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Abstract

Identification of key metabolites for complex diseases is a challenging task in today’s medicine and biology. A special
disease is usually caused by the alteration of a series of functional related metabolites having a global influence on the
metabolic network. Moreover, the metabolites in the same metabolic pathway are often associated with the same or similar
disease. Based on these functional relationships between metabolites in the context of metabolic pathways, we here
presented a pathway-based random walk method called PROFANCY for prioritization of candidate disease metabolites. Our
strategy not only takes advantage of the global functional relationships between metabolites but also sufficiently exploits
the functionally modular nature of metabolic networks. Our approach proved successful in prioritizing known metabolites
for 71 diseases with an AUC value of 0.895. We also assessed the performance of PROFANCY on 16 disease classes and found
that 4 classes achieved an AUC value over 0.95. To investigate the robustness of the PROFANCY, we repeated all the
analyses in two metabolic networks and obtained similar results. Then we applied our approach to Alzheimer’s disease (AD)
and found that a top ranked candidate was potentially related to AD but had not been reported previously. Furthermore,
our method was applicable to prioritize the metabolites from metabolomic profiles of prostate cancer. The PROFANCY
could identify prostate cancer related-metabolites that are supported by literatures but not considered to be significantly
differential by traditional differential analysis. We also developed a freely accessible web-based and R-based tool at http://
bioinfo.hrbmu.edu.cn/PROFANCY.
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Introduction

A major challenge in today’s medicine and biology is to identify

the key metabolites associated with complex diseases. Because

metabolites are modulated by genetic and environmental pertur-

bations; their alterations in the concentration can reflect disturbed

metabolic functions and reveal novel physiological and patho-

physiological information, which can not be obtained directly from

the genomics, transcriptomics, and proteomics [1–3]. Metabolo-

mics, which is a quantitative description of all endogenous

metabolites found in cells and body fluid, aims at characterization

of the metabolome under different conditions [for example,

diseases] [2,4,5]. Metabolomics can not only help us illustrate the

underlying molecular disease-causing mechanisms but also gain

broad recognition in discovery of metabolic signatures [biomark-

ers] for disease diagnosis [1,4,5].

The main technology of metabolomics is using nuclear magnetic

resonance (NMR) spectroscopy or liquid/gas chromatography-

mass spectrometry (LC/GC-MS) to profile and quantify concen-

trations of hundreds of metabolites simultaneously [1,2,4,6]. The

metabolic profiles have been widely applied in disease related

metabolites identification and diagnostic biomarker discovery [1].

However, these high-throughput techniques have several limita-

tions. For example, it is difficult to determine quantitative

information from peak integration due to the different ionization

ability of various metabolites and the sensitivity of these techniques

is not satisfactory, which can lead to false positive metabolomics

results [1,7]. Therefore, it is necessary to develop a computational

method to prioritize the candidate disease metabolites from

metabolomics profiles.

The development and completeness of some high quality

metabolic network databases have led to availability of computa-
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tional method for prioritization of metabolites. The metabolites

rarely function in isolation; rather, they carry out biological

functions together through thousands of biochemical reactions

which organize into intricate metabolic network [8,9]. Thus,

metabolites in the consecutive reactions are functionally interre-

lated [8]. As a consequence, the impact of a disease on human

metabolism is not always restricted to one or two reactions but is

potentially spread among the functionally related metabolites in

the metabolic network [8,10,11]. Therefore, adjacent functional

related metabolites tend to relate to the same or similar disease [8].

Meanwhile, metabolites in the network are not equally function-

ally related. Some strongly related metabolites in the same

functional module, for example a metabolic pathway, together

exert a special biological function [12]. The abnormity of

metabolites in one module [pathway] tend to inactivate a special

biochemical function, thus leading to the same or similar disease

[12–15].

With these understandings, we developed a global computa-

tional method called PROFANCY (PRioritization of candidate

metabOlites using Functional relAtioNships in the Context of

metabolic pathwaY) to prioritize candidate disease-related metab-

olites based on the assumption that metabolites associated to the

same disease are functionally related in the context of metabolic

pathways (see Materials and methods and Figure 1). In our

method, we firstly reconstructed a global metabolic network in

which nodes presented metabolites and two metabolites were

connected if they were belonging to the same reaction according to

the pathway structure data from the KEGG or EHMN database

[16–18]. Considering the fact that the metabolites related to the

same disease tend to be functional modularized [in one pathway]

in metabolic network [12], we took advantage of the functional

modularity of metabolic network according to different pathways.

