically, and we provide a working curve for Q(β) for 10−2 ≤ β ≤ 103 in the Supplementary
Information. We also derive explicit asymptotic formulae forQ(β) when β is small or large. Comparison
with the results of numerical calculations validates the analytical expression for the current response, and
we demonstrate that the effect of unequal diffusion coefficients can be significant. Finally, we discuss
the implications of using the Butler–Volmer framework [1] to model the rate constants of a one-step,
one-electron redox reaction, and indicate that the width of the electrode must be chosen carefully to
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access accurate information about the standard kinetic rate constant and the electron transfer coefficient
from the long-time current response.

2. Theory

The theoretical problem is depicted in Figure 2. We consider two species, Ox and Red, diffusing
in two-dimensions above an inlaid band electrode with its centre situated at x̃ = 0, z̃ = 0 and with
width w̃ = 2d̃ (m). Throughout the article, tildes indicate dimensional entities. On the surface of
the electrode, the species undergo the redox reaction described in Equation (1), and we assume that
the potential of the electrode surface is held constant after an initial step, so that k̃f and k̃b are both
constant. Neglecting any effects due to migration and convection, then the concentrations of Ox and Red,
C̃O(x̃, z̃, t̃) and C̃R(x̃, z̃, t̃) (mol·m−3), satisfy the diffusion equation in z̃ > 0 with unequal constant
diffusion coefficients D̃O and D̃R (m2·s−1). Hence

D̃O∇̃2C̃O =
∂C̃O

∂t̃
, D̃R∇̃2C̃R =

∂C̃R

∂t̃
, in z̃ > 0 (3)

Initially the bulk concentrations of each species are constant everywhere:

C̃O(x̃, z̃, 0) = C̃∗O, C̃R(x̃, z̃, 0) = C̃∗R, in z̃ > 0 (4)

We assume that the bulk concentrations remain undisturbed far away from the electrode as the redox
reaction at the electrode progresses, so that the far-field boundary conditions are:

C̃O → C̃∗O, C̃R → C̃∗R, as x̃2 + z̃2 →∞ (5)

On the insulating surface, there is no flux of both species:

∂C̃O
∂z̃

=
∂C̃R
∂z̃

= 0, on | x̃ |> d̃, z̃ = 0 (6)

On the electrode surface, the boundary conditions are determined by the redox reaction in Equation (1)
and conservation of matter:

D̃O
∂C̃O
∂z̃

= k̃f C̃O − k̃bC̃R,

D̃O
∂C̃O
∂z̃

= −D̃R
∂C̃R
∂z̃

,

 on | x̃ |≤ d̃, z̃ = 0 (7)

The Faradaic current per unit axial length of the electrode, Ĩ(t̃) (A·m−1), is given by

Ĩ(t̃) = −nF̃ D̃O

∫ d̃

−d̃

∂C̃O
∂z̃

(x̃, 0, t̃) dx̃ (8)

where F̃ is Faraday’s constant (96,485 C·mol−1) and we recall that n is the number of electrons
transferred in the redox reaction.
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Figure 2. Schematic of the theoretical two-dimensional diffusion problem to be solved
for the Faradaic current through an inlaid microband electrode. Two redox species with
concentrations C̃O and C̃R (mol·m−3) diffuse with unequal diffusion coefficients D̃O and
D̃R (m2·s−1) above the electrode. Initially the bulk concentrations are uniform everywhere
and equal to C̃∗O and C̃∗R; we assume these remain undisturbed as x̃2 + z̃2 → ∞. On the
surface of the electrode, | x̃ |≤ d̃, z̃ = 0, the boundary conditions model the redox reaction
in Equation (1) and conservation of matter. The Faradaic current per unit axial length, Ĩ(t̃)

(A·m−1), through the electrode is proportional to the integral of the diffusive flux at the
electrode surface.

Insulating surface:

Electrode surface:

Faradaic current per unit axial length:

x̃

D̃O∇̃2C̃O =
∂C̃O

∂t̃
D̃R∇̃2C̃R =

∂C̃R

∂t̃

As x̃2 + z̃2 →∞ : C̃O → C̃∗O, C̃R → C̃∗R

D̃O
∂C̃O
∂z̃

= k̃fC̃O − k̃bC̃R

D̃O
∂C̃O
∂z̃

= −D̃R
∂C̃R
∂z̃

z̃ = 0

x̃ = −d̃ x̃ = d̃

∂C̃O
∂z̃

=
∂C̃R
∂z̃

= 0

| x̃ |≤ d̃, z̃ = 0

Ĩ(t̃) = −nF̃ D̃O

∫ d̃

−d̃

∂C̃O
∂z̃

(x̃, 0, t̃) dx̃

| x̃ |> d̃, z̃ = 0

z̃

To non-dimensionalise the problem, we choose the following scalings, where d̃ is half the width of
the band:

x̃ = d̃x, z̃ = d̃z, t̃ =
d̃2

D̃
t (9a)

D̃O = D̃DO, D̃R = D̃DR, k̃f =
D̃O

d̃
kf , k̃b =

D̃O

d̃
kb (9b)

