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Abstract: This review briefly describes the most common chronic inflammatory diseases in childhood,
such as cystic fibrosis (CF), inflammatory bowel diseases (IBDs), juvenile idiopathic arthritis (JIA), and
intrauterine growth restriction (IUGR) that can be considered, as such, for the changes reported in the
placenta and cord blood of these subjects. Changes in growth hormone (GH) secretion, GH resistance,
and changes in the insulin-like growth factor (IGF) system are described mainly in relationship with
the increase in nuclear factor-κB (NF-κB) and pro-inflammatory cytokines. Changes in the growth
plate are also reported as well as a potential role for microRNAs (miRNAs) and thus epigenetic
changes in chronic inflammation. Many mechanisms leading to growth failure are currently known;
however, it is clear that further research in the field is still warranted.
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1. Introduction

Most chronic inflammatory diseases in childhood are characterised by impaired growth.
The mechanism underlying the pathophysiology of this process is not clearly understood yet, although
it is a complex phenomenon which comprises of chronic inflammation itself, prolonged use of
glucocorticoids, and suboptimal nutrition [1,2].

Longitudinal growth in humans is under the control of multiple factors, and its regulation
starts during foetal life and continues throughout childhood, with varying influence of each factor at
different stages. The main determinants of growth are prenatal and perinatal health, genetic potential,
adequate nutrition, and endocrine interplay. In particular, hormones involved in this process are
growth hormone (GH) and insulin-like growth factor (IGF) system, thyroid hormones, insulin, and sex
steroids [3].

During the last decade, attention has been focused on epigenetics and its role in normal and
pathological development, and a number of epigenetic mechanisms have been recognised as regulators
of growth pattern [4].

Growth retardation may, therefore, be secondary to a dysfunction in multiple systems, such as
disruption of the GH–IGF axis and IGF system, changes in the growth plate, epigenetic modifications
and malnutrition.

The GH–IGF axis and IGF system in children with chronic inflammation may be altered by several
mechanisms, such as GH/IGF-1 insufficiency, GH/IGF-1 resistance, down-regulation of GH/IGF
receptors, disruption in downstream GH/IGF signalling pathways, or dysregulation of IGF binding
proteins (IGFBPs) [1]. Pro-inflammatory cytokines play a crucial role in the development of these
abnormalities. Many studies over the last decade clearly demonstrate huge interactions between
pro-inflammatory cytokines and the IGF system.
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The aim of this review is to give an overview of the main mechanisms underlying the onset of
growth impairment in chronic inflammatory disease in childhood.

2. Overview of Most Frequent Chronic Inflammatory Diseases with Impaired Growth

Growth evaluations are among the most common referrals to paediatric endocrinologists, and
many are owing to growth failure in chronic inflammatory diseases.

Cystic fibrosis (CF), inflammatory bowel disease (IBD), and juvenile idiopathic arthritis (JIA) are
the most common chronic inflammatory conditions in childhood associated with growth impairment.
Evidence in recent years has shown that intrauterine growth restriction (IUGR) also can be considered
as a chronic inflammatory condition [5,6].

2.1. Cystic Fibrosis

CF is an autosomal recessive disorder caused by mutations in a gene that encodes for the cystic
fibrosis transmembrane conductance regulator (CFTR) protein, an epithelial chloride channel that is
widely expressed and is involved in the homeostasis of ions and other metabolites.

Chronic inflammation in the pathophysiology of CF has been extensively documented [7–9].
CFTR is widely expressed, and therefore, CF affects different organs and systems. Lung damage

is mostly responsible for high morbidity and mortality, and is characterised by bronchiectasis, small
airway obstruction, and progressive respiratory impairment.

However, epithelial cell dysfunction causes important comorbidities, such as malabsorption,
biliary cirrhosis, and infertility [10]. The severity of CF varies greatly from person to person,
regardless of age [11]. The endocrine system is also frequently involved in CF patients, with important
consequences, including poor linear growth and diabetes [12]. The prevalence of short stature in
patients with CF is approximately 20% [13].

Morison et al., reporting cross-sectional data from 31 CF Centres in the UK, indicated that during
the first decade of life, height and weight in patients with CF are maintained at about 0.5 SDs below
those of the general population, and fall away progressively after this age [14]. Delayed puberty may
also be involved in the determinism of the reduction of linear growth in these patients. Several authors
have shown how adolescents with CF present lower peak height velocity, with pubertal delay and a
later pubertal growth spurt [15,16].

Short stature in CF may have an impact on disease severity because it is an independent predictor
of mortality. This evidence may reflect a subgroup of CF patients with poorer nutrition, or chronic
inflammation and ongoing pulmonary exacerbation [17].