Thus we added functional pathway nodes (FPN) on the above

metabolic network and connected these nodes to all the

metabolites belonging to the corresponding pathway. Finally, we

employed the random walking with restart [RWR] method on this

‘‘functional module-enhanced’’ network, using the known disease

related metabolites as seed nodes from the Human Metabolome

Database (HMDB) (Figure 1) [19,20]. We applied the PRO-

FANCY to 71 diseases and achieved an AUC value up to 0.895.

We also applied this method on different disease classes and

achieve an AUC value over 0.95 in 4 classes. To investigate the

robustness of the PROFANCY, we repeated all the analyses in

another metabolic network reconstructed according to the EHMN

database and obtained the stable results [16–18]. Then we

assessed the importance of functional pathway nodes and found

that these nodes contributed to the good performance and

robustness of PROFANCY. In the following case studies, we

applied our method to (i) prioritize candidate metabolites for

Alzheimer’s disease; (ii) prioritize the metabolites from metabo-

lomic profiles of prostate cancer. We identified a potential prostate

cancer related metabolite which supported by literatures but not

considered to be significantly differential in metabolomic profiles.

We also developed a freely accessible web-based and R-based tool

at http://bioinfo.hrbmu.edu.cn/PROFANCY.

Materials and Methods

Known disease metabolites
The known disease–metabolite associations were extracted from

the Human Metabolome Database (HMDB) which collected

detailed information of small molecule metabolites found in the

human body, including their related disease phenotype informa-

tion described in entries in OMIM [19]. We removed the diseases

which have less than two related metabolites. We only retained the

metabolites which existed in the reconstructed KEGG and EHMN

metabolic networks (see below). All HMDB metabolite identifiers

were converted to identifiers in KEGG. Finally, we obtained 71

diseases and 338 disease related metabolites (HMDB vision 2.5).

These metabolites were considered as known disease related

metabolites (seed nodes).

Reconstruction of metabolic network
For prioritizing disease metabolites in a global view, we

reconstructed an undirected metabolic network in which nodes

represented metabolites and two metabolites were connected if

they were in the same reaction. To do this, we extracted the

pathway structure information from two databases: KEGG [18]

and the EHMN [16,17], and reconstructed two networks to get

robust results. For KEGG database, we downloaded the manually

collected reaction information from published materials. To obtain

specific relations between metabolites, we deleted some common

metabolites such as H2O, CO2, and so on (see Table S6) [14].

Finally, we got 3617 nodes and 4771 edges in KEGG metabolic

network. The EHMN database is a high-quality human metabolic

network manually reconstructed by integrating genome annota-

tion information from different databases and metabolic reaction

information from literature [16,17]. We downloaded the SBML

files from EHMN website and extracted the metabolic reactions.

After the same dealing steps as KEGG metabolic network, we got

1629 nodes and 5239 edges in the EHMN metabolic network.

PROFANCY
The PROFANCY could prioritize candidate disease metabo-

lites by fully exploiting the global functional similarity of

metabolites and the functionally modules of metabolic network.

To take advantage of global functional similarity between

metabolites, we employed RWR method, introduced by Kohler,

S et. al [20], which was defined as an iterative random walker’s

transition from its current node to its neighbours starting at a given

source node s, with a additionally allowable restart of the walk in

each step at the node s with probability r (In this study, we set

r~0:7 and this parameter would be discussed in the following

sections). Formally, the random walk with restart is defined as:

ptz1~(1{r)W T ptzrp0 ð1Þ

In this formula, p0 is the initial probability vector in which each

seed node has equal probabilities, and the pt is a vector in which

the ith element describes the probability of being at node i at time

step t. W is the transition matrix and Wij is the transition

probability from node i to node j which would be described later.

The candidate metabolites rank was obtained when the difference

between pt and ptz1 fell below 10{6.

Some studies indicated that metabolites in the same modules

(pathways), together exerting a special biological function, were

prone to lead to a special or similar disease [8,12]. To exploit

functional modularity of metabolic network, we added functional

pathway nodes to above two networks. Firstly, we downloaded

metabolites–pathway associations from the KEGG database [18].

Then we searched the metabolites belonging to the same pathways

in metabolic networks. Finally, we added the functional pathway

nodes in both metabolic networks and made these nodes connect

to the metabolites which belonging to the corresponding pathway

(Figure 1). There were 145 or 133 functional pathway nodes in

KEGG or EHMN metabolic network, respectively. In this

functional module-enhanced metabolic network, there were two
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kinds of links including the links between metabolites nodes and

links between functional pathways nodes and metabolites nodes.

