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The severe acute respiratory syndrome caused by Coronavirus 2 (SARS-CoV-2) that
appeared in December 2019 has precipitated the global pandemic Coronavirus Disease
2019 (COVID-19). However, in many parts of Africa fewer than expected cases of COVID-
19, with lower rates of mortality, have been reported. Individual human leukocyte antigen
(HLA) alleles can affect both the susceptibility and the severity of viral infections. In the case
of COVID-19 such an analysis may contribute to identifying individuals at higher risk of the
disease and the epidemiological level to understanding the differences between countries
in the epidemic patterns. It is also recognized that first antigen exposure influences the
consequence of subsequent exposure. We thus propose a theory incorporating HLA
antigens, the “original antigenic sin (OAS)” effect, and presentation of viral peptides which
could explain with differential susceptibility or resistance to SARS-CoV-2 infections.

Keywords: Coronavirus Disease 2019, human leukocyte antigens, original antigenic sin, immune response,
vaccine design
INTRODUCTION

More than 190 countries have experienced a recent COVID-19 pandemic, especially China, South
Korea, Italy, Iran, Spain, France, the United Kingdom, and growing numbers from the United
States. However, Africa, with a population of >1.2 billion people, has had a comparatively low
percentage of COVID-19 deaths, especially in the malaria-endemic region (1–6). There have been
several hypotheses about such unexpected findings, including a relative lack of testing and
Abbreviations: SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; COVID-19, Coronavirus Disease 2019;
HLA, Human Leukocyte Antigen; OAS, Original Antigenic Sin; HIV, Human immunodeficiency virus; TB, Tuberculosis;
MERS, Middle-East respiratory syndrome; SARS, Severe Acute Respiratory Syndrome; S, spike; E, envelope; N, nucleocapsid;
M, membrane; ARDS, Acute Respiratory Distress Syndrome; WHO, World Health Organization; HCV, Hepatitis C virus; Flu,
influenza A; ERAP, Endoplasmic Reticulum Aminopeptidase; NP, nucleoprotein; AS, Ankylosing Spondylitis; RBD, Receptor-
Binding Domain; MHC, Major Histocompatibility Complex; CTL, cytotoxic T cells; DAMPs, Danger-Associated Molecular
Patterns; TRAP, Thrombospondin-Anonymous-Related Protein; SSP-2, Sporozoite Surface Protein -2.
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documentation. The confirmation studies have suggested that
most of these countries have close ties with China in terms of
trade, migration, or commerce. All of these may play a role, yet it
has also been proposed that several African nations more
vigorously implemented public health policies than many other
countries. Another consideration is that epidemic preparedness
may be much higher, with prior experience with Ebola, human
immunodeficiency virus (HIV), tuberculosis (TB), etc. The
strong burden of endemic infectious diseases in sub-Saharan
Africa, and ongoing outbreaks of Lassa fever and Ebola in
Nigeria and Congo, suggest an unpredictable and unusual
response to COVID-19 (5, 7). This background illustrates the
need to utilize a range of mitigation approaches even during the
pandemic to establish a broad-based response. Our hypothesis
emphasizes that HLA antigens and the OAS phenomenon could
be important determinants for outcomes following SARS-CoV-2
infection or vaccination (8, 9).

Coronaviruses are a category of respiratory viruses that can
cause infections ranging from the common cold to Middle-East
respiratory syndrome (MERS) and severe acute respiratory
syndrome (SARS). An increasing body of literature reveals that
these coronaviruses are originally zoonotic, targeting the lower
respiratory tract, and causing potentially lethal inflammation in
extra-pulmonary organs (10). Within two decades, there have
emerged three highly pathogenic and deadly human
coronaviruses: SARS-CoV, MERS-CoV, and SARS-CoV-2 (11).
What started as a novel outbreak of atypical viral pneumonia in
December 2019 in Wuhan, China is now officially recognized as
COVID-19, with the causative virus classified as SARS-CoV-2,
which expresses a genomic homology of about 80% to SARS-
CoV, and lesser homology (50%) with MERS-CoV. Researchers
have discovered that cross-reactive antibodies react with, but do
not confer cross-protection against, the SARS-CoV-2 receptor-
binding domain (RBD) and non-RBD domains, nor is there
cross-neutralization between SARS-CoV and SARS-CoV-2 are
uncommon (12–15).

