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The difficulty in annotating the vast amounts of biological information poses one of the greatest current
challenges in biological research. The number of genomic, proteomic, and metabolomic datasets has
increased dramatically over the last two decades, far outstripping the pace of curation efforts. Here, we tackle
the challenge of curating metabolic network reconstructions. We predict organismal metabolic networks
using sequence homology and a global metabolic network constructed from all available organismal
networks. While sequence homology has been a standard to annotate metabolic networks it has been faulted
for its lack of predictive power. We show, however, that when homology is used with a global metabolic
network one is able to predict organismal metabolic networks that have enhanced network connectivity.
Additionally, we compare the annotation behavior of current database curation efforts with our predictions
and find that curation efforts are biased towards adding (rather than removing) reactions to organismal
networks.

dvances in high-throughput experimental biology have greatly furthered our knowledge and made it

possible to interrogate cellular processes in a systematic manner. However, this data deluge is only as

useful as our ability to interpret it'. The current uncertainty of data reliability hampers our efforts to
understand which network topologies fulfill physical, chemical, and biological constraints®°. Understanding the
possible network topologies is a critical condition in on-going attempts to understand the function and evolution
of cellular networks.

Improving annotations of organismal metabolic networks has been an area of intense interest, especially owing
to their usefulness in assessing organismal fitness in silico. There have been numerous methods proposed that
attempt to solve the incompleteness of metabolic network reconstructions, ranging from gap-filling the orga-
nismal network based on what other known organismal networks possess’ to methods that rely on multiple
sources of annotation information to provide an assessment of enzyme presence'.

However, even with these methods we are still far from achieving consensus on the correct metabolic network
for a given organism, even one as well-studied as Escherichia coli (Fig. 1a). Indeed, there are dramatic differences
in both the size and degree of overlap of the metabolic network for E. coli recorded in (i) different databases or (ii)
the same database at different time snapshots (Fig. 1b). This problem is magnified in organisms that have their
genomes sequenced for the first time (Fig. 1c). This last example is a perfect demonstration of both our lack of
knowledge and the problem of developing computational analyses that perfectly recapitulate the known network
at only the present instance.

Because data reliability is such a pressing problem for experimental and computational researchers alike, there
has been a push in research to consider the analysis of metabolic networks from novel perspectives. A promising
new framework is to consider metabolism in the context of a global network. This framework has been success-
fully applied in assessing the emergence of biological carbon fixation in phylometabolism'' and, more generally,
to understand the regulation of metabolism'>. A global network has also been recently used in conjunction with
probabilistic methods to predict metabolic networks on a small scale with experimental verification'’. While the
motivation for the global network approach has been mostly pragmatic, it is reminiscent of the “Res Potentia”
framework proposed by Whitehead'*. Wherein he proposes that which does exist—termed the Res Extenta or in
the case of metabolism the set of organismal metabolic network—are specific realizations of a “universal”
framework—the Res Potentia or the global network in our analysis—that defines what is possible.

We contend that using a global network approach to the study of metabolism is comparable to what epide-
miologists do when studying worldwide propagation of infection. In building the worldwide air transportation
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Figure 1 | Metabolic networks are still being actively revised. We focus here on the metabolites and reactions belonging to the core metabolism

and show network size and changes in metabolic networks for selected organisms. (a), Size of the E. coli metabolic network for four databases relative to
KEGG 2009. Note the dramatic differences in both the size of the networks and the percentage of overlap with the KEGG 2009 network. (b), Number of
reactions KEGG added or removed for selected organismal networks over the course of two years (2009 to 2011). Even though the networks are restricted
to the intersection with the core metabolism there is appreciable turnover. (c), Number of reactions KEGG added or removed for selected organismal
networks over the course of the same period for two recently sequenced organisms. To illustrate the effect of these revisions, if a model was to perfectly
predict the 2009 organismal network for Taeniopygia guttata it would be less than 50% accurate when it was compared to the 2011 network.

network'>™'” all carrier flights are aggregated into a single network

and analyzed. This is an important feature of its construction because
it aids in the identification of and distinction between international
and regional hubs, establishing their relative importance in the net-
work. As an example, if we were to consider US Airways (a North
American carrier) alone we would not have fully grasped the import-
ance of London, since this carrier will have more flights to Los
Angeles or even San Diego than to London. Even if we were to pick
a group of carriers based on similarity (such as operating primarily in
North America) and assess the ensemble of their individual net-
works, it would be difficult to assess the relative importance of the
individual hub airports. Reframing the analysis of metabolic net-
works to a global network is an appropriate method to both assess
our current network annotations and to gain an understanding of
what evolutionary dynamics shape organismal metabolism into the
structures that we currently know.