Suppose AM(n|n), AMP(m|n), APM(n|m) and AP(m|m) are

adjacency matrix for metabolite links, the metabolite-pathway

links, pathway-metabolite links and pathway-pathway links,

respectively, where n and m represent the number of metabolite

and functional pathway nodes. There were no links edges between

functional pathway nodes, so here AP(m|m)~0. The

adjacency matrix of the module-enhanced metabolic network

can be represented as A~
AM AMP

APM 0

� �
. Then let W~

WM WMP

WPM 0

� �
be the transition matrix of the functional

module-enhanced metabolic network, where WM is transition

matrix of metabolites and WMP, WPMare metabolite-pathway

transition matrix and pathway-metabolite transition matrix,

respectively. The transition probability from a metabolite node

mi to a pathway node pj can be described as

WMP i,jð Þ~probability pj mij
� �

~AMP i,jð Þ=
X

j
AMP i,jð Þz

X
j
AM i,jð Þ

� � ð2Þ

Similarly, the transition probability from pi to mj can be

described as

WPM i,jð Þ~probability mj pij
� �

~APM i,jð Þ=
X

j
APM i,jð Þ ð3Þ

The probability of the random walker transition from a

metabolite node mi to another metabolite node mj can be defined

as

MM i,jð Þ~probability mj mij
� �

~AM i,jð Þ=
X

j
AM i,jð Þz

X
j
AMP i,jð Þ

� � ð4Þ

The initial probability vector is represented as p0~
u0

v0

� �
. Let u0

and v0 represent the initial probability of metabolite nodes and

pathway nodes, respectively. The u0 is constructed such that equal

probabilities are assigned to the seed metabolite nodes in the

metabolic network, with the sum of the probabilities equal to 1.

Here, the initial probability of pathway nodes (v0) is equal to 0.

This is equivalent to letting the random walker begin from each of

the known disease metabolites with equal probability. Here, the

initial probability of pathway nodes is equal to 0. We put the

transition matrix W and initial probability p0 into the iterative

equation (1) and after above steps, the steady probability

p?~
u?
v?

� �
is obtained, in which v? and u? is the steady

probability of functional pathway nodes and metabolite nodes.

The steady probability is obtained at query time by performing the

iteration until the difference between pt and ptz1 fell below 10{6.

Then candidate metabolites can be ranked based on the steady

probability u? (Figure 1).

Performance measurement
To access the performance of PROFANCY, we used leave-one-

out cross-validation method on every disease metabolite. For each

disease, each of the known metabolites was taken as one test case.

For each test case, the remaining known disease metabolites were

used as seed nodes. The held out metabolite and other metabolites

in the network were considered as candidates. After the

implementation of RWR method, each metabolite in the network

was assigned a probability value. Then we could rank test

metabolite with the other nodes in the network together.

Therefore, for each test metabolite of every disease, we could

obtain a rank list. Taking all rank lists of all disease metabolites

together, we could calculate the ratio of the known disease

metabolites which ranked in top n%.

The receiver operator characteristic (ROC) curve could also be

plotted and the area under this curve (AUC) could be calculated

according to above results. The ROC curve plots the true-positive

rate (TPR) versus the false-positive rate (FPR). For evaluating

rankings of disease-metabolite predictions, here ROC curves could

be interpreted as a plot of the frequency of the disease metabolites

above the threshold versus the frequency of disease metabolites

below the threshold, where the threshold is a specific position in

the ranking [20].

Results

In this section, we first assessed the performance of the

PROFANCY method on 71 diseases which could be grouped

into 16 classes. Then we assessed the robustness of the

PROFANCY. After that, we investigated the contribution of

functional pathway nodes in the prioritization process of

PROFANCY. In the following two case studies, we predicted

novel potential disease metabolites for Alzheimer’s disease using

PROFANCY. Furthermore, we applied our method in prioritizing

the metabolites from metabolomic profiles of prostate cancer.

Performance of PROFANCY
To assess the performance of our method, we performed a

validation with 338 known disease metabolites associated with 71

diseases obtained from the HMDB database (see Materials and

Methods) [21]. For 71 diseases, the AUC value was up to 0.895

(Figure 2). Additionally, 95% known disease related metabolites

were ranked in top 50%; and over 80% (267) know disease related

metabolites were ranked in top 10% (Table S1). Even in top 5%,

there were still 64% known disease related metabolites in the

KEGG metabolic network (Figure S1).

