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Abstract: Polyphenol oxidase (PPO, E.C. 1.14.18.1) is a nearly ubiquitous enzyme that is widely
distributed among organisms. Despite its widespread distribution, the role of PPO in plants has not
been thoroughly elucidated. In this study, we report for the absence of PPO in Cynomorium coccineum,
a holoparasitic plant adapted to withstand unfavorable climatic conditions, growing in Mediterranean
countries and amply used in traditional medicine. The lack of PPO has been demonstrated by the
absence of enzymatic activity with various substrates, by the lack of immunohistochemical detection
of the enzyme, and by the absence of the PPO gene and, consequently, its expression. The results
obtained in our work allow us to exclude the presence of the PPO activity (both latent and mature forms
of the enzyme), as well as of one or more genes coding for PPO in C. coccineum. Finally, we discuss
the possible significance of PPO deficiency in parasitic plants adapted to abiotic stress.
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1. Introduction

Polyphenol oxidases (PPO, EC 1.14.18.1) are type-3 copper monooxygenases found in animals,
plants, lichens, and bacteria [1–4]. These enzymes catalyze the o-hydroxylation of monophenols to
o-catechols (monophenolase or cresolase activity) and the oxidation of the latter to the corresponding
o-quinones (diphenolase or catechol oxidase activity) [5]. PPOs can also oxidize a variety of other
substrates, such as o-aminophenols, aromatic diamines, and even peptides bearing tyrosine residues [6].

While the role of PPO has long been recognized in animals, where its catalytic activity is responsible
for the biosynthesis of melanin in skin and hair in mammals [7], the role of the enzyme in plants
remains uncertain because PPO appears to have more than one function [2,8–10]. An interesting role
suggested for plant PPOs is the ability to repair damaged cells helping plants defend themselves
against some external stress [11]. However, exposure of wheat plants to stress from some heavy metals
decreased PPO activity [12].

Plant PPO is usually a constitutive enzyme but can also be induced under certain circumstances.
Biotic stresses, such as the rupture of plant tissues (i.e., triggered by pathogens and insects), can cause
the enzyme and its natural substrates to come into contact, thus generating browning phenomena
typical of many plants.

The study of the cellular localization of the natural substrates of the PPO contributes only partly to
clarify the role of PPO, since the phenolic compounds (main putative substrates of the PPO) are located
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in different parts of the plant cell, for instance, the vacuoles, guard and epidermal cells, the mesocarp
cell wall, and phloem fluids [13–17].

While cellular and subcellular substrate localization can vary, PPO is thought to occur primarily
at the luminal side of the thylakoid membrane in the chloroplast cellular compartment [18].
However, several studies have also reported the presence of PPOs in the mitochondria, cell wall,
and microsomes [19]. Furthermore, the existence of non-membrane-bound PPOs has also been
demonstrated in apple [20] and sugar cane [21].

The study of PPO from holoparasitic plants may be informative about plant PPO function.
These plants, lacking chloroplasts, are functionally specialized to acquire at least some essential
resources from other plants, the host plant, via specialized organs called haustoria [22].

Cynomorium coccineum L. (CC) is an herbaceous and holoparasitic plant, with a very distinctive
appearance and color, presenting a high-intensity red-brown inflorescence during the flowering period
with a large geographical distribution, including the western Mediterranean, northern Africa, and the
Arabian Peninsula [23]. This plant grows in sandy and rocky soils, usually in desert or sub-desert
habitats. The stems emerge from the ground in April–May, typically associated with host plants
belonging to the Chenopodiaceae, Amaranthaceae, Cistaceae, and some other plant families [24].
The concomitant absence of chloroplasts, the presence of phenolics [25], and the growth in an arid
environment make C. coccineum a good candidate to investigate any presence and distribution of
the PPO enzyme in this plant. We performed this study from multiple perspectives by means of
biochemistry, molecular biology, and immunohistochemistry techniques.

2. Results

In our experiments in CC extracts, all attempts to detect both PPO activities, monophenolase and
diphenolase activity, failed. Enzymatic assays, even those that lasted for a long time (1 h), did not
show any significant activity compared to the control without extract. None of the tested compounds
(see Materials and Methods section) appeared to be oxidized by the CC homogenate. To test the
hypothesis of an activity hidden by the presence of an inhibitor, we dialyzed an aliquot of homogenate
(10 mL) for 12 h against 2 L of 50 mM of sodium phosphate buffer (pH 6.5) to remove any small solutes
present in the extract and possibly able to function as a PPO inhibitor. However, even in this case,
we were unable to measure any PPO activity.