In the following we predict entire organismal metabolic networks
using only sequence homology and the global network as a reference.
We show that using an appropriate reference set, the global network,
allows for more insight to be obtained from sequence homology. We
compare our predicted networks to known metabolic database
reconstructions and also evaluate the connectedness of the resultant
graphs for predicted networks to assess the performance of our
methodology. We also use our predictions to help understand how
curation behavior in a metabolic database affects known organismal
metabolic networks.

Results

Organismal network prediction. We constructed a global network
by performing the graph union of all organismal networks (Fig. 2b).
Our analyses focused on the giant component of the global network
because it contains the most reliable data, as its metabolites are more
conserved and have more pathway annotations. To predict
individual organismal metabolic networks we assumed that a given
reaction can be catalyzed within an organism if, and only if, the
organism synthesizes a protein that is sufficiently similar to the
known enzymes for the reaction. We evaluated each reaction in

the global network for its possibility of existence in any individual
organism.

We aligned the enzyme sequences associated with each reaction to
each organism’s protein database (Fig. 3a) and determined the
expectation value (E-value) of the alignment using blastp'®'*. The
E-value is a measure of the number of times the match between the
sequences would be expected to occur by chance; E-value = 0.0
indicates a perfect match between the queried enzyme sequence
and a protein in the database, while E-value > 1.0 is interpreted as
a sequence match that is not indicative of biological homology.

For clarity, we define several additional terms. A reaction pre-
dicted to be catalyzed in a certain organism by a certain database
curation team is “annotated” in that database. Otherwise, the reac-
tion is “unannotated” — it exists in the global network but not in the
organismal one. To make our predictions of annotation status we
separated the alignments associated with a reaction r into two cat-
egories, hits and poor matches, based on the magnitude of the E-
values obtained. If an alignhment has E-value =< 0.01 then we classify
the alignment as a hit; otherwise, if 0.01 < E-value = 10, we classify it
as a poor match (Fig. 3b).

We use the fraction of alignments f’ that are classified as hits as a
predictor of whether reaction r can be catalyzed within organism i.
When the distribution of f’ is examined we find a peak at greater
values for KEGG annotated reactions when all of the reactions are
considered. Furthermore, we see that this behavior holds no matter
which domain of organisms is considered (Fig. 3¢), indicating that
this is a robust behavior preserved across all organismal networks.
The imperfect separation between annotated and unannotated dis-
tributions is also expected given the amount of known annotation
errors in the KEGG networks (Fig. 1).

To determine whether a given f is large enough to be considered a
reaction that can be catalyzed we must set a threshold value f; if
f>f«, then we predict reaction r to exist in organism i. To identify
an appropriate value for £, we calculated the receiver operator char-
acteristic (ROC) curve, accuracy, and false discovery rate statistics™.
The ROC curve analysis demonstrates that f can discriminate
between annotated and unannotated reactions (Fig. 4a). We thus
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Figure 2 | Construction of a global metabolic network from KEGG data. (a), Construction of the Methanococcus maripaludis metabolic network from
KEGG. We show the giant component in black and the 122 small components in grey. We highlight eight metabolites (shown in green, highlighted with
red circles) that will be considered in the other panel. (b), The set of all organismal networks is the extent of our current knowledge from KEGG. We
construct the global metabolic network as the union of all known networks. We superimpose the eight highlighted metabolites from M. maripaludis

(shown in green) on the global network making their network proximity apparent. This superimposition elucidates potential additional reactions that can
bridge gaps between different components of the network. Such superimpositions can dramatically decrease the search space for new reactions that can

accomplish this bridge.

use the accuracy and false discovery rates to determine a good thresh-
old value for f; and set fic = 0.14 (Figs. 4b). In summary, we predict
organismal metabolic networks by checking whether a reaction r for
organism i has a value f/ >0.14 (Fig. 4c). This approach allows us to
predict entire organismal networks using only the global metabolic
network and the associated organismal BLAST alignments.

Comparison with consensus networks. In order to calculate the
accuracy of our predictions it is necessary to compare it to a
“ground truth”. However, given the significant variations in size
and content that exist across different databases and in time, such
a ‘true’ answer does not exist (Fig. 1). In an effort to estimate the true
accuracy of our predictions we consider the metabolic network
reconstructions of E. coli, a well-studied organism, from three
different sources, with two of the sources having network data at
two separate time points.