Fat and micronutrient malabsorption may contribute to poor growth. However, other factors
involved in the determinism of growth failure in CF patients include chronic inflammation, chronic
infection and treatment with inhaled and systemic glucocorticoid medications.

There is now sufficient evidence to suggest that poor growth in CF is already seen in the neonatal
period, and that the CF genotype delF508 plays a contributing role [1].

2.2. Inflammatory Bowel Diseases

IBDs are conditions characterised by chronic or recurring immune response and inflammation
of the gastrointestinal tract. The two most common IBDs are ulcerative colitis (UC) and Crohn’s
disease (CD).

IBDs are more common in developed countries. There is north-to-south variation, and they are
more common in urban communities compared with rural areas. These observations suggest that
urbanisation is a potential contributing factor.

According to Centres for Disease Control and Prevention (CDC) and the USA National Health
Protection Agency, although the incidence and prevalence of UC and CD are beginning to stabilise
in high-incidence areas, such as northern Europe and North America, they continue to rise in
low-incidence areas, such as southern Europe, Asia, and much of the developing world [18].



Int. J. Mol. Sci. 2017, 18, 1878 3 of 19

These conditions affect as many as 1.4 million persons in the United States, and 2.2 million persons
in Europe [19].

Pathophysiology of IBDs is complex, and most authors agree on the fact that these conditions
result from interactions between environmental factors, genetic predisposition, and immune response.

Intestinal epithelial damage with infiltration of a large number of cells into the lamina propria,
such as T and B lymphocytes, macrophages, dentritic cells, and neutrophils, is a constant occurrence
along with IBDs [2,4,12]. Moreover, evidence suggests a defect of immune response regulation in
these conditions, with active secretion of a large number of cytokines with both pro-inflammatory and
anti-inflammatory action, including TNF, IFN-γ, IL-6, IL-12, IL-21, IL-23, IL-17, integrin, IL-10, TGFβ,
and IL-35 [2,11]. The imbalance in the regulation and secretion of these cytokines plays a crucial role
in initiating and sustaining intestinal inflammation and tissue injury.

Both these diseases are responsible for severe gastrointestinal symptoms, such as abdominal pain,
diarrhoea, rectal bleeding, nausea/vomiting or constipation, with a potential huge reduction in quality
of life.

However, the clinical presentation of IBDs in children and adolescents can be variable, and up
to 22% of children may present with extra-intestinal manifestations as the only predominant initial
feature. Main extra-intestinal manifestations of IBDs are growth failure, anaemia, erythema nodosum,
pyoderma gangrenosum, arthritis, perianal disease, osteopenia, osteoporosis, primary sclerosing
cholangitis, autoimmune hepatitis, episcleritis, uveitis, and pancreatitis [20]. Impaired linear growth is
a frequent extra-intestinal complication of IBDs in children and adolescents. Up to 19–31% of children
with CD and UC present with this sign as an initial feature [21–23]. Moreover, early growth delay has
been associated with permanent growth retardation in 17% of patients [24].

2.3. Juvenile Idiopathic Arthritis

JIA is a heterogeneous group of diseases characterised by arthritis of unknown origin, with onset
before age of 16 years. JIA is a common childhood rheumatic disease. The highest frequency of this
condition occurs in children aged 1–3 years, and its incidence is around 20–30/100,000 below the age
of 16 years [25].

JIA classification comprises different subtypes (systemic arthritis, polyarthritis, oligoarthritis,
enthesitis-related arthritis, psoriatic arthritis, and undifferentiated arthritis) which are characterised by
distinct clinical features and varying spectrums of disease severity [26].

Pathogenesis of JIA involves the humoral and cell-mediated immune system. T lymphocytes
play a pivotal role, releasing pro-inflammatory cytokines and promoting type-1 helper T lymphocyte
response. An abnormal interplay between type 1 and type 2 T helper cells has been shown [27].

Growth impairment is a well-known long-term complication in patients with JIA. Children with
systemic or polyarticular JIA (about 30–40% of all JIA cases) present a higher incidence of growth
disturbances among all JIA patients [28].

Children with arthritis suffer from a variety of growth disorders, ranging from general growth
retardation to local acceleration of growth in the affected limb [29,30]. Leg-length discrepancy is
common, as unilateral knee arthritis may result in overgrowth of the distal femur, caused by increased
blood supply to the inflamed joint with consequent accelerated growth of the ossification centres.

Puberty may also be involved with retardation in the appearance of secondary sex
characteristics [31]. Risk factors for impaired linear growth are represented by extended periods
of active disease, and are exacerbated by long-term use of systemic steroids.