C̃O = C̃∗O −

(
kf C̃

∗
O − kbC̃∗R
β

)
CO, C̃R = C̃∗R −

(
kf C̃

∗
O − kbC̃∗R
β

)
CR (9c)

Ĩ = nF̃ D̃O

(
kf C̃

∗
O − kbC̃∗R
β

)
I (9d)

Here D̃ is the typical size of the diffusion coefficients of the oxidant and the reductant, D̃O and
D̃R, and β is given by Equation (2). We remark that we have scaled time with the diffusive time-scale
associated with the dimensions of the width of the electrode; over time-scales of this order, the diffusion
can be regarded as two-dimensional.
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Then, in terms of the non-dimensional variables, the problem becomes:

DO∇2CO =
∂CO
∂t

, DR∇2CR =
∂CR
∂t

, in z > 0, t > 0 (10a)

CO, CR = 0, in z > 0, t = 0 (10b)

CO, CR → 0, as x2 + z2 →∞ (10c)
∂CO
∂z

=
∂CR
∂z

= 0, on | x |> 1, z = 0 (10d)

∂CO
∂z

=

−
DR

DO

∂CR
∂z

,

kfCO − kbCR − β,
on | x |≤ 1, z = 0 (10e)

where β is given by Equation (2). The dimensionless Faradaic current per unit axial length through the
electrode is given by

I(t) =

∫ 1

−1

∂CO
∂z

(x, 0, t) dx (11)

2.1. Asymptotic Solution for the Long-time Transient Behaviour

To solve this problem, we take the Laplace transform in time of the expressions detailed in
Equation (10) to obtain:

DO∇2CO = sCO, DR∇2CR = sCR, in z > 0 (12a)

CO, CR → 0, as x2 + z2 →∞ (12b)

∂CO

∂z
=
∂CR

∂z
= 0, on | x |> 1, z = 0 (12c)

∂CO

∂z
=


−DR

DO

∂CR

∂z
,

kfCO − kbCR −
β

s
,

on | x |≤ 1, z = 0 (12d)

The long-time behaviour, t � 1, can be deduced from the small s behaviour, |s| � 1, in Laplace
transform space; in dimensional terms, this corresponds to time-scales such that t̃ � d̃2/D̃. Since the
term β/s in the redox reaction boundary condition on the electrode, detailed in Equation (12d), blows
up as s→ 0, we re-scale the problem by setting CO,R = cO,R/s, which gives:

DO∇2cO = scO, DR∇2cR = scR, in z > 0 (13a)

cO, cR → 0, as x2 + z2 →∞ (13b)
∂cO
∂z

=
∂cR
∂z

= 0, on | x |> 1, z = 0 (13c)

∂cO
∂z

=

−
DR

DO

∂cR
∂z

,

kfcO − kbcR − β,
on | x |≤ 1, z > 0 (13d)

We use the method of matched asymptotic expansions to solve the problem given by Equation (13)
approximately for | s |� 1. In an inner region near the electrode, over O(1) length-scales, the O(s)
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terms on the right-hand side of the governing equations in Equation (13a) can be neglected. However
these terms cannot be neglected in an outer region when the length-scales are O(s−1/2), such that

x = X/
√
s, z = Z/

√
s (14)

In this outer region, the terms on both sides of the governing equations in Equation (13a) are of
similar size. The method of matched asymptotic expansions requires us to search for solutions in the
inner and outer regions, and then to match them in an intermediate region where the two solutions have
an overlapping region of validity.

In the inner region, we denote the approximate solutions by hO,R(x, z, s), and they satisfy Laplace’s
equation and the boundary conditions on the surface of the electrode and the insulator:

∇2hO = 0, ∇2hR = 0, in z > 0 (15a)

∂hO
∂z

=
∂hR
∂z

= 0, on | x |> 1, z = 0 (15b)

∂hO
∂z

=

−
DR

DO

∂hR
∂z

,

kfhO − kbhR − β,
on | x |≤ 1, z = 0 (15c)

In the outer region, we denote the approximate solutions by HO,R(X, Z, s), and they satisfy the
modified Helmholtz equations:

DO∇2HO = HO, DR∇2HR = HR, in Z > 0 (16a)

with boundary conditions
HO, HR → 0, as X2 + Z2 →∞ (16b)

Then the problem is solved approximately by matching the inner solutions, hO,R, to the outer solutions
HO,R.