We constructed ten separate consensus networks as detailed in
Methods leaving out three reconstructions at a time, and evaluated
the accuracy of the networks that were left out of the consensus, with
the results shown in Table 1. While no network is 100% accurate with
respect to the consensus network, we find that our predictions range
in accuracy between 70 and 71% while the database networks range
in accuracy between 66 and 93%.

In an effort to understand what types of reactions our method
incorrectly predicts we characterize the reactions that are identified
as false positives in comparison to the consensus network. First, we
examine the pathway annotations associated with the metabolites in
this set of false positive edges and reactions (Fig. 5a). We find that the
majority of the metabolites are either unclassified or classified in

pathways that are not central to metabolism (outside of the car-
bohydrate, amino acid, nucleotide, and lipid metabolism pathways).
However, even being associated with a central pathway does not
mean that all of the metabolites are specifically involved in central
or essential processes and these characterizations could be due only
to their presence as a byproduct in a reaction.

Second, we examined the conservation of the false positive reac-
tions (Fig. 5b). Conservation is calculated as the fraction of times that
the edge appears in an organismal network in comparison to the total
number of organismal networks. We calculate the conservation for
all edges in all organismal networks in KEGG and define three bins in
the distribution (lower, middle, and upper thirds of the distribution).
When we bin the false positive edges into these bins we find that the
overwhelming majority are in the lowest third of conservation values.
If we consider the lower and middle thirds together these groups
accounts for more than 90% of all edges in the false positive set.

The abundance of low conservation reactions in the “false pos-
itive” set of our method could plausibly be interpreted as suggesting
that these reactions may not actually be false positives. It is likely that
a majority of the edges in this set do actually exist, they just have not
been incorporated into a majority of the databases due to poor char-
acterization and understanding of the reactions themselves.

Network connectivity. Given the challenge presented by traditional
validation due to the lack of a ground truth and our aim to predict an
organism’s true metabolic network instead of simply recapitulating
the annotations in KEGG, we also use a validation scheme focused on
the expected properties of metabolic networks. Specifically, we
surmise that organismal metabolic networks must have a bias
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Figure 3 | Organismal network prediction using the global metabolic network. (a), We BLAST the enzyme sequences associated with Reaction 1 from
the global metabolism in all organisms against the known protein sequences from open reading frames in Organism 1 in order to determine whether
Organism 1 possesses an enzyme that can catalyze Reaction 1. We repeat this same procedure for Reaction 2 from the global metabolism. (b), We
categorize each alignment as a hit or poor match based on the magnitude of its E-value. If an alignment has an E-value = 0.01 then we classify the
alignment as a hit; otherwise, if 0.01 << E-value = 10, we classify it as a poor match. It is visually apparent in this example that the annotated reaction has a
much larger fraction of hits. (c), The distributions of the fraction of hits for annotated and unannotated reactions show a clear difference no matter which

domain of organisms is considered.

toward connectedness. Indeed FBA metabolic reconstructions assu-
me that metabolic networks act as “transportation” networks that
carry mass from external nutrients to biomass”®. The possession of
fewer network components implies a greater ability of the organism
to exploit a broad range of incoming nutrients for disparate cellular
roles, and thus offers a fitness advantage over topologies where each
network component must be individually fed.

We find that both our predictions and the changes made in KEGG
in the period 2009-2011 close more gaps between network compo-
nents than would be expected if new reactions were added at random
(Fig. 6a). When we consider gaps of size one, our predictions fill
almost twice as many gaps as the KEGG changes. Remarkably, we
also find that our predictions introduce fewer new network compo-
nents than random removals. The changes in KEGG actually cause
the creation of more additional network components than would be
expected if reactions were randomly removed from organisms
(Fig. 6b). The fact that so many gaps are closed by both our method
and by KEGG curation in the period 2009-2011 lends credence to our
original hypothesis that metabolic networks should be evolutionarily
biased towards minimizing the number of network components and
supports the validity of our methodology.

It is important to note that our method takes in no information
from the global network concerning reactions other than the pos-
sibility of their existence. Therefore, our method is no more biased
towards closing gaps or preserving network structure than the actual
changes to the database could or should be and yet it still accom-
plishes this goal of increased connectivity.