We found that our method have outstanding performance on

some diseases. For example, all the known metabolites of maple

syrup urine disease, lesch-nyhan syndrome and propionic acade-

mia were ranked in top 10%, respectively (Table S1). Majority (37

in 44) of the known metabolites of Alzheimer’s disease was ranked

in top 10%; 19 of 22 known metabolites for schizophrenia were

also ranked in top 10% (Table S1). These diseases with better

performance were belonging to metabolic class or closely related

to metabolism. Then we questioned that whether the metabolic

diseases could achieve the best performance and how the

PROFANCY performed on other disease classes. To further

investigate this, we grouped the 71 diseases into 16 classes and

Figure 1. Schematic of the PROFANCY. We firstly reconstruct metabolic networks based on the structure data from KEGG or EHMN
database and add functional pathway nodes in this metabolic network. We then map the known disease metabolites (seed nodes) and
candidate metabolites into the above network. After that, we extend random walk with restart (RWR) method to this network. Finally, we can rank the
candidate metabolites according to the steady probability of RWR.
doi:10.1371/journal.pone.0104934.g001

Prioritizing Candidate Disease Metabolites

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e104934



calculated their AUC values. Of all 16 disease classes, the

PROFANCY achieved an AUC value over 0.7 in 12 classes in

which 4 classes could achieve over 0.95 (Table 1). The metabolic

diseases have the fourth highest AUC value of 0.957. We found

that top 3 disease classes (respiratory, muscular and immunological

classes with an AUC value of 0.999, 0.973 and 0.961, respectively)

were closely related to abnormal metabolism. For example, cystic

fibrosis, which was belonging to respiratory class, was found to

have abnormalities in lipid, oxidants, bile acid, and amino acid

metabolic processing [22]; Addison’s Disease (an immunological

diseases) are caused by the dysfunction in biosynthesis of

glucocorticoids and mineralocorticoids [23]. This outstanding

performance of PROFANCY on metabolic and metabolism-

related diseases might be due to the closer association between the

pathogenesis of these diseases and dysfunction of corresponding

metabolic pathways [8,13]. We also noticed that AUC value was

relatively lower for some disease classes. For example, the AUC of

developmental diseases and hematological diseases were lower

than 0.6. We found that there was only one disease in the above

two classes respectively and each disease only had two known

related metabolites. The incomplete metabolites data might limit

the performance of our method on the two disease classes.

Investigating the robustness of PROFANCY
Another important issue of our method lies in the robustness of

the PROFANCY. We investigated the robustness of our method

from following aspects: (i) repeating all analyses in another

metabolic network reconstructed from the EHMN database; (ii)

randomizing the metabolic networks; (iii) perturbation of the

Figure 2. The ROC curve of 7 disease classes and all diseases with or without functional pathway nodes in two metabolic networks.
doi:10.1371/journal.pone.0104934.g002

Prioritizing Candidate Disease Metabolites

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e104934



candidate metabolites; (iv) setting different value of the restart

probability r.

At first, we reconstructed another metabolic network from the

EHMN database (see Materials and Methods) and repeated the

above analyses. We found that the results of PROFANCY were

stable in the EHMN metabolic network. For 71 diseases, the AUC

value was 0.871. There were 95%, 80% (230) and 47% known

disease related metabolites ranked in top 50%, 10% and 5%,

respectively, in the EHMN metabolic network (Figure S1 and

Table S2). Of 16 disease classes, the AUC values of 13 classes were

more than 0.7 and 4 classes could achieve up to 0.9 (Table 1).

Among them, highest AUC value (0.991) was also obtained from

the respiratory diseases and the AUC value of metabolic diseases

(0.936) was close to that in the KEGG metabolic network

(Table 1).

We next assessed the robustness of PROFANCY after

perturbation of metabolic network. After removing edges in the

original metabolic network from a percent of 10% to 90%, we

calculated the AUC value in these incomplete networks, respec-

tively. We found that the PROFANCY had strong resistance

against the incompleteness of network–the AUC value only had a

slight decline (about 0.005 or 0.003) when deleting 10% edges of

the KEGG or EHMN network (Table S3); Even when we deleted

70% edges, our method could keep a relatively high AUC value

about 0.8 in both networks.