As an example, Figure 1 shows the result of one of these PPO assays (dopamine oxidation assay)
performed with the CC homogenate, in comparison with the giant fennel (Ferula communis L.) whole
plant homogenate used as a positive control. Giant fennel was chosen because its PPO activity has
been previously characterized [26]; it is possible to find this plant in adjacent areas and in the same
collection period of CC.
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Figure 1. Dopamine oxidation assay of polyphenyl oxidase (PPO): Cynomorium coccineum homogenate 
(blue line) vs. giant fennel (Ferula communis) whole plant homogenate used as a positive control. 

Some PPOs are found in a latent form in vivo, but enzymatic activation can also be reproduced 
in vitro. One of the most commonly used methods consists of activation by anionic surfactant sodium 
dodecyl sulfate (SDS) or incubation with trypsin. Both attempts to disclose the presence of a PPO in 
a latent form in CC were unsuccessful. 

To exclude the possibility that failure to observe PPO activity was due to either poor substrate 
specificity or the low sensitivity of the spectrophotometric method, we used an 
immunohistochemistry approach to assess the presence of PPO in slices of CC stem using a specific 
anti—PPO antibody. 

Furthermore, we used samples of normal human skin as a positive control, and giant fennel as 
a normal control. Both positive and normal controls showed marked immunoreactivity for PPO, 
while immunostaining in CC slices was absent. Moreover, in the negative control sections of giant 
fennel, obtained by omission of the primary antibody anti—PPO, the immunoreactivity was 
completely abolished (Figure 2). 
  

Figure 1. Dopamine oxidation assay of polyphenyl oxidase (PPO): Cynomorium coccineum homogenate
(blue line) vs. giant fennel (Ferula communis) whole plant homogenate used as a positive control.
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Some PPOs are found in a latent form in vivo, but enzymatic activation can also be reproduced
in vitro. One of the most commonly used methods consists of activation by anionic surfactant sodium
dodecyl sulfate (SDS) or incubation with trypsin. Both attempts to disclose the presence of a PPO in a
latent form in CC were unsuccessful.

To exclude the possibility that failure to observe PPO activity was due to either poor substrate
specificity or the low sensitivity of the spectrophotometric method, we used an immunohistochemistry
approach to assess the presence of PPO in slices of CC stem using a specific anti—PPO antibody.

Furthermore, we used samples of normal human skin as a positive control, and giant fennel
as a normal control. Both positive and normal controls showed marked immunoreactivity for PPO,
while immunostaining in CC slices was absent. Moreover, in the negative control sections of giant
fennel, obtained by omission of the primary antibody anti—PPO, the immunoreactivity was completely
abolished (Figure 2).Plants 2020, 9, x 4 of 13 
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Figure 2. Immunohistochemical detection of PPO in Cynomorium coccineum, giant fennel, and human 
skin. (A) C. coccineum; (B) and (D) giant fennel; (C) normal human skin. While the immunoreactivity 
for PPO in C. coccineum was absent (A), a marked immunostaining, identifiable as a reddish product, 
was observed in sections of both giant fennel (B) and human skin (C). In the negative control (D), the 
immunoreactivity was completely abolished. Original magnification: (A,C): ×100; (B,D) ×200. 

To verify whether the absence of the PPO catalytic activity and the failure of its 
immunohistochemical detection was linked to the absence of the coding gene or to its lack of 
expression, we isolated RNA and DNA and searched for the related nucleotide sequence. 

PCR experiments conducted on CC mRNA reverse transcribed in cDNA did not show the 
presence of an expression product related to the PPO gene. In fact, using all primer pairs identified 
by the CODEHOP program, we did not obtain any PCR products (Supplementary Figure S1). The 
same primers used to amplify genomic DNA enabled us to obtain PCR products whose sequence 
showed no degree of homology with the sequences of any PPO genes deposited in the databases. 
These results allowed us to hypothesize the absence of the gene and, consequently, its expression in 
C. coccineum. Moreover, to exclude the possibility that the absence of PCR products could be due to 
a lack of cDNA synthesis or the use of degraded DNA, we searched in CC for the polyubiquitin gene 
whose expression product was detected in this organism. PCR experiments performed on mRNA 
reverse transcribed into cDNA enabled us to isolate a reaction product whose sequence was highly 
homologous to those deposited in gene databases. 
  

Figure 2. Immunohistochemical detection of PPO in Cynomorium coccineum, giant fennel, and human
skin. (A) C. coccineum; (B) and (D) giant fennel; (C) normal human skin. While the immunoreactivity
for PPO in C. coccineum was absent (A), a marked immunostaining, identifiable as a reddish product,
was observed in sections of both giant fennel (B) and human skin (C). In the negative control (D),
the immunoreactivity was completely abolished. Original magnification: (A,C): ×100; (B,D) ×200.

To verify whether the absence of the PPO catalytic activity and the failure of its immunohistochemical
detection was linked to the absence of the coding gene or to its lack of expression, we isolated RNA and
DNA and searched for the related nucleotide sequence.