Biases in database curation. When we examine how our predictions
compare to the corrections made to the KEGG database over time we

find that there is a distinct bias towards adding instead of removing
reactions to organismal networks (Fig. 6¢). It would be simple to
assume that our method under-predicts in comparison to the
reference dataset; however, we do not observe this trend when we
examine the set of well-studied organisms used in Fig. 1b and c. This
suggests that the curation teams are more aggressive in adding
reactions than removing them, despite the fact that both errors of
omission and addition are equally detrimental. Large-scale com-
parison and tracking of database changes could influence curation
teams’ actions and help attenuate this problem.

Discussion
There are several distinct advantages to reframing the study of meta-
bolic networks and, more broadly, metabolism to the organismal
usages of the global network. As demonstrated in this study we are
able to extract substantially more predictive power from sequence
homology when it is used in conjunction with the global network.
While most studies have moved beyond homology due to a lack of
predictive power to more complicated and time consuming methods
(such as Bayesian or multiple information methods), we are able to
predict metabolic networks that compare favorably to the known
database data and exceed them in producing connected networks.
We could also easily increase the efficacy of our method by including
additional network information such as whether a reaction com-
pletes a gap or not, which would be trivial to calculate and consider.
The global network also enables community detection and other
graphical analyses that are unchanging in the face of organismal
usage, facilitating an understanding of the true importance of a
metabolite. Comparing the differences in organismal usage of meta-
bolites and reactions can then be used to more robustly characterize
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Figure 4 | Proposing a good threshold to predict reactions that will be catalyzed. We use multiple statistics for judging the optimal threshold to
differentiate between annotated and unannotated groups. The receiver operator characteristic curve demonstrates that all of the thresholds possess
discriminatory power in comparison to random chance (a). To choose a precise threshold we combine this with the false discovery rate and accuracy
statistics (b). Balancing the two statistics results in a threshold of 0.14 as the optimal point to separate the two groups. This value corresponds to the peak
seen in the annotated distribution for all organisms (c). We use this threshold to predict whether an organism can catalyze a given reaction between two
metabolites when we predict organismal metabolic networks de novo from the global metabolic network.

the evolutionary forces that have optimized an organismal network.
Specifically, when studying an organismal network we cannot fully
comprehend the importance of a given metabolite because we do not
have access to all the manners in which that metabolite could poten-
tially connect to other metabolites in the network. Thus, we cannot
accurately determine, for example, the centrality of the metabolite
within metabolism or ascertain its true importance from an evolu-
tionary standpoint. In contrast, the global network makes apparent
these possibilities because it includes all available organismal know-
ledge. An increased understanding of why an organism develops
certain “solutions” for its metabolic needs will aid in predicting

unique features of the organism’s metabolite and reaction usage that
can be specifically targeted by drugs or other therapeutics and meta-
bolic engineering.

Additionally, the global metabolism also allows us to view the
metabolite and reaction usage of organisms in a general framework
providing a means to identify metabolic “devices”, small groups of
metabolites and reactions that have a functional purpose, and other
features that become apparent only when considering intermediate
scales within the network®~**. This enables us to give greater insight
into both metabolic evolution as well as ways to design synthetic
metabolic “circuits” from these devices**?*.

Table 1 | Database network accuracy in comparison fo a set of consensus networks. We show the accuracy measurements for database
networks against ten constructions of the consensus network. For each consensus network construction we on|y show the results for the
databases that were not used to build the consensus network

KEGG 2009 KEGG 2011 Ma Zeng 2003 Zeng 2011 iAF1260 Global Network
Consensus Networks (K0O9) (K11) (M03) (Z171) (iAF) f.=0.14 (GN)
KO9, Z11, iAF 0.88 0.81 0.70
KO9, MO3, iAF 0.85 0.69 0.71
KO09,Z11,GN 0.92 0.81 0.78
K09, M03, GN 0.87 0.68 0.79
K11,Z11,iAF 0.90 0 0.71
K11, MO3, iAF 0.86 0.68 0.71
K11,Z11,GN 0.93 0.80 0.78
K11, MO3, GN 0.87 0.67 0.79
MO3, iAF, GN 0.81 0.80 0.66
Z11,iAF, GN 0.83 0.82 0.82
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Table 2 | Number of organisms considered by taxonomic clade
Domain Clade Number of Organisms
Archaea (54) Crenarchaeota 19
Euryarchaeota 34
Nanoarchaeota 1
Bacteria (750) Acidobacteria 2
Actinobacteria 59
Alpha Proteobacteria 96
Bacillales 59
Bacteroides 12
Beta Proteobacteria 60
Chlamydia 12
Clostridia 35
Cyanobacteria 36
Deinococcus Thermus 5
Delta Proteobacteria 21
Epsilon Proteobacteria 23
Fusobacteria 1
Gamma Proteobacteria 196
Green Nonsulfur Bacteria 9
Green Sulfur Bacteria 9
Hyperthermophilic 11
Bacteria
Lactobacillales 61
Magnetococcus 1
Mollicutes 21
Planctomyces 1
Spirochete 17
Termite Group 1
Verrucomicrobia 2
Eukaryotes (70) Animals 19
Fungi 27
Plants 3
Protists 21
Methods