We also investigated that whether our method still have stable

performance under the perturbation of candidate metabolites. For

each disease, we randomly selected 99 metabolites as candidates

from original candidate metabolites (see ‘‘Performance measure-

ment’’ in Materials and Methods). We obtained similar AUC

values of all 16 disease classes in both networks (Table S4). Finally,

to investigate the influence of r value, we set it at 0.1, 0.3, 0.5, 0.7

and 0.9, and then calculated the AUC value in KEGG and

EHMN metabolic networks, respectively. For each r value setting,

PROFANCY method had robust performance (Table S5). In this

work, we set it to 0.7.

Contribution of functional pathway nodes in the
prioritization

In the PROFANCY, we added functional pathway nodes (FPN)

to sufficiently exploit functional modularity of metabolic network

and thus to enhance prioritizing ability. To assess the contribution

of FPN in the process of prioritization, we compared the

performance of PROFANCY with FPN to that without these

nodes. We deleted these nodes and then prioritized the candidate

metabolites on the original metabolic network only. After we

performed the validation using the same data as we did above, we

found that in both metabolic networks, there were more known

disease metabolites which ranked in top 5%, 10% and 50% by

PROFANCY than that deleting the FPN (Table S2). For example,

in the KEGG metabolic network, 267 known disease metabolites

were ranked in top 10% by PROFANCY. However, when

deleting the FPN, there were only 245 metabolites ranked in top

10%.

Furthermore, the AUC value of PROFANCY for 71 diseases

was higher than that without FPN in both networks (Table 1). We

further compared the AUC values in 16 disease classes. In

majority disease classes, the AUC values had improved with FPN

compared to that without these nodes in the EHMN network

(Table 1). Among them, the AUC value of some classes had

improved to a relatively great extent. For example, the AUC value

of immunological diseases had an improvement more than 0.1

(rising from 0.832 to 0.961); the psychiatric diseases also have a

great improvement about 0.15 in the EHMN network. Surpris-

ingly, the AUC value of metabolic diseases had a little (about 0.02)

improvement. The reason might be that the metabolites associated

to metabolic diseases had relatively closer functional relationships

and always concentrated in a local region (continuous reactions) of

Table 1. The AUC value of 16 disease classes.

Disease Class AUC value

KEGG without FPN PROFANCY in KEGG EHMN without FPN PROFANCY in EHMN

Metabolic 0.935 0.957 0.92 0.936

Neurological 0.882 0.903 0.803 0.861

Cardiovascular 0.909 0.846 0.861 0.84

Endocrine 0.868 0.865 0.832 0.83

Immunological 0.832 0.961 0.856 0.909

Muscular 0.988 0.973 0.293 0.797

Psychiatric 0.831 0.873 0.706 0.85

Cancer 0.885 0.882 0.722 0.788

Connective tissue 0.859 0.838 0.794 0.793

Developmental 0.488 0.578 0.466 0.556

Gastrointestinal 0.788 0.821 0.774 0.948

Multiple 0.7 0.632 0.712 0.776

Respiratory 0.999 0.999 0.974 0.991

Renal 0.934 0.936 0.879 0.881

Nutritional 0.681 0.639 0.721 0.684

Hematological 0.343 0.425 0.809 0.612

All 0.88 0.895 0.824 0.871

FPN = functional pathway nodes.
doi:10.1371/journal.pone.0104934.t001
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metabolic pathway. Although we added the FPN, the AUC value

of these diseases might not have a great improvement due to the

already existing closely functional modularity. However, unlike

typical metabolic diseases, the metabolites associated to other

diseases might distribute in a relatively larger scale throughout the

metabolic network and have a relatively loose connectivity. For

example, malaria had three known metabolites: kynurenate,

quinolinate and pipecolic acid which were belonging to different

pathways. Kynurenate and quinolinate participated in the

tryptophan metabolism (path: 00380), and quinolinate and

pipecolic acid participated in the biosynthesis of alkaloids derived

from ornithine, lysine and nicotinic acid (path: 01064). In this

condition, the performance was not good without the FPN due to

relatively loose connectivity between the above metabolites (none

of three metabolites were ranked in top 10%, see Table S1). On

the contrary, in the PROFANCY we added two functional

pathway nodes to enhance the connectivity between the 3 disease

metabolites metablites which belonged to the same or different

pathways. In this condition, the performance would be improved

due to the enhanced connectivity between disease metabolites–all

three metabolites were successfully ranked in top 10% (Table S1).

The FPN contributed not only to the above improvement but

also to the robustness of PROFANCY. We found that the FPN

might contribute to the strong resistance against incompleteness of

network. The AUC value in had a larger decline in the incomplete

networks without FPN than that with FPN. For example, when

deleting 10% edges of the KEGG network with FPN, the AUC

had only a slight decline of 0.005; but in the network without FPN,

the decline would have a six-fold (0.036) amplification (Table S3).