The solutions to the inner problem given by Equation (15) have the following form:

hO(x, z, s) = A0 +
∞∑
i=1

Oi(x, z)

log(
√
s)i

(17a)

hR(x, z, s) =
DO

DR

[
B0 +

∞∑
i=1

Ri(x, z)

log(
√
s)i

]
(17b)

where A0 and B0 are constants, and the solutions for Oi and Ri, that allow the conservation of matter
boundary condition in Equation (15c) to be satisfied, can be written using a Green’s function as:

Oi(x, z) =
1

2π

∫ 1

−1

∂Oi

∂z
(u, 0) log

(
(x− u)2 + z2

)
du+ Ai (18)

Ri(x, z) = − 1

2π

∫ 1

−1

∂Oi

∂z
(u, 0) log

(
(x− u)2 + z2

)
du+Bi (19)

where again Ai and Bi are constants. The redox reaction boundary condition on the electrode surface
given by Equation (15c) implies that:

kfA0 − kb
DO

DR

B0 = β (20)
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and that the following integral equations must be satisfied on the surface of the electrode for i ≥ 1:

∂Oi

∂z
(x, 0) =

β

π

∫ 1

−1

∂Oi

∂z
(u, 0) log | x− u | du+ kfAi − kb

DO

DR

Bi, for | x |≤ 1 (21)

The solutions to the outer problem in Equation (16) are given by (writing R2 = X2 + Z2):

HO(X, Z, s) =
∞∑
i=1

Ci
log(
√
s)i
K0

(
R√
DO

)
(22a)

HR(X, Z, s) =
DO

DR

∞∑
i=1

Di

log(
√
s)i
K0

(
R√
DR

)
(22b)

where Ci and Di are constants, and K0(·) is a modified Bessel function of the second kind [30]. We
remark that the branch cut of

√
s in the relation expressed in Equation (14) must be taken along the

negative real axis, so that the vanishing boundary conditions given by Equation (16b) at infinity are
satisfied. The unknown constants in the inner and outer solutions, Ai, Bi, Ci and Di, must be found by
asymptotic matching.

We match the inner and outer solutions using the intermediate variable technique [31]:

η = r
√
s
α

= R
√
s
−(1−α) (23)

where r2 = x2 + z2 and 0 < α < 1. Written in terms of the intermediate variable η, the functions Oi and
Ri in the inner solution detailed in Equation (17), and given by the expressions in Equations (18) and
(19), become:

Oi =
1

π

(
log η − α log

√
s
) ∫ 1

−1

∂Oi

∂z
(u, 0) du+ Ai +O(

√
s
α
) (24)

Ri = − 1

π

(
log η − α log

√
s
) ∫ 1

−1

∂Oi

∂z
(u, 0) du+Bi +O(

√
s
α
) (25)

whilst the modified Bessel functions in the outer solutions expressed in Equation (22) become:

K0

(
R√
DO

)
= −γ − (1− α) log

√
s− log η + log

√
DO + log 2 +O(s(1−α) log s) (26)

K0

(
R√
DR

)
= −γ − (1− α) log

√
s− log η + log

√
DR + log 2 +O(s(1−α) log s) (27)

where γ is Euler’s constant.
In the intermediate region, therefore, the inner expansion can be written:

hO ∼ A0 −
α

π

∫ 1

−1

∂O1

∂z
(u, 0) du

+
∞∑
i=1

(
−α
π

∫ 1

−1

∂Oi+1

∂z
(u, 0) du+

log η

π

∫ 1

−1

∂Oi

∂z
(u, 0) du+ Ai

)
(log
√
s)−i (28a)

hR ∼
DOB0

DR

+
αDO

πDR

∫ 1

−1

∂O1

∂z
(u, 0) du

− DO

DR

∞∑
i=1

(
−α
π

∫ 1

−1

∂Oi+1

∂z
(u, 0) du+

log η

π

∫ 1

−1

∂Oi

∂z
(u, 0) du−Bi

)
(log
√
s)−i (28b)
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and the outer expansion becomes:

HO ∼ −C1(1− α) +
∞∑
i=1

(
Ci(log 2− γ − log η + log

√
DO)− (1− α)Ci+1

)
(log
√
s)−i (29a)

HR ∼−
D1DO

DR

(1−α)+
DO

DR

∞∑
i=1

(
Di(log 2− γ − log η+log

√
DR)−(1−α)Di+1

)
(log
√
s)−i (29b)

Comparing similar powers of (log
√
s)−i in Equations (28) and (29) gives at O(1):

A0 −
α

π

∫ 1

−1

∂O1

∂z
(u, 0) du = −C1(1− α) (30)

B0 +
α

π

∫ 1

−1

∂O1

∂z
(u, 0) du = −D1(1− α) (31)

which implies that:

A0 = −B0 = −C1 = D1 =
1

π

∫ 1

−1

∂O1

∂z
(u, 0) du (32)

Using the condition given by Equation (20), we find that:

1

π

∫ 1

−1

∂O1

∂z
(u, 0) du = 1 (33)

so that
A0 = −B0 = −C1 = D1 = 1 (34)

At O(log
√
s)−i (i = 1, 2, 3, . . .), the matching process between Equations (28) and (29) gives:

−α
π

∫ 1

−1

∂Oi+1

∂z
(u, 0) du+

log η

π

∫ 1

−1

∂Oi

∂z
(u, 0) du+Ai=Ci(log 2−γ− log η+log

√
DO)−(1−α)Ci+1

(35)
α

π

∫ 1

−1

∂Oi+1

∂z
(u, 0) du−log η

π

∫ 1

−1

∂Oi

∂z
(u, 0) du+Bi=Di(log 2−γ− log η+log

√
DR)−(1−α)Di+1

(36)