Moreover, an elevated erythrocyte sedimentation rate value seems to be a good predictor of risk
for growth retardation [32].
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2.4. Intrauterine Growth Restriction

IUGR is defined as the failure of a foetus to attain its expected foetal growth at any gestational
age. It affects approximately 7–15% of pregnancies with an estimated prevalence of 8% in the general
population [33].

The incidence of IUGR varies among countries, populations, and races, and increases with
decreasing gestational age. Around 14 to 20 million infants have been affected with IUGR in developing
countries annually. A large number of IUGR infants are seen in the also Asian, African and Latin
American continents [34]. IUGR represents therefore one of the most important causes of perinatal
mortality and morbidity worldwide.

The main determinants of foetal growth are genetic heritage of the foetus, the integrity of the
materno–placento–foetal unit, adequate nutrient and oxygen supply, and the right hormonal milieu.
Impaired foetal growth may be due to inadequacy of any one of these parameters.

Risk factors for the development of IUGR are, therefore, extremely variable, and may include
maternal medical and social conditions, foetal abnormalities, and placental dysfunction.

IUGR puts the foetus and neonate at higher risk for perinatal mortality and morbidity [35], and it
is also considered a risk factor for the future development of insulin resistance and type 2 diabetes [36].

These conditions are related by association with high serum concentrations of pro-inflammatory
cytokines, such as interleukin (IL)-6 and tumour necrosis factor α (TNF-α), and low adiponectin
concentrations [36–42].

Interestingly, IL-6 concentrations in placental lysates from IUGR pregnancies correlate with birth
length, birth weight, and head circumference [36].

The increased IL-6 concentrations confirm the hypothesis that IUGR shares a common
pathophysiology with other conditions characterised by chronic inflammation.

Within the first two years of life, especially in developed countries, the majority of IUGR subjects
present partial or complete catch-up growth. However, approximately 13% of these subjects do not
present a catch-up growth, and remain short after two years of life [43].

3. Interactions between Pro-Inflammatory Cytokines and GH–IGF Axis, IGF System, and Bone

As stated above, the mechanisms underlying the pathophysiology of growth impairment in
chronic inflammatory diseases in childhood is a complex phenomenon in which chronic inflammation
plays a central role [1,2].

3.1. GH–IGF Axis and IGF System

GH is a 191 amino acid protein that promotes growth by increasing cell size and cell number, and
by promoting differentiation of bone and muscle cells [44]. Deficiency in either GH or the GH receptor
causes severe postnatal growth retardation and subsequent dwarfism, both in humans and mice [45,46].
IGF-1 is expressed by most cells throughout development, and represents an essential factor for cell
growth, intrauterine development, and postnatal growth [47–50]. IGF-1 deficiency in humans and
mice causes severe intrauterine and postnatal growth retardation, and is associated with perinatal
lethality, and developmental defects in the bone, muscle, and central nervous and reproductive
systems. The effects of GH on postnatal body growth have been extensively described [51,52]. Briefly,
GH acts on a major target organ, the liver, to stimulate the synthesis and secretion of IGF-1, which
reaches its skeletal targets as a true endocrine reagent (the somatomedin hypothesis) [53], but it can
stimulate longitudinal bone growth directly, also, by local production of IGF-1 (modified somatomedin
hypothesis) [54–59]. Both IGF-1 and GH are necessary for postnatal growth [60]. IGF-1 regulates with
a negative feedback loop mode of action on GH secretion at the pituitary level. In cartilage cells, IGF-1
has GH-independent stimulating effects, but its effects are optimised by a synergistic action with GH
itself [61].
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GH binds to two GH receptors (GHRs), causing a dimerisation process that activates the
GHR-associated Janus kinase (JAK)2 tyrosine kinase, and tyrosine phosphorylation of both JAK2 and
GHR. These events activate a series of other signalling molecules, such as mitogen-activated protein
kinases (MAPKs), insulin receptor substrates, phosphatidylinositol-3-phosphate kinase, diacylglycerol,
protein kinase C, intracellular calcium, and signal transducer and activator of transcription (STAT)
factors. These signalling molecules lead to changes in enzymatic activity, transport function, and
gene expression that determine final changes in growth and metabolism. The GH binding protein
is proteolysed from the cell surface receptor, and regulates GH bioavailability, and can be used as a
marker of receptor number and function [52].

