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The connection between BRG1, CTCF and topoisomerases at TAD boundaries
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ABSTRACT
The eukaryotic genome is partitioned into topologically associating domains (TADs). Despite recent
advances characterizing TADs and TAD boundaries, the organization of these structures is an
important dimension of genome architecture and function that is not well understood. Recently, we
demonstrated that knockdown of BRG1, an ATPase driving the chromatin remodeling activity of
mammalian SWI/SNF enzymes, globally alters long-range genomic interactions and results in a
reduction of TAD boundary strength. We provided evidence suggesting that this effect may be due
to BRG1 affecting nucleosome occupancy around CTCF sites present at TAD boundaries. In this
review, we elaborate on our findings and speculate that BRG1 may contribute to the regulation of
the structural and functional properties of chromatin at TAD boundaries by affecting the function or
the recruitment of CTCF and DNA topoisomerase complexes.
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Introduction

Recent advances in molecular biology and microscopy
technologies have enhanced our understanding about
the higher-order folding of the genome in an unprece-
dented manner.1-5 It is now widely accepted that the
dynamic folding of the chromatin is fundamental in
regulating gene expression and DNA replication. The
genome is folded in a hierarchical manner into
chromosome territories, genomic compartments, and
topologically associating domains (TADs), in which
specific long-range looping interactions occur.6 Each
of these structures can be dynamically regulated
during development, and perturbations in these
folding units are associated with multiple diseases and
cancer.7-9

One interesting feature that was revealed upon fine
mapping of the folding of the genome is the TAD
structures, which range from 100kb up to 1Mb in
size.7,10-13 TADs are units of chromosomes that
exhibit higher frequency of physical contacts between
genes and their cognate regulatory regions. The TADs
have been shown to be stable across different species,
cell types, and cellular conditions.12 The replication

timing, the presence of different histone modifications
and the expression of the genes inside a TAD are
highly correlated.12,14,15 However, the underlying fea-
tures that generate invariant TAD boundaries remain
unknown. In human cells, TAD boundaries have been
associated with the enrichment of CTCF, cohesin,
DNase I hypersensitivity, certain histone marks and
the timing of replication domains.7,13,14 Furthermore,
in Drosophila, the combinatorial binding of different
types of insulators (also referred to as architectural
proteins), such as BEAF32 and TFIIIC, is associated
with the strength of the TAD boundary.16,17 The
boundaries serve as barriers to long- and short-range
interactions between DNA sequences, thus the most
likely interaction partner for a genomic region is
another region within the same TAD. A strong TAD
boundary limits interactions between the two adjacent
TAD domains, whereas a weak TAD boundary allows
a higher frequency of inter-TAD interactions.17-19

Although a relationship between TAD boundaries and
the binding of insulators has been demonstrated, the
effects of enzymes that modify or remodel chromatin
are largely unknown.
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The major ATPase subunit of the SWI/SNF
chromatin remodeling complex, BRG1 (also known as
SMARCA4), is required for proper nucleosome
occupancy and positioning at target regions20 as well
as for establishing numerous long-range chromatin
interactions.21-26 BRG1 plays dual roles both as a
transcriptional activator and repressor.10 In this
review, we highlight our recent finding that BRG1
contributes to TAD boundary strength and discuss
the implications of BRG1 loss on nucleosome occu-
pancy and higher order chromatin organization.27

BRG1 is associated with TAD boundaries

To delineate the role of BRG1 in genome architecture,
we performed RNA-seq and Hi-C in control and
BRG1 knockdown mammary epithelial MCF-10A
cells.27 Moreover, to probe BRG1 localization, we per-
formed ChIP-seq in wild type parental MCF-10A cells.
We reported that BRG1 regulates the expression of
genes related to extracellular matrix and lipid synthe-
sis. In addition, BRG1 knockdown resulted in the dif-
ferential expression of many long non-coding RNAs,
which are thought to be involved in genome organiza-
tion.28 ChIP-seq analysis of BRG1 demonstrated bind-
ing primarily (»60%) at genic regions.27 Intergenic
BRG1 peaks included super-enhancers, which are
defined as clusters of regulatory regions with unusual
enrichment of factor binding sites and/or histone
modifications that are in close proximity,29 though
this classification has recently been challenged.30

Taken together, our findings showed that BRG1 bind-
ing was widespread throughout the genome.