Data acquisition. We downloaded multiple instances of the Kyoto Encyclopedia of
Genes and Genomes (KEGG) LIGAND database*~?%; the first instance on June 24,
2009 and the last on February 22, 2011. We also downloaded enzyme protein
sequences from KEGG on five occasions, all between July 2010 and February 2011. All
possible, unique sequences for each enzyme were used, based on the associations to
reactions from KEGG. We downloaded bioreaction databases for Ma 2003 and Zeng
2011** from http://www.tuharburg.de, and the iAF1260 Escherichia coli
reconstruction® from the BiGG database®.

We considered 998 organisms listed in the KEGG database to construct the global
network. We constructed protein databases and predict metabolic networks for 874 of
these 998 organisms. We did not predict the networks for 125 organisms due to a lack
of sequence availability or because the time necessary to run a complete analysis for
larger organisms was prohibitively long.

The bacterial domain dominates in representation due to the breakdown of
organisms in KEGG itself. However, the network is not influenced by this over-
representation because each reaction is only counted once in the construction of the
global network. We include the domain and clade breakdown of the organisms that
we tested and predicted metabolic networks for in Table 2.

Organismal and global network construction. We constructed individual metabolic
networks for 998 organisms using a 2009 snapshot of the KEGG database. In these
networks, each node represents a metabolite, and two metabolites i and j are
connected by an edge if there is a chemical reaction in which i is a substrate and j is its
product, or vice versa. We established these relationships using only the main reaction
pair designations on KEGG and, as in prior studies®>*, excluded transfer ions, co-
factors, and energy carrier molecules to maintain focus on the biomass transfer
through the networks (Fig. 2a).

We constructed a global network by performing the graph union of all organismal
networks (Fig. 2b). The 3,467 distinct reactions listed for the 998 organisms in the
KEGG database yielded a global metabolic network comprising 6,656 metabolites and
3,328 unique edges. These metabolites are organized into a giant component com-
prising 2,023 metabolites and 2,729 edges, and 333 smaller components typically
comprising only a few metabolites each. We focused our analyses on the giant
component of the global network because it contains the most reliable data, as its
metabolites are more conserved and have more pathway annotations.

Metabolic networks for E. coli based on other databases were constructed in the
same manner as the organismal metabolic networks constructed using the KEGG
database. For the Ma 2003 and Zeng 2011 datasets the main pairs designation was

included in the original dataset and it is used instead of the KEGG main pairs
designation, while we used the main pairs designation from KEGG for the iAF1260
reconstruction.

Organismal network prediction. We collected 5.94 X 10° known enzyme amino acid
sequences from the KEGG database that are associated with the 3,467 reactions in the
global network and prepared databases of all known proteins for 874 organisms from
the nr database (downloaded February 23, 2011) in accordance with the BLAST user
manual® in order to test sequence homology. We used blastp'®'?, version 2.2.24, to
align the known enzyme amino acid sequences to the organismal protein databases.
We obtained a total of 2.6 X 10'° BLAST alignments that were subsequently used in
our analysis.

Consensus network construction. We create consensus networks using a majority
rule, similar to other work™. A set of the networks is selected and every edge in all of
the networks is evaluated. If the edge appears in the majority of the networks in the set
then it is added to the consensus network, otherwise it is not added. We then
calculated the accuracy statistic for each network not used in the consensus network
against the consensus metabolic network.

Network connectivity. To assess network connectivity we examine two quantities,
the probability of a reaction addition closing a gap between two network components
and a reaction removal creating an additional network component. We then compare
the observed number of gaps versus the random chance expectation of completing a
gap of a given size with the available number of additional reactions. For the random
filling of gaps, we use the intersection of additional reactions between our predicted
network and the KEGG 2011 network for an organism as the number of reactions that
should be added. For the creation of additional network components we removed
every edge individually in all organismal networks and determine if an additional
network component is created. We then average the number of additional
components added across all edges tested.
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