The IGF system is of upmost importance for somatic growth in vertebrates. Both IGF-1 and
IGF-2 signal through the IGF type 1 receptor (IGF-1R). IGF-1R regulates proliferation, differentiation,
and apoptosis in many tissues and cell types. IGF-1R is a transmembrane tyrosine kinase receptor.
Both ligands and the IGF-1R are similar to insulin and the insulin receptor [62,63]. Six IGF binding
proteins (IGFBPs) and the mannose-6-phosphate receptor (type 2 IGF receptor) are the main regulators
of IGF-1 and IGF-2 bioavailability [64–66].

3.2. Changes in the GH–IGF Axis and IGF System and Interactions with Pro-Inflammatory Cytokines

The GH–IGF axis may be altered by several mechanisms, and growth failure in children with
chronic inflammatory conditions may be secondary to GH/IGF-1 insufficiency, GH/IGF-1 resistance,
down-regulation of GH/IGF receptors, disruption in downstream GH/IGF signalling pathways,
dysregulation of IGFBPs and thus of IGF bioavailability, and finally, gene regulation that is modified
by changes in the microRNA system, as well as other potential epigenetic mechanisms (Figure 1).
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Figure 1. Overview of actions of pro-inflammatory cytokines on the growth hormone (GH)–insulin-like
growth factor (IGF) axis and IGF system. Pro-inflammatory cytokines determine a dysregulation
in GH–IGF axis and IGF system, both at a central and peripheral level. In the brain, inflammation
determines a dysregulation of GH secretion from the pituitary gland. In the liver, a pro-inflammatory
cytokine milieu results in a down-regulation of GH receptors and in impaired downstream signalling,
with subsequent GH resistance and IGF-1 insufficiency. GH and IGF-1 resistance are present in the
growth plate. Abnormalities in IGF binding proteins (IGFBPs), with reduction in IGF bioavailability,
are a constant feature. MicroRNAs (miRNAs) targeting genes within the GH–IGF axis and IGF system
are dysregulated, and potential key mediators of these processes.

Pro-inflammatory cytokines play a crucial role in the development of these abnormalities.
Many studies over the last decade clearly demonstrate huge interactions between pro-inflammatory
cytokines and the IGF system.
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For example, studies in transgenic mice showed how increased IL-6 serum levels were associated
with low IGF-1 serum levels and growth delay [67]. Street et al. showed also a relationship between
inflammatory status and the IGF system, with a consequent effect of these interactions on longitudinal
growth [36,68].

IL-6 may antagonise GH actions through disruption of JAK/STAT signalling. Recent evidence
suggests a role for suppressor of cytokine signalling (SOCS) family proteins in these processes.
Pro-inflammatory cytokines stimulate SOCS proteins with a consequent reduction in JAK2 and STAT
activation [69–71]. Similarly, an abnormal expression of STAT5 and STAT3, due to the action of another
crucial pro-inflammatory cytokine, IL-1β, can disrupt GH signalling [72].

The IGF-1 signalling pathway may also be altered in chronic inflammatory conditions.
Several authors showed how TNF-α, IL-6, and IL-1β dysregulate IGF-1 intracellular mediators
MAPK/extracellular signal-regulated kinases (ERKs), and phosphoinositide 3-kinase (PI3K),
in chondrocytes [73–75]. Inflammation is sustained by the activation of several immune cell types
which secrete soluble cytokines, as chemokines, interferons, and ILs, activating bone resorption and
inhibiting bone growth/formation processes at local and systemic levels [76].

These messenger molecules influence differentiation and activity of the main skeletal cell types:
osteoblasts, osteoclasts, and chondrocytes [77,78].

Experimental and clinical evidence suggests that the nuclear factor-κB (NF-κB) pathway
plays a role in IGF1-GH signalling [79,80], and exerts a regulatory role in bone growth and
development [81–83]. NF-κB is a family of transcription factors which can form homo- and
heterodimers, including the five members, p50 (NF-κB1), p52 (NF-κB2), p65 (RelA), RelB, and c-Rel.
All of these proteins are structurally homologous and share functional domains: N-terminal Rel
homology domain (RHD), responsible for dimerisation as well as DNA-binding, and a transactivation
domain (TA) relevant for the transcriptional activity. Moreover, they present a nuclear localisation
signal (NLS) that promotes translocation into the nucleus from the cytoplasm after stimulation [84].

In resting cells, NF-κB dimers are retained in the cytoplasm, where they are covalently bound to
the inhibitor of NF-κB (IκB) proteins, which mask their NLSs.

The main and most well studied NF-κB activation pathways are canonical, and alternative
pathways differ mainly in composition of downstream dimeric effectors.