Equations (35) and (36) imply firstly that:

Ci = −Di = − 1

π

∫ 1

−1

∂Oi

∂z
(u, 0) du, for i ≥ 1 (37)

and, secondly, that:

Ci+1 = Ci(log 2− γ + log
√
DO)− Ai,

Di+1 = Di(log 2− γ + log
√
DR)−Bi,

}
for i ≥ 1 (38)

Now we note that the conditions given by Equations (32) and (37) provide solvability conditions for the
integral equations in Equation (21), namely that:

1

π

∫ 1

−1

∂Oi

∂z
(u, 0) du = −Ci, for i ≥ 1 (39)
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Writing
∂Oi

∂z
(x, 0) = β−1

(
kfAi − kb

DO

DR

Bi

)
F (x) (40)

then the integral equations in Equation (21) and solvability conditions given by Equation (39) become:

F (x) =
β

π

∫ 1

−1

F (u) log | x− u | du+ β, for | x |≤ 1 (41)

with
1

π

∫ 1

−1

F (u) du =
1

Q(β)
(42)

where

Q(β) = −β−1C−1
i

(
kfAi − kb

DO

DR

Bi

)
(43)

Solution of the integral equation given in Equation (41) for F (x) and substitution into Equation (42)
determines Q(β) as a function of β, and then Equation (43) gives another relationship between Ai, Bi

and Ci.
Eliminating Ai, Bi and Di from Equations (37), (38) and (43), we find a recurrence relation for Ci:

Ci+1 =

(
log 2− γ +Q(β) + log

√
DO + kbβ

−1DO

DR

log

√
DR

DO

)
Ci (44)

with initial condition C1 = −1 from Equation (34). This has solution for i ≥ 1 given by:

Ci = −

(
log 2− γ +Q(β) + log

√
DO + kbβ

−1DO

DR

log

√
DR

DO

)i−1

(45)

Finally, the Laplace transform of the current per unit axial length, I(s), is given by the following:

I(s) ∼ 1

s

∫ 1

−1

∂hO
∂z

(u, 0, s) du (46)

∼ 1

s

∞∑
i=1

∫ 1

−1

∂Oi

∂z
(u, 0) du(log

√
s)−i (47)

∼ −π
s

∞∑
i=1

Ci(log
√
s)−i (48)

where we have used the expression for hO given in Equation (17a), and have employed the relationship
given in Equation (39). Substitution of the solution for Ci detailed in Equation (45) into Equation (48)
gives:

I(s) ∼ π

s

∞∑
i=1

(
log 2− γ +Q(β) + log

√
DO + kbβ

−1DO

DR

log

√
DR

DO

)i−1

(log
√
s)−i (49)

∼
(π
s

) 1

log
√
s−

(
log 2− γ +Q(β) + log

√
DO + kbβ−1DO

DR
log
√

DR

DO

) (50)
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This can be re-written in similar form to the solution in Phillips [26]:

I(s) ∼ −
(

2π

s

)
1

log(s−1) + φ+ logDO

(51)

where φ is given by:

φ = 2 (log 2− γ +Q(β)) + kbβ
−1DO

DR

log

(
DR

DO

)
(52)

Then Phillips [26] shows that this can be inverted to give the long-time current as:

I(t) ∼ −2πI(eφDOt) (53)

where

I(a) =

∫ ∞
0

exp(−au)

u
(

(log u)2 + π2
) du (54)

Integration by parts (to remove the integrable singularity at u = 0), and the change of variable v = au,
casts Equation (54) into a more amenable form for numerical evaluation:

I(a) =
1

2
+

1

π

∫ ∞
0

e−varctan
[

1

π
log(v/a)

]
dv (55)

Phillips [26] tabulated values of the function I(a) and showed that it can be expanded asymptotically in
inverse powers of the logarithm for large a, such that

I(a) = (log a)−1 − γ(log a)−2 −
(
π2

6
− γ2

)
(log a)−3 +O(log a)−4 (56)

where γ is Euler’s constant. Although this expression is simpler to implement, Phillips [26] emphasises
that the expression in Equation (54), or equivalently Equation (55), is more accurate as it incorporates
all the logarithmic terms, so that the error in the current is algebraic rather than logarithmic.

In dimensional terms, the expression in Equation (53) for the Faradaic current per unit axial length
(A·m−1) through the microband electrode becomes:

Ĩ(t̃) ∼ −2πnF̃ D̃O

C̃∗O − k̃b
k̃f
C̃∗R

1 + k̃bD̃O

k̃f D̃R

 I(eφD̃O t̃/d̃
2
)

(57a)

where I(·) is evaluated from Equation (55) and φ is given by:

φ = 2
(

log 2− γ +Q(β)
)

+

(
1 +

D̃Rk̃f

D̃Ok̃b

)−1

log

(
D̃R

D̃O

)
(57b)

We recall that β is given by Equation (2), and the function Q(β) in Equation (57b) must be calculated
numerically by solving the integral equation in Equation (41) for F (x) and substituting the result into the
expression in Equation (42). In order that the experimentalist does not have to perform these numerical
calculations themselves, we have provided a working curve for Q(β) over the range 10−2 ≤ β ≤ 103 as
the file “Q beta working curve.csv” in the Supplementary Information. The calculation of this
working curve is detailed in the next section, where we also provide asymptotic analytical expressions
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for small and large β, given by Equations (62) and (63), which can be used to calculate Q(β) outside the
range of the working curve.