PCR experiments conducted on CC mRNA reverse transcribed in cDNA did not show the presence
of an expression product related to the PPO gene. In fact, using all primer pairs identified by the
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CODEHOP program, we did not obtain any PCR products (Supplementary Figure S1). The same
primers used to amplify genomic DNA enabled us to obtain PCR products whose sequence showed no
degree of homology with the sequences of any PPO genes deposited in the databases. These results
allowed us to hypothesize the absence of the gene and, consequently, its expression in C. coccineum.
Moreover, to exclude the possibility that the absence of PCR products could be due to a lack of cDNA
synthesis or the use of degraded DNA, we searched in CC for the polyubiquitin gene whose expression
product was detected in this organism. PCR experiments performed on mRNA reverse transcribed
into cDNA enabled us to isolate a reaction product whose sequence was highly homologous to those
deposited in gene databases.

3. Discussion

It is generally assumed that PPO plays a role in defense responses to biotic stresses. This enzyme
might act, for example, through the direct toxicity of quinones produced by its catalytic activity or
their cross-linking with proteins, thereby forming physical barriers against pathogens and insects.

Araji et al. (2014) hypothesized an interesting new role for PPO in secondary metabolism,
since the silencing of PPO gene expression in the walnut plant caused alterations in the metabolism of
some phenolic compounds and their derivatives. PPO-silenced plants displayed an increased level
of tyramine (a monophenol substrate of PPO), while its exogenous application elicited cell death in
walnut and several other plant species.

The results obtained in our study lead to excluding the presence of the PPO activity (both latent
and mature forms of the enzyme), as well as of one or more genes coding for PPO in C. coccineum.

Indeed, in order to exclude events related to the presence of microRNAs (miRNAs) able to inhibit
translation fact, our experiments have not been restricted only to searching the mRNA coding for PPO.

Usually, plant miRNAs are associated with Argonaute protein 1 to promote RNA post-
transcriptional gene silencing by coupling target sequences and determining RNA splicing and/or
translation inhibition [27–29]. Moreover, some authors have shown that both the parasitic and the
host plants can bi-directionally exchange their genes [30,31] and large portions of their transcriptome,
including miRNA, which can act as a regulator of gene expression [32,33]. These results are in agreement
with those reported in a recent study in which the characterization of a large number of mitochondrial
and plastid genes, as well as nuclear genes, from the Cynomoriaceae family was conducted [30,31].

However, despite the absence of PPO, the CC specimens found in nature do not seem to be
particularly exposed to the attack by insects or pathogens (our personal observation).

Moreover, a total of 29 compounds were recently detected or tentatively identified in C. coccineum
in mass spectrometry [34]. Interestingly, tyramine was absent from these chemical constituents.

As a result, we can rule out that the absence of PPO makes the CC plant more susceptible to biotic
stress, as well as that the enzyme can play a role in the metabolism of tyramine.

The subcellular localization of PPOs is closely connected to the cellular compartment of
chloroplasts [19,35], thus leading some authors to hypothesize a connection between PPO and
photosynthesis. However, to date, clear evidence either in favor or against such a direct involvement
has not been obtained. Despite its chloroplast location, Boeckx et al. [36] showed that the presence
of PPO activity in leaves did not correspond with a direct role for the enzyme in the regulation or
protection of photosynthesis. Moreover, the detection of potential chloroplast substrates for PPO,
namely, coumaroyl hexoside, coumaroyl malate, and caffeoyl malate, both in red clover mutants
expressing low leaf-PPO activity and in wild-type plants exhibiting high leaf-PPO activity, suggests a
physiological role for this enzyme in undamaged leaves.

Whatever function one wishes to hypothesize for the PPO, one should take into consideration the
location of its possible substrates, phenolics, and polyphenols, accumulating predominantly in vacuoles.
Different polyphenols have also been identified in the genus Cynomorium [37,38], thus suggesting,
that their physiological role is not necessary to serve as substrates for PPO.
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Therefore, the possibility remains that plant PPO can play more than one physiological role not
yet understood.

To our knowledge, this work is the first to report the absence of PPO in a non-photosynthetic plant.
Previously, the lack of PPO was suggested only in an Arabidopsis mutant, in which a gene encoding a
protein with a strong resemblance to laccase was reported [39].

The simultaneous absence of the genes that express both PPO and the protein apparatus necessary
for photosynthesis in CC make considerations about the physiological role of PPO in plants even
more complex.

Moreover, CC is a plant that is strongly adapted to grow in harsh environmental conditions
characterized by arid soil, high salinity, high temperature, and scarcity of water. In many areas of the
southern Mediterranean, CC grows close to sub-desert areas [24].