NF-κB pathways are activated by many extracellular signals, e.g., pro-inflammatory cytokines,
hormones, growth factors, viral proteins, lipopolysaccharide (LPS), and RANKL.

In the activated classic pathway, the IκB kinase (IKK) induces the ubiquitination and subsequent
degradation of IκB. Subsequently, NF-κB, predominantly p50/p65, translocates into the nucleus, where
it regulates genes involved in cell proliferation, differentiation, and death [85].

In the alternative pathway, the key point is represented by the partial proteolysis of p100 or p105
precursors of p52 and p50, respectively, which allow the activation and subsequent translocation of
p52/RelB or p50/p50, predominantly [86,87].

3.3. Inflammation and miRNAs

Epigenetics, defined as “the inheritance of variation (-genetics) above and beyond (epi-) changes
in the DNA sequence” [88], refers to inheritable changes of gene function, which do not imply a change
in the DNA sequence [89].

MicroRNAs (miRNAs) are a recent chapter in the study of epigenetic regulation. They are
endogenous small non-coding RNAs, approximately 22 nucleotides long that act as post transcriptional
regulators [90]. Mature miRNAs hybridise to partially complementary binding sites that are typically
localised in the 3′ untranslated regions (3′UTR) of target mRNAs [91].

Upon binding, miRNA can cause the degradation of the mRNA target if the complementarity
between them is perfect; when their complementarity is only partial, the target’s translational
repression takes place [92,93]. In these ways, each single miRNA regulates several hundreds of
transcripts, and each mRNA can be regulated by many miRNAs [94,95].
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In turn, miRNAs themselves are targets of transcription factors and molecular signals, thus
explaining the complexity of the regulatory network existing on and controlled by miRNAs [96,97].

The complexity of miRNA action, and their strict regulation, provides the evidence that
miRNAs are crucial in various physiological and pathological processes; in fact, they are involved in
inflammation, apoptosis, differentiation, and proliferation [98].

Moreover, miRNAs have a role in the antigen-presenting capacity and costimulation activity of
macrophages and dendritic cells [99,100], and they are also essential in the development and actions of
B and T cells [84,101,102].

In particular, under inflammatory stimuli, miRNAs act as post-transcriptional regulators of genes
involved in the adaptive and innate immune response; for example, they control the expression of
mediators involved in the Toll like receptor (TLR) signalling pathways, which all culminate in the
activation of NF-κB [103–105].

During many biological processes, like inflammation or innate and adaptive immunity, NF-κB
regulates the transcription of miRNAs through the induction of genes codifying for regulatory
proteins [106].

NF-κB targets miRNA sequences, including miR-9, miR-21, miR-143, miR-146, and
miR-224 [103,107–111], which are involved in feedback mechanisms regulating the transcription
of NF-κB itself.

miRNAs have the potential to influence the expression of the proteins involved in the regulation
of GH–IGF axis. Their deregulation has been well documented in association with chronic paediatric
diseases in relationship to the inflammatory state, as in CF [112–115], IBD [116–122], JIA [123,124], and
IUGR [125,126].

3.4. Bone Growth and Inflammation

Bone has a lot of functions, such as structural support, calcium reserve, and many others.
During life, bone undergoes modelling and remodelling, which is due to the action of two major cell
types: osteoblasts and osteoclasts. Modelling is an adaptive process by which bones answer to external
influences to adjust the skeleton to events occurring during life [127].

Bone renewal occurs physiologically by bone remodelling. This process is necessary for
maintaining bone strength and mineral homeostasis [127].

Longitudinal growth occurs only during childhood. It is only in this period that bone formation
can occur independently of bone resorption [128]. The process of longitudinal growth occurs in growth
plates. An alteration between bone formation and bone resorption occurs in chronic inflammatory
conditions. Inflammation is a primary cause of bone loss. This bone loss is both local and systemic,
and is associated with an enhancement of bone resorption or an inhibition of bone formation.

Most of chronic paediatric inflammatory diseases are associated with a catabolic state that reduces
bone formation [128].