We remark that the Faradaic current per unit axial length through a laminar electrode in free space is
simply double the expression in Equation (57a), since the current is identical through both sides of the
lamina.

2.2. Calculation of Q(β)

It is useful for the experimentalist to have a working curve to evaluate the function Q(β) in Equation
(57), and in this section we describe how we have calculated it. We also provide analytical asymptotic
expressions that can be used to calculate Q(β) for small and large β.

For a particular value of β, Q(β) is calculated by solving the integral equation in Equation (41) for
F (x) and inserting the result into the expression in Equation (42). We solved the integral equation by
removing the logarithmic singularity and applying the Nyström method (cf. Delves and Mohamed [32]).
Consider N Gauss–Legendre quadrature weights, wi, at the abscissae xi in the interval (−1, 1). At each
point xi, the logarithmic singularity in the integral equation detailed in Equation (41) can be removed by
writing it as:

F (xi) =
β

π

∫ 1

−1

(
F (s)− F (xi)

)
log | xi − s | ds

+
β

π

(
(1− xi) log(1− xi) + (1 + xi) log(1 + xi)− 2

)
F (xi) + β, for i = 1, . . . , N (58)

The integrals in Equation (58) can be evaluated using Gauss–Legendre quadrature at the same abscissae
to give:

F (xi)=
β

π

i−1∑
k=1

wk
(
F (xk)− F (xi)

)
log | xi−xk | +

β

π

N∑
k=i+1

wk
(
F (xk)−F (xi)

)
log | xi − xk |

+
β

π

(
(1− xi) log(1− xi) + (1 + xi) log(1 + xi)− 2

)
F (xi) + β (59)

with appropriate care taken whenever i = 1 or i = N . This represents N linear equations to be solved
for the N unknowns F (xi). Then Q(β) can be calculated from Equation (42) as follows:

Q(β) =
π∑N

i=1wiF (xi)
(60)

For each β, we calculated Q(β) using N = 400 Gauss–Legendre weights. The values of β used to
calculate the points on the working curve for Q(β) were logarithmically spaced between 0.01 and 1000

as follows:
βj = 10−2+5j/2000, j = 0, . . . , 2000 (61)

Convergence was slower for larger βj , and the maximum absolute change in Q(βj) on doubling N from
200 to 400 was less than 10−6 at βj = 1000. The working curve is attached in the Supplementary
Information as a CSV file named “Q beta working curve.csv”.
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Asymptotic expressions can also be derived for small and large β. For small β, the function Q(β)

takes the following form:

Q(β) =
π

2β
+

3

2
− log 2 +O(β) (62)

For large β, the asymptotic solution is given by (proof in the appendix):

Q(β) = log 2 +
1

πβ
log β + o(β−1 log β) (63)

We include a log-log plot ofQ(β) in Figure 3, which shows that the agreement between the asymptotic
solutions (dashed lines) and the numerically calculated values (solid lines) is good. For β . 0.01, the
expression in Equation (62) can be used to calculate Q(β), while for β & 1000, the expression in
Equation (63) provides a reasonable approximation. For all other values, the numerically calculated
working curve can be used.

Figure 3. Log-log plot of the function Q(β). The solid line has been calculated numerically
as described in Section 2.2, and the dashed lines have been plotted using the asymptotic
expressions given by Equation (62) for β � 1, and Equation (63) for β � 1.
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3. Results and Discussion

In the previous section, we have derived the asymptotic solution detailed in Equation (57) for the
long-time-dependent chronoamperometric current per unit axial length due to two-dimensional diffusion
at an inlaid microband electrode. The solution allows for finite kinetics and unequal diffusion coefficients
of the oxidant and the reductant. In this section, we show that the expression in Equation (57) reduces
to the first term in the series derived by Aoki et al. [24] (see also Phillips [26]) for the current in
the diffusion-limited regime due to extreme polarization. We also present the simplified form of
Equation (57) for reversible reactions; in the case of identical diffusion coefficients, this expression
also reduces to the first term in the series derived by Aoki et al. [24]. We compare the analytical
solution to the results of numerical calculations, and we illustrate that unequal diffusion coefficients
can cause significant differences in the current response. Finally, we discuss the formula for the current
response due to a one-step, one-electron redox reaction whenever the rate constants are modelled by the
Butler–Volmer expressions [1], and we indicate that the width of the electrode must be chosen carefully
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to allow accurate estimates of the standard kinetic rate constant and the electron transfer coefficient to
be obtained from the long-time current response.