Phenolic compounds are considered to be indicators of drought resistance. For example,
in Larrea divaricata and Lycium chilense, two Patagonian shrubs, phenolic compound production is a
strategy used by these species living in extreme environments [40]. Many phenolics, potential PPO
substrates, are needed in their reduced state as a form of plant protection from unfavorable
environmental conditions. The PPO-mediate oxidation of these substrates might compromise the
resistance of the plant.

This finding would be consistent with the observation that PPO levels can also vary in response to
various forms of abiotic stress, such as drought. For example, tomato plants in which PPO expression
was reduced showed better tolerance to drought than either the untreated plants or those in which PPO
was overexpressed [41]. We can therefore speculate that both the high amount of phenolic compounds
(e.g., gallic acid and cyanidins) [25], found in the aerial parts of C. coccineum, and the concomitant
absence of PPO can contribute to greater resistance to abiotic stresses in this plant parasite and, perhaps,
in its host plant. However, this hypothesis warrants further research.

Over 4500 angiosperm plants of the 369,000 flowering plants are considered to be parasitic [32].
Many of these plants are holoparasitic and therefore lack the ability to perform photosynthesis, such as
C. coccineum. However, there are numerous other species, hemiparasites, that contain chlorophyll
when mature (hence, these species are photosynthetic) and obtain water and dissolved nutrients
by connecting via the haustorium to the host. Such plants may differ in resistance to abiotic stress.
Hence, it would be interesting to study the presence of PPO, if any, and its possible location. We hope
that our work will be a stimulus for further investigation of these plants to understand possible
connections among the function of PPO and abiotic stresses.

4. Materials and Methods

4.1. Chemicals

All the chemicals used in this study were purchased from Sigma-Aldrich (Merck Group,
Milan, Italy) and were used without further purification. For the purification of genomic DNA
and PCR products, specific commercial kits were used as described below.

4.2. Plant Material and Homogenate Preparation

Cynomorium coccineum specimens (aerial part) were collected in April 2019 from Arborea
(southwestern Sardinia, Italy, 39◦43′46.2” N 8◦30′48.1” E) during the flowering period. Ferula communis
specimens (stem and leaves) were collected in March 2019 from Santa Giusta, Oristano (western Sardinia,
Italy, 39◦52′01.1” N 8◦36′31.6” E). After collection, the samples were gently cleaned and frozen within
1 h. Plants were identified using field guides, and identity was confirmed by specialized personnel at
Cagliari University.

Reference material for C. coccineum (AR-CC/2019/1) and F. communis (AR-1/February/2019) was
deposited into the collection of the Department of Biomedical Sciences of the University of Cagliari.
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4.3. Homogenate of C. coccineum

Fresh stems (500 g) from five specimens were cut into small pieces (approximately 2 cm thick)
and homogenized in the presence of 0.1 M of cold sodium phosphate buffer (pH 6.5) with Ultraturrax
at 10,000 RPM for 1.5 min at 30 s intervals. The slurry was then centrifuged at 14,000× g at 4 ◦C for
20 min. The supernatant was recovered and used for the enzyme assays. Total protein concentration
was 4.08 ± 0.08 mg/mL. This procedure was carried out two more times with similar results.

4.4. PPO and Protein Assays

The monophenolase activity of PPO was performed with the following monophenol substrates
as previously reported: L-tyrosine [42], tyramine [43], umbelliferone [44], and 4-hydroxyanisole [45].
Diphenolase activity measurement was carried out with the following di-phenolic substrates: L-DOPA,
dopamine [43], and esculetin [44]. As reported in some PPO assays, 3-methyl-2-benzothiazolinone
(MBTH) was used as a coupling reagent to improve the sensitivity of the method. Samples with
different amounts of total protein were tested up to a maximum of 2 mg/mL Protein content was
measured by Bio-Rad Protein Assay Kits (Clinical Diagnostics, Bio-Rad Laboratories SRL, Milan, Italy)
based on Coomassie Brilliant Blue G-250 Dye.