This indicated that the FPN could maintain a part of functional

relationships between disease metabolites even though we

removed parts of edges in the metabolic networks.

Case study 1: predict potentially novel metabolites for
Alzheimer’s disease

Here we used the PROFANCY method to predict novel

metabolic biomarkers for Alzheimer’s disease (AD), which is

considered to strongly associate with changes in systemic

metabolite [24–26]. The known AD related metabolites from

HMDB database were considered as seed nodes and other

metabolites in the metabolic network were considered as

candidates. After the implementation of PROFANCY on two

metabolic networks, we found that 6 metabolites ranked in top 10

in both metabolic networks. These top ranked candidates and

known AD related metabolites (seed nodes) tended to be in the

same pathway (black boxes in Figure 3) and they might have

closely functional relationships. After investigating the relations

between top ranked candidates and AD from literatures, we found

that 5 of 6 predictive metabolites were reported to highly relate to

Alzheimer’s disease or considered to be potential biomarkers for

Alzheimer’s disease [27–34] (Table 2). For example, some

researches had reported that injection of D-galactose contributed

to progression of AD in rat model [28,29]. Furthermore, D-

galactose and Glucose, which was a known AD related metabolite,

participated in the same reaction in pathway of Galactose

metabolism (pathway: 00052) (Figure 3).

The PROFANCY ranked (S)-Methylmalonate semialdehyde in

the first place in the KEGG network. Surprisingly, to our

knowledge, there were no literatures which directly explored the

role of (S)-Methylmalonate semialdehyde (arrow pointed in right

big box of Figure 3) in AD. However, we found that (S)-

Methylmalonate semialdehyde participated to the process of

‘‘Valine, leucine and isoleucine degradation’’ (pathway: 00280;

right big box of Figure 3). There were up to known 7 AD-related

metabolites (blue nodes in right box of Figure 3) in this pathway,

suggesting that this pathway might play an important role in AD.

Furthermore, in this metabolic pathway, (S)-Methylmalonate

semialdehyde could be reversibly converted to L-3-Amino-

isobutanoate and Methylmalonate (which were both known AD-

related metabolites) by 4-aminobutyrate aminotransferase (ABAT)

and aldehyde dehydrogenases (ALDH), respectively. Studies

indicated that the activity of ALDH was significantly increased

in the patients suffering from AD and it might act as antioxidant

enzymes in the oxidative stress which contributed to AD [35].

Also, It was reported that the activity of ABAT was correlated to

certain neuropsychiatric disorders such as epilepsy and Alzhei-

mer’s disease [36]. These indicated that the concentration of (S)-

Methylmalonate semialdehyde might fluctuate due to the cascad-

ing effect of above two enzymes and the concentration change of

L-3-Amino-isobutanoate and Methylmalonate under the AD state.

The above results suggested our method could only effectively

capture known disease metabolites but also predict non-reported

novel disease related metabolites.

Case study 2: prioritize the candidate metabolites from
metabolomic profile of prostate cancer

In this case, we applied our method to prioritize candidate

metabolites from the metabolomics profiles of prostate cancer. To

do this, we downloaded the GC/LC-MS profile of prostate cancer

which contained hundreds of named metabolites across 42 tissues

related to prostate cancer (16 benign adjacent prostates; 12

clinically localized prostate cancers and 14 metastatic prostate

cancers) [37]. Then we mapped all the profiled metabolites to

KEGG and EHMN metabolic networks. There were 109

metabolites which successfully mapped to above two networks.

The seed nodes were known prostate cancer related metabolites

from HMDB database. Of the above 109 metabolites, there were

4 metabolites were recorded as known prostate cancer related

metabolites in HMDB database. The remaining 105 profiled

metabolites were considered as candidates. After prioritization by

PROFANCY, we generated a rank list of 105 candidate

metabolites. We found that 6 candidates were ranked in top 10

in both networks (Table 3). These top ranked metabolites were all

reported to associate with initialization and development of

prostate cancer [38–54]. For example, PROFANCY ranked the

sorbitol at the first place. Sorbitol was catalyzed by sorbitol

dehydrogenase (SORD) whose expression was regulated by

androgens, which were essential for the development of prostate

cancer [51,52]. The second ranked candidate was myo-inositol

which had been considered as potentially important markers of

prostate cancer in human EPS [40,41,47,49].