3.1. Diffusion-limited Currents due to Extreme Polarization

The diffusion-limited reduction current per unit axial length due to extreme polarization corresponds
to kf → ∞ and kb → 0. This means that β → ∞, and the expression in Equation (57) for the current
response becomes:

Ĩ(t̃) ∼ −2πnF̃ D̃OC̃
∗
O I
(

16e−2γD̃O t̃/d̃
2
)

(64)

where we have used Equation (63) to set Q(∞) = log 2. This expression agrees with first term in the
series derived by Aoki et al. [24] (see also Phillips [26]).

Similarly, the diffusion-limited oxidation current per unit axial length due to extreme polarization
corresponds to kf → 0 and kb →∞, which gives:

Ĩ(t̃) ∼ 2πnF̃ D̃RC̃
∗
R I
(

16e−2γD̃Rt̃/d̃
2
)

(65)

As expected, this is equivalent to Equation (64) with the sign changed, and the subscripts O and R

interchanged.

3.2. Reversible Reactions

For reversible reactions, kf , kb → ∞ such that kf/kb = O(1). In this case, since β → ∞ and
Q(∞) = log 2, we obtain:

Ĩ(t̃) ∼ −2πnF̃ D̃O

C̃∗O − k̃b
k̃f
C̃∗R

1 + k̃b
k̃f

D̃O

D̃R

 I(eφD̃O t̃/d̃
2
)

(66a)

where

φ = 2
(

2 log 2− γ
)

+

(
1 +

D̃Rk̃f

D̃Ok̃b

)−1

log

(
D̃R

D̃O

)
(66b)

In the case of identical diffusion coefficients, this expression also reduces to the first term in the series
derived by Aoki et al. [24], since the logarithmic term in Equation (66b) vanishes.

3.3. Comparison with Numerical Calculations

To calculate the current numerically, we employed the fully implicit finite-difference method (FIFD)
devised by Gavaghan [33,34] for the inlaid disk electrode, but adapted for the Cartesian coordinate
system appropriate to the microband electrode. We simulated the non-dimensional problem detailed
in Equation (10) on the finite domain 0 ≤ x ≤ xmax = 201, 0 ≤ z ≤ zmax = 200 for 0 < t ≤
tmax = 100. Considerations of symmetry allowed us to simulate only half the domain (x > 0) with
extra symmetry boundary conditions ∂CO/∂x = ∂CR/∂x = 0 on x = 0. The finite boundaries of
the domain, xmax = 201 and zmax = 200, were chosen to satisfy the criterion that xmax, zmax >

max{6
√
DOtmax, 6

√
DRtmax} (cf. [17]); this ensures that application of the conditions CO = CR = 0 at
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the finite boundaries xmax and zmax, instead of infinity, does not distort the current through the electrode.
Gavaghan’s method uses a spatial grid that expands exponentially away from the edge of the electrode
in order to resolve accurately the large flux in the neighbourhood of the edge. Here we used the same
grid parameters as suggested in [33,34]: the spatial steps in the x- and z-directions nearest the edge of
the electrode at x = 1 are given by hlast = 8 × 10−5, and the expansion factor is given by f = 1.175.
The initial time-step was taken to be 10−5, and was increased by a factor of 10 every thousand steps.

Figure 4. Plots of I(t)/β versus t for different rate constants: (a) kf = 1, kb = 1;
(b) kf = 5, kb = 1; and (c) kf = 1, kb = 5. The solid lines are calculated using the
approximate analytical expression in Equation (53) for the long-time current response, while
the symbols are plotted from the results of the numerical calculations described in Section
3.3. The symbols correspond to different ratios of the diffusion coefficients: DO = 1,
DR = 0.5 (triangles), DO = 1, DR = 1 (squares), and, DO = 1, DR = 2 (circles). It
is apparent from the plots that the effect of unequal diffusion coefficients can be significant.
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We plot I(t)/β in Figure 4 (a-c) for 0 < t ≤ 100 for different rate constants: (a) kf = 1, kb = 1, (b)
kf = 5, kb = 1, and (c) kf = 1, kb = 5. We have divided the current by β to capture completely the
effect of varying the ratio of the diffusion coefficients (cf. the factor of β−1 in the non-dimensionalisation
of the current in Equation (9d)). We note that β (given by Equation (2)) can be written in terms of the
non-dimensional variables as:

β = kf + kb
DO

DR

. (67)

The different symbols in each plot correspond to different ratios of the diffusion coefficients: DO = 1,
DR = 0.5 (triangles); DO = 1, DR = 1 (squares); and, DO = 1, DR = 2 (circles). The solid
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lines are calculated using the analytical expression in Equation (53) for the non-dimensional long-time
current response, with φ given by Equation (52) and the integral I(a) evaluated using the expression in
Equation (55), while the symbols are plotted from the numerical results. It is apparent from
Figure 4 (a-c) that unequal diffusion coefficients can substantially alter the magnitude of the current
response. In Figure 5 (a-c), we plot the percentage difference between the numerical results and the
analytical expression as a function of time for the same parameters. As expected the analytical expression
approaches the numerical results more closely for longer times, since this is when it becomes valid. For
t ≥ 5, the maximum difference is less than 1.75% for all the parameters considered. (We also remark
that comparison with the reference values calculated by Britz et al. [18] for the diffusion-limited current
indicates a similar level of accuracy; for t ≥ 5, the percentage difference in this regime is less than 1%.)