Comparison of the control and BRG1 knockdown
Hi-C data sets revealed that the majority of the TAD
boundaries were largely overlapping between control
and BRG1 knockdown cells,27 consistent with prior
results.31-33 However, more than 10% of the TAD
boundaries were unique to either the control or the
BRG1 knockdown cells, providing evidence that BRG1
may contribute to the integrity of TAD boundaries. In
support of this concept, we observed an enrichment of
BRG1 binding at TAD boundaries. This result may be
expected since TAD boundaries have been shown to
be enriched for both housekeeping and developmen-
tally regulated genes.13 Surprisingly, the strength of the
TAD boundaries, as assessed using the insulation
method,34 was significantly reduced in BRG1 knock-
down human mammary epithelial MCF-10A cells. In

other words, upon BRG1 knockdown, there was a
higher frequency of inter-TAD genomic interactions.
We further validated this result by intersecting TAD
boundaries with BRG1 ChIP-seq data and categorizing
the boundaries as either BRG1 bound or not bound.
The strength of TAD boundaries that were bound by
BRG1 was stronger than the boundaries that lacked
BRG1 localization.27

An explanation for the effect of BRG1 knockdown
is that BRG1 loss may disrupt chromatin accessibility
and preclude the binding of transcription factors and/
or chromatin modifiers at TAD boundaries. To exam-
ine this possibility, we analyzed a publicly available
MNase-seq data set from wildtype and BRG1 knock-
down mouse embryonic fibroblast (MEF) cells.20 By
intersecting the nucleosome occupancy data with the
ENCODE MEF CTCF ChIP-seq data set, we showed
that there was decreased nucleosome occupancy at
CTCF-bound regions in BRG1 knockdown cells when
compared to control cells.27 Thus, our results sug-
gested that BRG1 plays a role at TAD boundaries by
regulating nucleosome occupancy and possibly CTCF
localization.

The CTCF connection

Dixon et al. recently hypothesized that the orderly
positioning and occupancy of nucleosomes at TAD
boundaries renders the local chromatin at the bound-
ary “less flexible,” and thus prevents long-range inter-
actions surpassing the boundary.35 The orderly
positioning and occupancy of nucleosomes at TAD
boundaries may be achieved by enriched CTCF bind-
ing, which positions »20 nucleosomes around its
binding sites.36 Our observation of the relationship
between BRG1 knockdown and the reduction of
nucleosome occupancy around the CTCF sites sup-
ports such a mechanism.27 It was recently shown that
the directionality of CTCF binding is very strongly
associated the formation of TADs,37-41 though the
relationship between BRG1 binding and CTCF bind-
ing site orientation remains to be determined. We pro-
pose that loss or knockdown of BRG1 results in the
reduction of nucleosome occupancy at CTCF sites
either through loss of its ATP-dependent chromatin
remodeling activity or by negatively impacting CTCF
binding (Fig. 1). Such an effect of BRG1 may also
occur at regions where other chromatin organizers
(e.g. cohesin) are bound.
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The TOP connection