We further investigated whether the top ranked metabolites

generated by PROFANCY could be detected by the traditional

differential analyses. To do this, we calculated the differential

values of top 30 ranked metabolites by Wilcoxon rank-sum test

between normal samples (benign adjacent prostates) and two kinds

of cancer samples (localized cancer and metastatic cancer). We

found that 5 metabolites were significantly differential in above 6

highly suspicious candidates (Table 3 and Figure 4) and over half

of metabolites in top 30 ranked metabolites were significantly

differential between normal and localized cancer samples or

metastatic cancer samples (P-value,0.05; Figure 4), suggesting

that PROFANCY could identify majority of significantly differ-

ential metabolites.

However, we also noticed that some top ranked metabolites

were not considered to be significantly differential by traditional

differential analyses. For example, glutamine, which ranked in 8th

in both networks by PROFANCY, was not significantly differen-

Prioritizing Candidate Disease Metabolites

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e104934



tial between normal and localized cancer samples or between

normal and metastatic cancer samples (Table 3). To explore its

association with prostate cancer, we searched lots of literatures.

Glutamine is catabolized to glutamate by glutaminase (GLS) and

incorporated into citric acid cycle and lipogenesis as an important

energy source for proliferation of cancer cells [44,54]. The

glutamine catabolism could be stimulated by oncogenic transcrip-

tion factor c-MYC to fuel proliferation of cancer cells through up-

regulating glutaminase (GLS) [46]. Glutamate has been proved to

be a metabolic biomarker of aggressiveness and a potential

therapeutic target for prostate cancer [43]. Recently, some newly

synthesized glutamine and glutamic acid derivatives were consid-

ered as potential novel antitumor agents [42]. Thus, glutamine

was a potential prostate cancer related metabolite but not

considered to be significantly differential. The reason might be

that some cancer-related metabolites, although important in

abnormal metabolic process of prostate cancer, only had a subtle

change in concentration but could be detected by PROFANCY

based on functional similarity. The hierarchical clustering of the

profile data revealed that the top 30 ranked metabolites by

PROFANCY, although containing quite a part of non-signifi-

cantly differential metabolites, could effectively classify prostate

samples as benign, clinically localized prostate cancer, or

metastatic cancer, especially metastatic samples and the other

two (Figure 4). The above results suggested that PROFANCY

could identify ‘‘fine-tuning’’ disease metabolites which were

difficult to be detected by the traditional differential analysis.

Discussion

In this article, we presented a global method called PRO-

FANCY to prioritize candidate disease-related metabolites based

on the assumption that functionally related metabolites tend to

associate with the same or similar diseases in the context of

Figure 3. Top ranked candidate metabolites of Alzheimer’s disease in the KEGG metabolic network. The top ranked candidate
metabolites of AD are showed in the KEGG metabolic network. The gray, blue and red nodes represent candidate metabolites, known metabolites
(seed nodes) and top 1% ranked candidates, respectively. The black boxes represent 6 candidates which ranked in top 10 and their connected
functional pathway nodes in both metabolic networks. The right large box shows the pathway of ‘‘Valine, leucine and isoleucine degradation’’ which
includes the metabolite (S)-Methylmalonate semialdehyde (arrow pointed).
doi:10.1371/journal.pone.0104934.g003

Table 2. Top ranked Alzheimer’s disease related metabolites by PROFANCY.

KEGG ID Metabolites name KEGG rank EHMN rank Reference

C06002 (S)-Methylmalonate semialdehyde 1 5

C00097 L-cysteine 2 3 [27]

C00124 D-galactose 3 2 [28,29]

C00099 Beta-alanine 4 10 [31,34]

C00101 Tetrahydrofolate 7 9 [32]

C00259 L-arabinose 10 6 [33] [30]

doi:10.1371/journal.pone.0104934.t002
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metabolic pathway. We first reconstructed a global metabolic

network and added functional pathway nodes to fully exploit the

modular information. Then we implemented the RWR method on

this network. Finally, we could get the rank of the candidate

metabolites. The PROFANCY had a good performance on

prioritization on 71 diseases and achieved an AUC value up to

0.895. We also applied the PROFANCY on different disease

classes and achieved an AUC value over 0.95 in 4 classes. To

investigate the robustness of the PROFANCY, we repeated these

analyses in another metabolic network reconstructed according to

Table 3. Top ranked prostate cancer candidate metabolites by PROFANCY.