Figure 5. Log-linear plots of the time-varying percentage difference between the analytical
expression given by Equation (53) for the current response and numerical results calculated
as described in Section 3.3, using the same parameters as the plots in Figure 4: (a) kf = 1,
kb = 1, (b) kf = 5, kb = 1, and (c) kf = 1, kb = 5. The symbols correspond to different
ratios of the diffusion coefficients: DO = 1, DR = 0.5 (triangles), DO = 1, DR = 1

(squares), and, DO = 1, DR = 2 (circles). The analytical expression approaches the
numerical results for longer times, when it becomes valid. For t ≥ 5, the maximum
difference is less than 1.75% for all the parameters considered.
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(c) kf = 1, kb = 5

3.4. Long-time Current Response for a One-step, One-electron Redox Reaction Modelled in the Butler–
Volmer Framework

So far we have not assumed any model for the rate constants of the redox reaction, k̃f and k̃b. For
a one-step, one-electron process, so that n = 1 for the redox reaction detailed in Equation (1), the
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Butler–Volmer model [1] describes the rate constants as an exponential function of the potential Ẽ (V)
at the electrode surface:

k̃f = k̃0e
−α F̃

R̃T̃
(Ẽ−Ẽ0), k̃b = k̃0e

(1−α) F̃
R̃T̃

(Ẽ−Ẽ0) (68)

where k̃0 (m·s−1) is the standard kinetic rate constant, 0 < α < 1 is the electron transfer coefficient, and
Ẽ0 (V) is the formal oxidation potential. The remaining parameters are Faraday’s constant, F̃ (96,485
C·mol−1), the universal gas constant, R̃ (8.3145 J·K−1·mol−1), and the temperature, T̃ (K). Substitution
of this form of k̃f and k̃b into Equation (57), and setting n = 1, gives the Butler–Volmer long-time
current response as:

Ĩ(t̃) ∼ −2πF̃ D̃O

C̃∗O − e F̃
R̃T̃

(Ẽ−Ẽ0)C̃∗R

1 + e
F̃
R̃T̃

(Ẽ−Ẽ0) D̃O

D̃R

 I(eφD̃O t̃/d̃
2
)

(69a)

where

φ = 2 (log 2− γ +Q(β)) +

(
1 + e−

F̃
R̃T̃

(Ẽ−Ẽ0) D̃R

D̃O

)−1

log

(
D̃R

D̃O

)
(69b)

and β, given by Equation (2), becomes:

β =
k̃0d̃

D̃O

{
e−α

F̃
R̃T̃

(Ẽ−Ẽ0) + e(1−α) F̃
R̃T̃

(Ẽ−Ẽ0)

(
D̃O

D̃R

)}
(69c)

It is interesting to observe from Equation (69) that the only impact of the standard kinetic rate constant,
k̃0, and the electron transfer coefficient, α, on the long-time current response occurs through the function
Q(β). The sensitivity of Q(β) to the parameters k̃0 and α depends on its gradient, which tends to zero
as β → ∞ (see the asymptotic expression in Equation (63) and Figure 3). In addition, as β → 0,
the current response, and its sensitivity to k̃0 and α, also tends to zero. This suggests that there is a
range of β over which the sensitivity to the parameters k̃0 and α is significant enough to allow them
to be estimated accurately using the long-time current response; outside this range the sensitivity to
the parameters will be too small. Since the size of β can be controlled by changing the width of the
microband d̃ (cf. Equation (69c)), this implies that the size of the electrode should be chosen such that β
lies within this sensitive range. However, as this range will depend on all of the system parameters, the
appropriate size of d̃ can only be estimated before the experiment using a priori estimates of each of the
parameters. It can then be verified a posteriori that the sensitivity of the current response was significant
enough to provide accurate estimates of the parameters, e.g., by calculating confidence limits. We intend
to explore the choice of electrode size more carefully in a future article.

4. Conclusions

We have derived the approximate asymptotic expression given in Equation (57) for the long-time
chronoamperometric current response at an inlaid microband electrode whose axial length is much larger
than its width so that the diffusion is effectively two-dimensional. For a laminar electrode in free space,
the current response is simply double the expression given in Equation (57). The solution allows for finite
redox kinetics and unequal diffusion coefficients of the oxidant and reductant. As an input, it requires
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calculation of a function Q(β), which we have determined numerically and provided as a working curve
in the Supplementary Information. We have also provided simple asymptotic expressions that can be
used to calculate Q(β) whenever β is small or large. The expression for the current response has been
validated by comparison with the results of numerical calculations, and we have demonstrated that the
effect of unequal diffusion coefficients on the current response can be substantial. Finally, we have
discussed the form of the long-time current response due to a one-step, one-electron redox reaction
when the rate constants are modelled using the Butler–Volmer framework, so that the current response
is given by the expression in Equation (69). The formula indicates the importance of choosing the width
of the microband carefully to ensure accurate estimation of the standard kinetic rate constant and the
electron transfer coefficient from the long-time current response. We intend to investigate this more
thoroughly in a future article.
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Appendix

A. Large-β Asymptotic Solution for Q(β)

To derive the large-β asymptotic solution for Q(β), we employ a similar argument to that used by
Phillips [35] to determine the asymptotic solution for near-diffusion-limited currents at inlaid electrodes
when the diffusion is three-dimensional.