4.5. Immunohistochemistry

Samples from five specimens of CC were rapidly frozen at−80 ◦C and, after 24 h, divided into small
pieces, embedded with Tissue-Tek (Sakura Finetek Europe, Alphen aan den Rijn, The Netherlands)
and cut into 20 µm sections on a cryostat (Cryostar NX 70, Thermo Fisher Scientific, Waltham,
MA, USA). fter three consecutive washes in phosphate buffered saline (PBS, pH 7.4), serial sections
were subjected to immunohistochemical treatment for the detection of PPO, as previously reported [46].
Following hydration of sections by PBS, samples were incubated with 10% normal horse serum
(NHS; Sigma-Aldrich, St. Louis, MO, USA) for 45 min at RT to avoid unspecific binding of
the next antibodies. The following procedure steps were performed according to the alkaline
phosphatase-streptavidin method. Mouse monoclonal antibody to human PPO (clone T311, 1:100, 1 h
at RT; Thermo Fisher Scientific, Waltham, MA, USA) was applied as primary antisera, chosen on the
basis of the validated resource identification initiative [47]. After three 5 min rinses in PBS, all of the
sections were incubated with the biotinylated horse anti-mouse IgG secondary antibody (1:200, 30 min
at RT; Vector Laboratories, Burlingame, CA, USA). PBS washing of the sections (3 × 5 min) preceded the
section incubation with the alkaline phosphatase-streptavidin complex (1:1000; Vector Laboratories) for
30 min at RT. Specific immunoreactivity was detected by means of the FastRed substrate-chromogen
system (Sigma-Aldrich), allowing the development of the alkaline phosphatase reaction as a reddish
product; finally, the sections were mounted in glycerol gelatin (Sigma-Aldrich, Milan, Italy).

To check the specificity of anti-mammalian PPO by Thermo Fisher toward vegetal PPO,
cryostat sections (20 µm thick) of stem and leaves from five specimens of giant fennel were used
as normal controls and were treated for the immunohistochemical demonstration of PPO enzyme
following the same methodological procedure described above.

Moreover, sections of a formalin-fixed and paraffin-embedded normal human skin sample (5 µm)
were included in the immunohistochemical analysis and used as a known positive control for PPO.
However, before treatment with normal serum, water bath heating-based antigen retrieval was
necessary by immersion in 10 mM citrate buffer (pH 6.0) at 95 ◦C for 30 min followed by gradual
cooling for 20 min to recover specific epitopes masked by formalin. Finally, after alkaline phosphatase
reaction, the sections were counterstained with Carazzi’s hematoxylin.

Nonspecific binding of secondary antibodies was ruled out by replacing the primary antibodies
with normal serum (negative controls). Normal, positive, and negative controls were run simultaneously.

Immunolabeled slides were grabbed using a Zeiss Axioplan2 microscope (Carl Zeiss Vision,
Hallbergmoos, Germany) equipped with 10×/0.25 Zeiss Achroplan, 20×/0.45 Zeiss Achroplan,
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and 40×/0.75 Zeiss Plan-Neofluar objectives that mounted the CCD Lumenera Infinity3-1URC camera
(1.4 megapixels; Lumenera Corporation, Ontario, Canada), using the related Infinity Capture 6.3.0
software (Lumenera Corporation). Selected images were slightly adjusted for brightness and contrast,
and were combined into panels (Adobe Photoshop 7.0, Adobe Systems Incorporated, CA, USA).

4.6. Biomolecular Assay

Cynomorium coccineum stems were the starting material for biomolecular experiments on DNA
and RNA. The tissue was treated with liquid nitrogen to obtain a thin powder and subsequently frozen
and stored at –80 ◦C until use.

4.7. Isolation of RNA from C. coccineum and RT-PCR

Total RNA was extracted from the CC aerial part previously treated with liquid nitrogen using
TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA), following the manufacturer’s suggested protocol.
The quality of purified RNA was verified by gel electrophoresis using a 1% denaturing agarose gel
stained with SYBR Green II (Sigma-Aldrich), and the concentrations were measured using a NanoDrop
2000c UV-VIS Spectrophotometer (Thermo Scientific, Waltham, MA, USA) at 260 nm. To obtain cDNAs,
CC RNAs were reverse transcribed with an oligo dT primer using an enhanced avian myeloblastosis
virus reverse transcriptase enzyme (Sigma-Aldrich), following the manufacturer’s recommendations.

4.8. Genomic DNA Isolation

Genomic DNA was isolated from freeze-dried plant samples using the Plant & Fungi DNA
Purification Kit (EURx, Poland) according to the manufacturer’s protocol. The quality and quantity of
the DNA were determined spectrophotometrically using a NanoDrop instrument.