SARS-CoV-2 is a single-strand RNA coronavirus composed of
four main structural proteins: spike (S), envelope (E), nucleocapsid
(N), and membrane (M) proteins that induce extreme respiratory
disease and an aggressive pneumonia-like infection (16). Clinical
studies have demonstrated that fever, exhaustion, dry cough,
shortness of breath, and acute respiratory distress syndrome
(ARDS) are predominant clinical manifestations. Several research
studies have confirmed that the severity of the infection has been
correlated with lymphopenia and the development of a cytokine
storm (17).
ASSOCIATION BETWEEN HLA
AND COVID-19

In humans, the HLA system orchestrates immune regulation. The
research effort, therefore, aims to identify the mechanisms that are
potentially responsible for activating an immune response to
SARS‐CoV‐2, including the role of HLA alleles in affected
individuals (18). It is recognized that T-cell receptors recognize
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the conformational structure of the antigen binding-grove in the
HLA molecule along with the accompanying antigen peptides.
Thus, particular HLA haplotypes are associated with distinct
genetic predispositions to disease (9, 19, 20). The repertoire of
the HLAmolecules composing a haplotype is thought to contribute
to survival during evolution. As a result, it is advantageous to have
enhanced binding capabilities of HLA molecules for viral peptides
on the surface from novel viral infections, such as SARS-CoV-2, on
the cell surface of antigen-presenting cells (9, 20–22).

We speculate that population HLA variability in a population
could be correlated with COVID-19 incidence sinceHLAplays such
a crucial role in the immune response to pathogens and the
development of infectious diseases. The HLA system affects
clinical outcomes in multiple infectious diseases, including HIV
and SARS (23, 24). For the latter, population studies observed
correlations between certain HLA alleles and the incidence and
severity of SARS (24–26). HLA-B*07:03, B*46:01, DRB1*03:01,
DRB1 *12:02 alleles were correlated with SARS susceptibility (27,
28). The SARS-CoV-2 sequence displays considerable homology
with SARS, but the two viruses do have distinct variations (29).
Therefore, it will require further investigation to incorporate HLA
alleles when analyzing COVID-19 outcomes (27, 30, 31). The SARS-
related susceptibility alleles were not shown to occur in COVID-19
patients at a significantly different level after p-value correction in
the analysis performed by Wei Wang et al. in May 2020 (32).

Host genetic variability may help explain the multiplicity of
immune responses to a virus within a community. Knowing how
variability in HLA can impact the progression of COVID-19, in
particular, may help distinguish individuals at higher risk for
the disease.

In a study conducted by Benlyamani et al. in critically ill patients,
results indicate downregulation of HLA-DRmolecules in circulating
monocytes, which, based on profound lymphopenia and other
functional differences, create immunosuppressed conditions for
host response (33).

An in silico analysis of viral peptide-major histocompatibility
complex (MHC) class I binding affinity was conducted by Nguyen
et al, which revealed that HLA-A*02:02, HLA-B*15:03, and HLA-
C*12:03 effectively presented a larger amount of peptides whereas
A*25:01, B*46:01, C*01:02 were the least efficient for of SARS-
CoV-2 peptide presentation (30). Iturrieta-Zuazo et al. indicate
that Class I HLA molecules with a better theoretical capacity to
bind SARS-CoV-2 peptides were found in patients with mild
disease and showed higher heterozygosity as compared with
moderate and severe disease (34).

Thus the genetic variability of the MHCmolecules can affect the
susceptibility and severity of SARS-CoV-2 (35). One potential
genetic contributor to the lower incidence of SARS-CoV-2 in
Africa may be the occurrence of different HLA alleles in Africa
compared to other regions. HLA alleles, particularly MHCI, are
major elements of thepresentation system forviral antigens andhave
been shown to impart differential viral resistance and disease
intensity. Specific HLA genotypes can stimulate the T cell-
mediated anti-viral response differently and could possibly alter the
symptoms and transmission of the disease (36). HLA-B*46:01
is expected to have the fewest possible binding peptides for
January 2021 | Volume 11 | Article 601886
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SARS-CoV-2, indicating that individuals with this allele could be
especially vulnerable to COVID-19, as had previously been seen for
SARS. HLA-B*15:03, on the other hand, demonstrated the greatest
ability to present highly conserved SARS-CoV-2 peptides shared
among common human coronaviruses, indicating that this allele
may allowcross-protectiveT-cell dependent immunity (30). This is a
more intriguingmechanism, asHLA-B*1503 appears to be prevalent
inWest Africa andmost countries with high endemicmalaria in the
World Health Organization(WHO) African Region (37).