As described in the main body of the article, the function Q(β) can be found by solving the integral
equation detailed in Equation (41) and substituting the result into Equation (42). However, to proceed
with the large-β asymptotics, we consider an alternative, but equivalent, formulation of the problem. The
function Q(β) can be also be determined by finding the constant coefficient as r → ∞ (which is equal
to Q(β)) in the solution to the following boundary value problem:

∇2G = 0, in z > 0 (70a)
∂G

∂z
= 0, on | x |> 1, z = 0 (70b)

∂G

∂z
= βG, on | x |≤ 1, z = 0 (70c)

G ∼ log r, as r →∞ (70d)

As β →∞, the leading-order solution to the problem in Equation (70), denoted by G∞, satisfies:

∇2G∞ = 0, in z > 0 (71a)
∂G∞
∂z

= 0, on | x |> 1, z = 0 (71b)

G∞ = 0, on | x |≤ 1, z = 0 (71c)

G∞ ∼ log r, as r →∞ (71d)

with solution derived using conformal mapping (see [26]) to be:

G∞ = Re log
(
x+ Iz + ((x+ Iz)2 − 1)

1
2

)
(72)

Finding the constant coefficient in this solution as r →∞ implies that:

Q(∞) = log 2 (73)
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To find higher order corrections to this expression, we employ a similar technique to Phillips [35], and
use Green’s second identity to write:∫ 1

−1

(1−G)
∂G∞
∂z
− (1−G∞)

∂G

∂z
dx =

∫
ΓR

(1−G)
∂G∞
∂n
− (1−G∞)

∂G

∂n
dl (74)

where G is the solution to the entire problem given in Equation (70). Here the integral on the left-hand
side is along the surface of the electrode on z = 0, while, on the right-hand side, the integral is around
a semi-circle of radius R in z > 0 centred on the origin (denoted by ΓR) and ∂/∂n denotes the outward
normal derivative. Now, the condition that G, G∞ ∼ log r as r →∞ implies that:∫ 1

−1

∂G∞
∂z

dx = π,

∫ 1

−1

∂G

∂z
dx = π (75)

Also, on the surface of the electrode:

G∞ = 0, G =
1

β

∂G

∂z
, on | x |≤ 1, z = 0 (76)

and, in the far-field:

G∞ ∼ log r + log 2, G ∼ log r +Q(β), as r →∞ (77)

Substituting the expressions in Equations (75)–(77) into Equation (74), and lettingR→∞, we find that:

Q(β) = log 2 +
1

πβ

∫ 1

−1

∂G

∂z

∂G∞
∂z

dx (78)

The leading-order solution for G is G∞, and this breaks down as a singular perturbation in an O(β−1)

region of x = ±1. Taking 1� δ � β−1, and using symmetry about x = 0, we can write the integral on
the right-hand side of Equation (78) as:∫ 1

−1

∂G

∂z

∂G∞
∂z

dx ∼ 2

∫ 1−δ

0

(
∂G∞
∂z

)2

dx+ 2

∫ 1

1−δ

∂G

∂z

∂G∞
∂z

dx (79)

Since
∂G∞
∂z

=
1√

1− x2
, on | x |≤ 1, z = 0 (80)

the first integral on the right-hand side of Equation (79) can be evaluated to be:

2

∫ 1−δ

0

(
∂G∞
∂z

)2

dx = log 2− log δ +O(δ) (81)

Substituting x = 1− β−1u into the second integral on the right-hand side of Equation (79), we obtain:

2

∫ 1

1−δ

∂G

∂z

∂G∞
∂z

dx ∼ 2√
β

∫ δβ

0

∂G

∂z

1√
2u

du (82)

where δβ � 1. But as u→∞, G ∼ G∞, so that for u > M for some large constant M :

∂G

∂z
∼ ∂G∞

∂z
∼
√
β√
2u

(83)
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Therefore
2√
β

∫ δβ

0

∂G

∂z

1√
2u

du ∼
∫ δβ

M

1

u
du+

2√
β

∫ M

0

∂G

∂z

1√
2u

du (84)

The contribution from the first integral on the right-hand side dominates, so that:

2

∫ 1

1−δ

∂G

∂z

∂G∞
∂z

dx ∼ log δ + log β (85)

Adding the two contributions from Equations (81) and (85), we find that:

1

πβ

∫ 1

−1

∂G

∂z

∂G∞
∂z

dx ∼ 1

πβ
log β, (86)

and hence, from Equation (78), that:

Q(β) ∼ log 2 +
1

πβ
log β (87)
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