4.9. Amplification of Cynomorium PPO cDNAs by PCR with Hybrid Primers

A degenerate hybrid oligonucleotide primer (CODEHOP) strategy [48] was used to detect
unknown nucleotide sequences of the CC genes. The CODEHOP strategy has proven to be useful for
the exploration of large gene families in plants [49] and for the isolation of different plant genes related
to antioxidant activity [50–53]. According to the CODEHOP strategy, we selected six PPO amino acidic
sequences of different plant sources from the GenBank SwissProt database. The sequences were aligned
using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) and then cut into blocks using Block
Marker software (http://blocks.fhcrc.org/blocks/). Primers were designed using the default parameters
of the CODEHOP program (http://blocks.fhcrc.org/codehop.html). Amplification primers used for PPO
cDNA from CC were chosen from a group of candidate primers suggested by the CODEHOP program.
The position and orientation of the primers with respect to the gene translated in silico into amino acid
sequences are shown in Figure 3. Each primer sequence contains a consensus clamp, given in the upper
case, and a degenerate core, written in the lower case, with y = [C,T], r = [A,G], and n = [A,G,C,T].
PCR was performed in a solution containing 1.5 mM MgCl2, 100 mM Tris-HCl (pH 8.3), 50 mM
KCl, 200 mM dNTP mix, 1 mM sense primer, 1 mM antisense primer, 1 µg of Cynomorium cDNA,
and 1–3 units of Jump Start AccuTaq LA DNA polymerase mix (Sigma-Aldrich). Thermal cycling was
carried out in a Personal Eppendorf Mastercycler (Eppendorf, Hamburg, Germany) under varying
conditions. All PCRs were prepared using pairs of primers available in all possible combinations
(see Table 1). The electrophoretic separation of the PCR products was carried out not only on agarose gel
2% but also on 6% polyacrylamide gel (acrylamide/bis ratio 29:1), which allows a better separation of
small PCR fragments (80–800 bp) compared to 2–3% agarose normally used, as previously reported [54].

https://www.ebi.ac.uk/Tools/msa/clustalo/
http://blocks.fhcrc.org/blocks/
http://blocks.fhcrc.org/codehop.html
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CAA73103.1          VSYSCCPPIPSDMDSVPYYKFPSMPKLRIRPAAHAADEEYIAKYQLATSRMRELD-KDPF 169 
XP_016573822.1      VSYSCCPPKPEDMDSVPYYKFPSMTKLRIRPPAHAADEEYIAKYQLATSRMRELD-KDPF 164 
                    * **** * * :::.:* **:* : : *:*  *: * :**:*** *.  :*:.** .:*  
 
AAA85121.1          NPIGFKQQANIHCAYCNGAYRIGGKELQVHNSWLFFPFHRWYLYFHERIVGKFIDDPTFA 230 
AFJ79642.1          NPIGFKQQANIHCAYCNGAYKIGDKVLQVHNSWLFFPFHRWYLYFYERILGSIIDDPTFA 223 
ASW18458.1          NPLWFKQQANVHYAYCNDAYTIGGKVLQVHGSWLFFPFHRWYMYFFERILGKLIGDQTFA 123 
NP_001318059.1      DPLGFKQQANIHCAYCNGAYKIGGKELQVHFSWLFFPFHRWYLYFYERILGSLINDPTFA 227 
CAA73103.1          DPLGFKQQANIHCAYCNGAYKIGGKELQVHFSWLFFPFHRWYLYFYERILGSLINDPTFG 229 
XP_016573822.1      DPLGFKQQANIHCAYCNGAYKVGGKELQVHFSWLFFPFHRWYLYFYERILGSLIGDPTFG 224 
                    :*: ******:* ****.** :*.* **** ***********:**.***:*.:*.* **. 
 
AAA85121.1          LPYWNWDHPKGMRFPAMYDREGTSLFDVTRDQSHRNGAVIDLGFFGNEVETTQLQLMSNN 290 
AFJ79642.1          LPYWNWDHPKGMRMPAMFDREGTALYDQVRNQSHRNGRVMDLGSFGDEVQTTELQLMSNN 283 
ASW18458.1          LPYWNWDNPKGMYLPPMFDVPGSPLYDERHNPHVYNGTVMDLGYFGDEVQTTQLQLMANN 183 
NP_001318059.1      LPYWNWDHPKGMRIPPMFDREGSSLYDEKRNQNHRNGTIIDLGHFGKDVETPQLQIMTNN 287 
CAA73103.1          LPYWNWDHPKGMGIPPMFDREGSSLYDARRNQSHRNGTIIDLGFFGTEVQTTQLQQMTNN 289 
XP_016573822.1      LPYWNWDHPKGMRLPPMFDREGSSLYDEKRNQSHRNGTIIDLGHFGDEVQTTQLQMMTNN 284 
                    *******:**** :* *:*  *: *:*  ::    ** ::*** ** :*:* :** *:** 
 
AAA85121.1          LTLMYRQMVTNAPCPRMFFGGPYDLGVNTE-LPGTIENIPHGPVHIWSGTVRGSTLPNGA 349 
AFJ79642.1          LTLMYRQWY-YAPCPRMFLARLTFLGITLK-PQEPLKSSLTVLSTFGLVQCQVQPCLNGR 341 
ASW18458.1          LILMHRQMVTNAPCPLLFFGAPYVLGNKPVEAPGTIENIPHNPVHIWTGTVRGSTLPDGK 243 
NP_001318059.1      LTLMYRQMVTNAPCPSQFFGAAYPLGSDPEPGMGTIENIPHTPVHIWTGDSPR------- 340 
CAA73103.1          LTIMYRQMITNAPCPLLFFGQPYPLGTDPSPGMGTIENIPHTPVHIWVGSRPD----ENN 345 
XP_016573822.1      LTLMYRQMITNAPCPLLFFGEPYPLGTDPSPGMGTIENIPHTPVHIWTGDNPR------- 337 
                    * :*:**    ****  *:.    **         ::.       :               
 