The epiphyseal growth plate is the final target organ of the above described growth-regulating
mechanisms. The epiphyseal growth plates are located in the proximal and distal parts of the long
bones and have a definite cellular organisation according to stage of maturation, with germinative,
proliferative, hypertrophic, and degenerative cell layers. The germinative cell layer consists of stem
cells or progenitor cells, which rarely divide. During the process of longitudinal bone growth, stem
cells enter the proliferative cell layer and begin to divide frequently, forming continuous cell columns
parallel to the longitudinal axis of the bone. Subsequently, these cells stop dividing, mature, and
become part of the hypertrophic cell layer [129]. Finally, calcification occurs as cartilaginous matrix is
transformed into bone matrix. Longitudinal bone growth is due to the recruitment of new progenitor
cells from the stem cell layer that undergo divisions in the proliferative layer, and then increase in size
in the hypertrophic layer. The growth plate is a constantly renewing tissue that pushes the epiphysis
further and further away from the centre of the long bone [130].
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Linear growth occurs during development and the childhood years until epiphyseal fusion occurs.
This is due to endochondral ossification, and is regulated by systemic hormones and paracrine or
autocrine factors. Childhood growth requires GH, IGF-1, glucocorticoids, and thyroid hormone to
be present and normally active. Sex steroids are then additionally necessary for the pubertal growth
spurt and epiphyseal fusion [131]. Furthermore, during linear growth, GH, IGF-1, glucocorticoids, and
thyroid hormone interact at the level of the hypothalamus and pituitary. However, recent evidence
suggests that these hormones also act directly on peripheral target tissues, such as liver and growth
plate [132].

GH action has both direct and indirect effects on the growth plate. GH acts indirectly, stimulating
the production of IGF-1 that promotes chondrocyte hypertrophy, which in turn exerts its effects on the
growth plate. The direct effect of GH on the growth plate stimulates chondrocyte proliferation [133].

The balance between bone degradation and bone building is critical for the physiological bone
homeostasis. NF-κB and cytokines controlled by this factor may perturb this equilibrium in paediatric
chronic inflammatory diseases [134–136].

NF-κB activation is a relevant component for osteoclast development, differentiation, and
survival, cooperating with other pro-inflammatory cytokines. Loss of NF-κB signalling prevents
osteoclastogenesis [82]. NF-κB knockout mice showed severe osteopetrosis [137].

Furthermore, NF-κB inhibits osteoblast differentiation by blocking transcription factors induced
by several extracellular signals, including bone morphogenic proteins (BMPs), fibroblast growth factor
(FGF), transforming growth factor β (TGF-β), and transducers of GH–IGF-1 axis. The inhibition of
bone formation by NF-κB is well documented by in vivo and in vitro experiments [138,139].

NF-κB is also involved in the regulation of growth plate chondrogenesis by IGF-1, which promotes
bone longitudinal growth during childhood and foetal development by stimulating chondrocytes
proliferation and preventing apoptosis [140,141]. Various stimuli, such as TNF-α, LPS, and hypoxia,
increase the expression of IGF-1, vascular endothelial growth factor (VEGF), and FGF-2 by an NF-κB
dependent mechanism [142] (Figure 2).

Int. J. Mol. Sci. 2017, 18, 1878  8 of 19 

 

pubertal growth spurt and epiphyseal fusion [131]. Furthermore, during linear growth, GH, IGF-1, 
glucocorticoids, and thyroid hormone interact at the level of the hypothalamus and pituitary. 
However, recent evidence suggests that these hormones also act directly on peripheral target tissues, 
such as liver and growth plate [132]. 

GH action has both direct and indirect effects on the growth plate. GH acts indirectly, 
stimulating the production of IGF-1 that promotes chondrocyte hypertrophy, which in turn exerts its 
effects on the growth plate. The direct effect of GH on the growth plate stimulates chondrocyte 
proliferation [133]. 

The balance between bone degradation and bone building is critical for the physiological bone 
homeostasis. NF-κB and cytokines controlled by this factor may perturb this equilibrium in 
paediatric chronic inflammatory diseases [134–136]. 

NF-κB activation is a relevant component for osteoclast development, differentiation, and 
survival, cooperating with other pro-inflammatory cytokines. Loss of NF-κB signalling prevents 
osteoclastogenesis [82]. NF-κB knockout mice showed severe osteopetrosis [137]. 

Furthermore, NF-κB inhibits osteoblast differentiation by blocking transcription factors 
induced by several extracellular signals, including bone morphogenic proteins (BMPs), fibroblast 
growth factor (FGF), transforming growth factor β (TGF-β), and transducers of GH–IGF-1 axis. The 
inhibition of bone formation by NF-κB is well documented by in vivo and in vitro experiments 
[138,139]. 

NF-κB is also involved in the regulation of growth plate chondrogenesis by IGF-1, which 
promotes bone longitudinal growth during childhood and foetal development by stimulating 
chondrocytes proliferation and preventing apoptosis [140,141]. Various stimuli, such as TNF-α, LPS, 
and hypoxia, increase the expression of IGF-1, vascular endothelial growth factor (VEGF), and FGF-2 
by an NF-κB dependent mechanism [142] (Figure 2). 