KEGG ID name KEGG rank EHMN rank P-value (N vs T) P-value (N vs M) Reference

C00794 Sorbitol 1 3 0.731925 0.001756 [51,52]

C00137 myo-Inositol 2 1 0.037338 1.65E-07 [40,41,47,49,50,55,56]

C00031 Glucose 3 6 0.02918 0.013403 [38,48]

C00049 Aspartate 4 2 0.066092 0.015197 [45,53]

C00095 Fructose 7 7 0.059253 0.003321 [39]

C00064 Glutamine 8 8 0.396531 0.333774 [42–44,46,54]

N vs T: normal samples vs localized cancer samples; N vs M: normal samples vs metastatic cancer samples.
doi:10.1371/journal.pone.0104934.t003

Figure 4. Cluster analyses of top 30 ranked prostate cancer candidate metabolites of from PROFANCY. Unsupervised hierarchical
clustering of top 30 ranked candidate metabolites (columns) and samples (rows) is performed, and a heat map was generated. ‘‘N’’, ‘‘T’’ and ‘‘M’’
represented the benign, clinically localized prostate cancer, or metastatic cancer samples, respectively. The top 30 ranked metabolites are from (A)
KEGG metabolic network and (B) EHMN metabolic network.
doi:10.1371/journal.pone.0104934.g004
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the EHMN database and obtained the similar results. The good

performance and robustness were largely attributed to functional

pathway nodes. The PROFANCY method also successfully

predicted potential novel Alzheimer’s disease-related metabolite

and prioritized the metabolomics profiles of prostate cancer.

The success of our method could be attributed to the

combination of two aspects. Firstly, we took the advantage of

the global functional relationships between metabolites. Diseases

were usually the consequence of the breakdown of cellular process

associated with some functionally related metabolites which were

functionally interconnected through metabolic reactions generally

grouping into metabolic network [9]. In this study, we used a

global distance measure to calculate the similarity between

candidate metabolites and known disease metabolites. It was

better suited to capture relationships between disease metabolites

than the simple algorithms based on direct interactions or shortest

paths between disease metabolites [20]. Because current databases

of human metabolic network are far from complete. This is clearly

problematic for predictions based upon direct interactions with

disease metabolites, which would lead to a false-negative/positive

prediction. On the contrary, our method based on a global

distance measure appeared to be more tolerant of incomplete data.

Even when we deleted 20% edges of metabolic network, the AUC

value had only a slight decline (Table S3). Our strategy was proved

successful in prioritizing known metabolite for 71 diseases with an

AUC value up to 0.895. Especially, it had good performance on

metabolic-related diseases. Secondly, might be more important,

our PROFANCY method sufficiently exploited the functionally

modular information of metabolic network. The metabolic

network was divided into different metabolic pathways and the

metabolites in the same pathway were strongly functionally related

[12]. To fully exploit the functional modularity information of

metabolic network, we added functional pathway nodes to the

metabolic network. The functional pathway nodes would improve

the performance by enhancing the connectivity between metab-

olites related to the same disease, especially for the disease whose

metabolites belonged to different pathways. As we mentioned

above, two functional pathway nodes enhanced the connectivity of

kynurenate and pipecolic acid which were both related to malaria

but belonging to different pathways. The results showed that this

strategy had effectively improved the performance–three metab-

olites of malaria were all ranked in top 10% and the AUC for

immunological diseases increased from 0.832 to 0.961. The

functional pathway nodes also contributed to the robustness of

PROFANCY. They could maintain a part of functional relation-

ships between disease metabolites in the incomplete metabolic

network. The AUC could achieved to 0.8 even when we removed

70% edges of metabolic network, but this value would declined to

0.65 without functional pathway nodes (Table S3).

We also noticed that there were some limitations of our

PROFANCY method. At first, our method depended on the

topology of the metabolic network, so the low-quality and

incompleteness of reaction information of KEGG or EHMN

database might limit its performance. Especially, there were no

organ-specific reaction and pathway structure data available

currently. Although the PROFANCY could perform well in the

incomplete network, the performance could be further improved

after more complete and specific reconstructions of metabolic

network. Secondly, our result is limited to diseases with known

metabolites from the HMDB database and the number of known

metabolites might have influence on the performance. Integrating

multiple metabolite data sources (for example, from literatures)

and availability of well-annotated metabolic pathway may

overcome this limitation. The PROFANCY could also be made

more flexible not only by using customized seed nodes and

candidates but also by fuzzy matching the metabolite names which

were supported in our R based or web based tools (http://bioinfo.

hrbmu.edu.cn/PROFANCY). It could be expected that PRO-

FANCY would be a beneficial tool for prioritization and

prediction of disease metabolites.
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