AAA85121.1          ISNGENMGHFYSAGLDPVFFCHHSNVDRMWSEWKATGGKRTDITHKDWLNSEFFFYDENE 409 
AFJ79642.1          TSHGENMGHFYSAGLDPVFFCHHSNVDRMWSEWKAIGGKRRDISHKDWLNSEFFFYDENG 401 
ASW18458.1          PSYGEDMGNLYSTGLDPVFYLDHANVDRMWNLWKQIGGKIRDIQEKDWLNSEFCFYDENR 303 
NP_001318059.1      QGHGEDMGNFYSAGLDPLFYCHHANVDRMWNEWKLIGGKRRDLSNKDWLNSEFFFYDENR 400 
CAA73103.1          VKHGEDMGNFYSAGLDPLFYSHHANVDRMWSEWKALGGKRRDLTHKDWLNSEFFFYDENR 405 
XP_016573822.1      QPHGENMGNFYSAGLDPVFYCHHANVDRMWSEWKATGGKRRDLSNKDWLNSEFFFYDENR 397 
                       **:**::**:****:*: .*:******. **  ***  *: .******** *****  
                            
AAA85121.1          NPYRVKVRDCLDTKKMGYDYKPIATPWRNFKPLTKASAGKVNTASLPPASNVFPLAKLDK 469 
AFJ79642.1          DPFRVKVRDCLDTKKMGYDYAPMPTPWRNFKPITKASVGKVDTSSLPPVSQVFPLAKLDK 461 
ASW18458.1          NPYRVKVRDCLDSKKMGYDYAPMPTPWRNFKPTRKASSGKANISSLPPASKVFPLAKLDR 363 
NP_001318059.1      NPYRVKVRDCLDSKKMGFDYAPMPTPWRNFKPIRRSSSGKVNTASIAPVSKVFPLAKLDR 460 
CAA73103.1          NPFRVKVRDCLDSKKMGFDYAPMPTPWRNFKPIRKSNAGKVNLSSVPPASKVFPLSKLDR 465 
XP_016573822.1      NPYKVKVRDCLDTKKMGYDYAPMPTPWRNFKPIRKTTTGKVNTASLPPASKVFPLAKLDR 457 
                    :*::********:****:** *: ********  ::. **.: :*: *.*:****:***: 
 
AAA85121.1          AISFSINRPTSSRTQQEKNAQEEMLTFSSIRYDNRGYIRFDVFSNVDNNVNANELDKAEF 529 
AFJ79642.1          AISFSINRPASSRTQQEKNEQEEMLTFNNIKYDNRNYVRFDVFLNVDSNVNADELDKAEF 521 
ASW18458.1          TISFSINRPSLSRTQQEKNEQEEMLTFNKIQYDDSQYVRFDVFLNVDKTVNADELDKAEF 423 
NP_001318059.1      AISFSITRPASSRTTQEKNEQEEILTFNKMAYDDTKYVRFDVFLNVDKTVNAEELDKAEF 520 
CAA73103.1          AISFSIDRPSSSRTQQEKNEQEEMLTFNNIKYDDSKYIRFDVFLNVDKTVNADELDKAEY 525 
XP_016573822.1      AISFSINRPASSRTQQEKNEQEEMLTFNKIQYDDRQYVRFDVFLNVDKTVNADELDKAEF 517 
                    :***** **: *** **** ***:***..: **:  *:***** ***..***:******: 
 
AAA85121.1          AGSYTSLPHVHRAGE-TNHIATVDFQLAITELLEDIGLEDEDTIAVTLVPKRGGEGISIE 588 
AFJ79642.1          AGSYTNLPHVHRVGENTDHVATATLQLAITELLEDIGLEDEDTIAVTLVPKKGGEGISIE 581 
ASW18458.1          AGSYTSLPHVH--GDNTTHITSVTFKLAITELLEDIGLEDEDVIAVTLVPKTGGEGVSID 481 
NP_001318059.1      AGSYTSLPHVH--GNNDNHVKDVTFTLAITELLEDIGLEDEDTIAVTLVPKVGGEGVSIE 578 
CAA73103.1          AGSYTSLPHVH--GDNVSHVTSVTFQLAITELLEDIGLEDEDTIAVTVVPKTGGEEISIE 583 
XP_016573822.1      AGSYTSLPHVH--GDNTTHVTSVTLQLAITELLEDIGLEDEDTIAVTLIPKKGGEGISIE 575 
                    *****.*****  *:   *:  . : ****************.****::** *** :**: 
 