 

Figure 2. NF-κB as a central transcriptional factor in the inflammatory process. Nuclear factor-κB 
(NF-κB) is a transcriptional factor with a crucial role in the control of mechanisms mediated by 
inflammation. It orchestrates several processes, such as angiogenesis, apoptosis, and cell cycle 
regulation, and is important as a regulator of bone remodelling, enhancing osteoclast and reducing 
osteoblast activity. Moreover, it influences IGF-1 secretion, and it represents one of the factors linking 
inflammation with growth. 

Figure 2. NF-κB as a central transcriptional factor in the inflammatory process. Nuclear factor-κB
(NF-κB) is a transcriptional factor with a crucial role in the control of mechanisms mediated by
inflammation. It orchestrates several processes, such as angiogenesis, apoptosis, and cell cycle
regulation, and is important as a regulator of bone remodelling, enhancing osteoclast and reducing
osteoblast activity. Moreover, it influences IGF-1 secretion, and it represents one of the factors linking
inflammation with growth.
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Another system involved in growth failure in the chronic inflammation state is represented by the
adrenal axis. Circulating levels of endogenous glucocorticoids (GC) increase during inflammation,
leading to growth suppression. Steroids act both at systemic and local level, as well as the GH
system. Localised GC directly inhibits chondrocyte proliferation and bone mineralisation, as well as
increases apoptosis. By systemic action, GC inhibits GH secretion, with a consequent reduction of
IGF-1 production and activity [143].

Glucocorticoids are frequently used for the treatment for many inflammatory diseases. Initially,
steroids could have beneficial effects on bone growth, suppressing inflammation, but long-term therapy
frequently has adverse effects on bone [144]. High levels of circulating glucocorticoids disrupt bone
remodelling, disrupting the balance between formation and resorption. Glucocorticoids act directly
on osteoblasts, decreasing their proliferation and the consequent production of specific proteins as
osteocalcin, a bone specific alkaline phosphatase [145,146]. Enhanced adverse effects of glucocorticoids
are partly dependent on the underlying illness [147,148].

4. Specific Changes in the GH–IGF Axis, IGF System, and Growth Plate in Individual
Inflammatory Conditions

In CF patients, studies of GH secretion are limited. Arginine and clonidine GH stimulation tests,
performed in a group of adolescents with CF, revealed how approximately 50% of these patients have
peak GH levels <6 µg/L, and IGF-1 levels of −0.5 SDs, suggesting the potential co-existence of GH
insufficiency and GH resistance [149].

A significant positive correlation was indeed found between insulin secretion and height growth
velocity and serum IGFBP-3 levels [149]. According to data published by our group, CF patients have
higher serum concentrations of IL-1β, IL-6, TNF-α, and IGFBP-2. Conversely, serum concentrations of
IGF-1 and IGF-2 are significantly lower. IGFBP-3 serum concentrations are similar, with comparable
IGF-1/IGFBP-3, and decreased IGF-1/IGFBP-2 and IGF-2/IGFBP-2 molar ratios.

Statistical analyses revealed a significant positive correlation between IGFBP-2 and IL-6 and a
negative correlation between IGFBP-2 and IGFBP-3, suggesting that inflammation is an important
modulator of the IGF-IGFBP system with an overall reduction in IGF bioactivity in CF [68].

Moreover, circulating levels of TNF-α, IL-6, insulin, and the IGF system were found to be related
to linear growth in children with CF [36].

IGF-1 concentrations in patients with CF are significantly lower than those in a healthy control
population. IGF-1 reduction in these patients may reflect their catabolic state and play a part in their
abnormal growth pattern [150,151].

Animal models have shown that chondrocytes express functional CFTR [152], and cartilage
abnormalities in tracheal ring structure have been reported in CF, both in humans and in animal
models [153,154]. Both CFTR loss of function and local and systemic inflammation are hypothesised to
be responsible for these changes, however, it is yet unclear whether cartilage abnormalities involve
growth plate chondrocytes also, as these data are missing to date in the literature.