The model proposed by Dixon et al.,35 is reinforced by
accumulating evidence that highlights the role of the
topoisomerase complex as a regulator of TAD bound-
aries.42 Recent results demonstrate that topoisomerase II
beta (TOP2B) binding overlaps with almost half of
CTCF/cohesin binding sites, and that TOP2B may facili-
tate supercoiling at CTCF sites in a transcription-depen-
dent manner.43 Direct links between topoisomerases
and BRG1 are provided by a proteomic profiling
using mass spectrometry that identified a significant
interaction between BRG1 and TOP2B.44 Consistent

with this finding, BRG1 also binds to topoisomerase
II alpha (TOP2A).45 Furthermore, BRG1 is required
for the recruitment of topoisomerase I (TOP1) to
chromatin, and in the case of both TOP2A and
TOP1, the ATPase activity of BRG1 has been shown
to be essential for the recruitment of the topoisomer-
ase proteins.45,46 These findings suggest an interplay
and functional cooperativity between CTCF, BRG1
and topoisomerases in the organization of TADs via
the active regulation of TAD boundary regions.

Additional evidence for engagement of topoisomer-
ases in genome organization is provided by studies
from bacteria and yeast. A Hi-C study in prokaryotes

Figure 1. A schematic figure depicting the possible connection between BRG1, CTCF and topoisomerases. In the presence of BRG1 (top
panel), CTCF and topoisomerases can efficiently bind to TAD boundaries and promote proper nucleosome occupancy and uncoiling of
the DNA, resulting in a strong TAD boundary. We previously reported that nucleosome occupancy around CTCF sites was reduced upon
BRG1 knockdown.27 Therefore, we propose that upon BRG1 knockdown, CTCF and topoisomerases may interact with TAD boundary
sequences, but the lack of ATP-dependent remodeling activity may alter nucleosome occupancy and affect boundary strength (middle
panel). Alternatively, the binding of CTCF and topoisomerases may be perturbed, resulting in altered nucleosome occupancy and
reduced boundary strength (bottom panel).
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examined the biology of chromosomal interaction
domains (CIDs), which are prokaryotic chromatin
folding structures that are analogous to the eukaryotic
TADs. Treatment of the prokaryotic cells with novobi-
ocin, a drug that inhibits DNA gyrase (a homolog of
topoisomerase II) and thus supercoiling, perturbed
the sharpness and the positions of CID boundaries.47

In yeast, fine resolution nucleosome mapping deter-
mined that self-associating domains similar to but
smaller than TADs exist and that their boundaries
were bound by the RSC chromatin remodeling
enzyme.48 The RSC ATPase is structurally related to
BRG1, and the genetic analyses performed confirmed
a role for RSC in yeast genome organization.48 More-
over, Hrp1, an ATP-dependent chromatin remodeling
protein from the CHD subfamily, was shown to col-
laborate with Top1 to maintain open chromatin at
active gene regions in yeast.49 Taken together, these
findings suggest a strong link between chromatin
remodeling enzymes, including the mammalian SWI/
SNF complex, architectural proteins, and topoisomer-
ases in genome organization.

Conclusions and future perspectives

We propose that the association between BRG1
knockdown and reduction in TAD boundary strength
may be due to perturbations in the recruitment of
CTCF and topoisomerases, and may therefore affect
integrity of the chromatin structure and the “stiffness”
of the chromatin at TAD boundaries (Fig. 1). In fur-
ther support of the chromatin “stiffness” hypothesis, a
recent study showed that a small deletion of a TAD
boundary was not sufficient to disrupt the TAD
domain, as it remained stable.50 This result suggests
that the boundary is not defined by the exact bound-
ary sequence or length, but instead depends either on
the supercoiling or the overall composition of the fac-
tors present at the boundary. Our recent data indicat-
ing that BRG1, and hence the mammalian SWI/SNF
chromatin remodeling enzyme, binds to TAD bound-
aries and promotes boundary strength adds a novel
biochemical activity, ATP-dependent chromatin
remodeling, to the complex structure that regulates
TAD formation and function. Other chromatin
remodeling complexes may play similar roles, as these
enzymes can function in a redundant manner.51 Con-
tinued examination of the factors found at TAD
boundaries will yield important insights into the

biophysical properties of TADs and their boundaries,
as well as into chromatin folding and overall genome
organization that supports biological control.
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