AAA85121.1          GATISLADC- 597 
AFJ79642.1          GATISLADC- 590 
ASW18458.1          GVEIKLAGLL 491 
NP_001318059.1      SVEIKLEDC- 587 
CAA73103.1          GVEIKLVDC- 592 
XP_016573822.1      GAEINLVDC- 584 
                    .. *.* .   
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Figure 3. Multiple alignment of PPO amino acids from six different plant sources. The sequences were
chosen from the GenBank SwissProt database and aligned using Clustal Omega tool. An asterisk (*)
denotes identical residues; double dots (:) represent a conserved residue substitution; a single dot
(.) shows partial conservation of the residue. The arrow above the amino acid sequences indicates
the position of the sense (F→) and antisense (←R) primers chosen from a group of candidate primers
obtained from the CODEHOP program. The sequences of the sense and antisense primers were obtained
from the Clustal Omega alignments shown in bold and inside the boxes, respectively.



Plants 2020, 9, 964 9 of 13

Table 1. Oligonucleotides used in the CODEHOP experiments.

CODEHOP Sequences Comments

5′-CAGCAGGCCAACATCcaytgygcnta-3′ F1 sense primer designed on the conserved peptide QQANIHCAY

5′-GCAGGTGCACAACTCCtggytnttytt-3′ F2 sense primer designed on the conserved peptide QVHNSWLFF

5′-CGCCATGCCCTACtggaaytggga F3 sense primer designed on the conserved peptide ALPYWNWD

5′-GCAGATGAACAACAACCTGACAhtnatgtaymg-3′ F4 sense primer designed on the conserved peptide QMNNNLTIMYR

5′-ACCACGCCAACGTGgaymgnatgtg-3′ F5 sense primer designed on the conserved peptide HSNVDRMW

5′-GGGTGAAGGTGCGGgaytgyytnga-3′ F6 sense primer designed on the conserved peptide VKVRDCLD

5′-CACCTCGGTGCCGAAGTAGycnarrtcnat-3′ R1 antisense primer designed on the conserved peptide IDLGYFGTEV

5′-GCCTTCCACTCGTTCcacatnckrtc-3′ R2 antisense primer designed on the conserved peptide DRMWSEWKA

5′-CGTAGCCCATCTTCTTGGTGtcnarrcartc-3′ R3 antisense primer designed on the conserved peptide DCLDSKKMGYD

5′-CGTTCGACGTTCACGwanacrtcraa-3′ R4 antisense primer designed on the conserved peptide FDVFLNVDV

5′-GTAGGAGccngcrwaytc-3′ R5 antisense primer designed on the conserved peptide EFAGSY
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4.10. Amplification of Cynomorium polyubiquitin cDNA and Genomic DNA by PCR with Hybrid Primers

To evaluate the efficiency of reverse transcription polymerase chain reaction and the presence
of full-length CC cDNAs, a PCR reaction mixture was prepared with the aim of isolating a gene
fragment coding for polyubiquitin. This gene was chosen because its nucleotide sequence in CC was
partially characterized in our laboratory (accession number KX611140). The forward (5′-AAGCAGCTT
GAGGACGGGAGAACACTA-3′) and reverse (5′-GGTCAGGGTCTTCACGAAGATCTGCAT-3′)
primers for amplifying the gene fragment coding for the CC polyubiquitin were designed to
amplify the entire 570-bp nucleotide sequence deposited in the NCBI database (Accession Number
KX611140.1). The results of the electrophoretic separation of PCR products are shown in Supplementary
Materials (Supplementary Figure S1). The combinations of sense and antisense primers used in PCR
experiments and the size of the expected fragments are shown in Supplementary Table S1. The only
PCR fragment obtained relating to polyubiquitin was purified with a Charge Switch PCR Clean-Up Kit
(Invitrogen, Carlsbad, CA, USA) and sent to BMR Genomics (Padova, Italy) for sequencing. The results
are given in Supplementary Figure S2.

Nucleotide and deduced amino acid sequence analyses were performed with the OMIGA v.2.0
software (Oxford Molecular Company, Madison, WI, USA). Translation of nucleotide sequences was
performed using OMIGA or the ExPASy translate routine software tool. Similarities were analyzed
with the advanced BLAST algorithm, available at the National Center for Biotechnology Information
website and with the FASTA algorithm v. 3.0 from the European Bioinformatics Institute website
(EMBL-EBI). Sequences were aligned using Clustal Omega.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/8/964/s1:
Figure S1: Electrophoretic separation on 6% polyacrylamide gel of the PCR product obtained for the polyubiquitin
gene (line 1); Table S1: Combination of primers sense and antisense used in PCR reactions and size of the expected
fragments given in base pairs (bp); Figure S2: Polyubiquitin sequencing results.
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