The precise mechanisms underlying growth failure in IBDs are not well known. The relative
roles of impaired nutrition and active inflammation in disturbing GH–IGF axis remain controversial.
Nutritional status regulates the IGF system, with both caloric and protein restriction resulting in
low serum IGF-1 and IGFBP-3 levels. Serum IGFBP-2 regulation is more dependent on protein
intake [155]. However, it was demonstrated that linear growth impairment occurs, independent of
undernutrition, as a direct result of the inflammatory process. According to Ballinger and his group, in
a rat experimental model of colitis, approximately 30–40% of linear growth impairment was directly
related to inflammation [156]. These same authors suggested a normal stimulated and spontaneous GH
production in children with CD, and growth failure with a low IGF-1 plasma concentration, conditions
compatible with GH resistance [157]. Moreover, we previously described low IGF-1 and high IGFBP-2
levels related to disease activity and anatomical distribution, consistent with active inflammation
modifying the IGF–IGFBP system.
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Intestinal inflammation is well known to have a negative impact on bone health.
Scientific evidence has confirmed a reduction in bone mineral density in patients with IBD, and changes
in the growth plate cartilage, in addition. In detail, induction of moderate intestinal inflammation
in young male mice has been reported to reduce growth plate thickness and induce a hypertrophic
response in chondrocyte matrix [158]. Specific data in humans are still missing in the literature.

Impairment of GH–IGF axis in JIA may be due to several mechanisms, ranging from GH secretion
abnormalities to GH resistance or increased IGF-1 clearance [159]. Templ et al. showed that GH
response to GHRH was reduced in patients with newly diagnosed rheumatoid arthritis, compared to
healthy controls [160], and others showed how an inflammatory cytokine milieu caused impairment
of target cell sensitivity to GH. GH resistance in JIA seems to be a consequence of reduced GHR
expression, or changes in intracellular signalling (deactivation of GHR/JAK2 complex, inhibition of
JAK/STAT signalling by SOCS) [161,162].

GHR mRNA expression has been reported to be significantly reduced in mononuclear cells
of JIA patients at the onset of the disease, with a restoration of GHR expression after two years of
treatment [163]. However, these data remain controversial, as other authors did not report changes
in GHR gene expression in a rat experimental arthritis model [164]. Granado et al. reported a
downregulation in liver IGF-1 gene expression in another experimental arthritis model [165], while
others showed that circulating IGFBPs are increased in arthritis, resulting in reduction in IGF-1
bioavailability [166]. Furthermore, acid labile subunit (ALS) seems to be decreased in children with
JIA [167].

JIA is characterised by significant changes in the articular microenvironment. Immune cell
proliferation causes localised hypoxia and a reduction of pH. As a consequence, osteoblast function is
impaired and bone mineralisation reduced [168].

In addition, negative direct effects on growth plate mediated by inflammatory cytokines have
been described, in particular, TNF-α and IL-1β inhibit chondrocyte proliferation and function [169].
Moreover, an additive negative effect of IL-1β and TNF-α on bone growth has been described [74].

The IGF system is central to foetal growth, and relationships between cytokines and the IGF
system have been shown in the placenta and cord serum of IUGR foetuses. Changes are reported also
in children born with IUGR in the following years.

During foetal life, an adequate nutrient supply mainly determines foetal growth, while the
intervening growth factors have rather a paracrine or autocrine role to play at the local level, to assure
the availability of a nutrient supply, and to promote functional differentiation of the different tissues
and organs. These growth factors are mainly insulin, IGF-1, and IGF-2. The IGF axis plays a critical
role also in placental development and function. IGF signalling (specifically IGF-2, IGFBP-1, and
IGF-1R) plays a critical role in trophoblast invasion and increased utero–placental blood flow during
implantation, while imbalances or abnormalities in this signalling lead to adverse pregnancy outcomes,
and have been associated with IUGR [170]. Defects in IGF signalling, may lead to impaired foetal
growth [171].

Cord serum IGF-2 was described to be lower in IUGR compared with adequate for gestational age
newborns, whereas IGFBP-2 was higher [172]. IUGR neonates present higher placental concentrations
of IGF-2, IGFBP-1, IGFBP-2, and IL-6 [6].

During childhood, GH status in IUGR is not completely clear. GH responses to provocative
stimulation tests and serum levels of IGF-1 and IGFBP-3 are reported to be normal in the majority of
patients with normal IGF bioavailability [173,174]. However, in some studies, high pulse frequency
and attenuated pulse amplitude related to GH secretion, have been reported [173,174]. These authors
described reduced IGF-1, IGF-2, and IGFBP-3 serum concentrations, and reduced spontaneous GH
secretion also [175,176].

Traditionally, a delay in bone maturation has been observed in patients with IUGR [177,178].
However, to date, there are no data regarding specific structural abnormalities in growth plate in
these patients.
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5. Conclusions

Inflammation is a clear cause of growth impairment. Mechanisms related to GH secretion
and resistance, changes in the IGF system, and some changes in the growth plate, have been quite
extensively studied, but are not fully elucidated yet. Furthermore, new mechanisms are arising,
such as changes reported in the miRNA system that need to be addressed in the near future, in order
to improve treatment of inflammation and growth.
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