The HLA-viral interaction is complex. While HLA-B27 seems to
confer relative resistance to Hepatitis C virus(HCV) and HIV (38,
39), it may confer susceptibility tomalaria (40), since in AfricaHLA-
B27 prevalence seems to decrease in malaria-endemic populations.
This couldbe related to thehypothesisofHLA-mediatedhostpeptide
presentation since serious COVID-19 disease is particularly unusual
in malaria-endemic populations. In particular, a substantial
correlation for HLA‐DRB1*15:01, ‐DQB1*06:02, and ‐B*27:07 was
observed in research conducted Novelli et al. in a group of 99 Italian
patients affectedby a severe or extremely severe course ofCOVID‐19,
although considering the limited sample size, there is a chance of
false-positive detection (41). In the case of influenza, A (flu), HLA-
B27-related immunodominance is endoplasmic reticulum
aminopeptidase (ERAP-1)-dependent. This is not the case for
HLA-B7 immunodominance the epitope of the HLA-B27
immunodominant influenza nucleoprotein (NP) 383–391 is
formed as a 14-mer N-terminally stretched until ERAP-1 trims it.
In flu-infected B27/ERAP-/- mice, the CD8+ T cell reaction to the
B27/NP383–391 epitope is significantly reduced in the absence of
ERAP1 As the correlation between ERAP-1 and ankylosing
spondylitis (AS) is seen exclusively in HLA-B27+ patients, it
appears that creating the B27-related immunodominant peptide of
theflu virus depends onERAP-1, but this is not the case forHLAB-7
(42). Whether this ERAP-HLA interaction is applied to
coronaviruses as well is unknown. Currently, we have limited data
on whether B27+ AS patients are more, or less, susceptible to
COVID-19 (43).
ORIGINAL ANTIGENIC SIN AND IMMUNE
RESPONSE IN COVID-19

Coronaviruses belong to the family Coronaviradae, order
Nidovirales, that can be further categorized into four major lines
(a-, b-, p-, and d-coronaviruses). Several a- and b-coronaviruses
induce mild respiratory infections and common cold symptoms in
humans, while some are zoonotic and infect birds, pigs, bats, and
other animals. Similar to SARS-CoV-2, two other coronaviruses,
SARS-CoV, and MERS-CoV, also caused large disease outbreaks
with highmortality levels (10%–30%) and substantial social effects.
Comparison of the SARS-CoV-2 protein sequence with the
sequences SARS-CoV, MERS-CoV, and bat-SL-CoVZXC21
revealed a high degree of homology between SARS-CoV-2, bat-
SL-CoVZXC21, and SARS-CoV, but with a more restricted
similarity to MERS-CoV. Grifoni et al. proposed that SARS-CoV-
2 may be potentially interpreted as the inevitable outcome of an
antigenic shift from SARS-CoV since these viruses share around
80% of their genome and almost all the encoded proteins (14).
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Identifying how pre-existing immunity may dictate the
development of antibodies to conserved SARS virus epitopes is
important for the creation of new SARS-CoV-2 virus vaccines. Two
features that have been found during the SARS-CoV-2 pandemic
demand attention. First, the lack of clinical symptoms of infection
in children (16, 44), Secondly, the early onset of IgG in serum (45,
46). From the viewpoint of the host immune response, such an early
increase of specific IgG is thought to represent a secondary
immune response when the memory of a cross-reactive antigen
is present, as may occur from an earlier coronaviral infection.

The key question then emerges whether or not such cross-
reactive antibodies defend against the new virus. The worst-case
scenario would be for such cross-reactive memory antibodies
against similar coronaviruses not only to be non-protective but
also to intensify infection (47). A significant discovery, however, is
that cross-reactivity in antibody binding to spike proteins in SARS-
CoV-2 and SARS-CoV infections is widely observed, suggesting
that antibodies to conserved spike antigens are common. Cross-
neutralization of the virus species is however an uncommon
phenomenon (12). In a study conducted by Ju et al. the anti-
SARS-CoV-2antibodies and the convalescentplasmadidnot cross-
react with the RBD of the viral spike protein of SARS-CoV or
MERS-CoV, although there was substantial cross-reactivity to their
trimeric spike proteins (48). But the plasma antibodies did cross-
reaction with antigens in the SARS-CoV and MERS-CoV spikes,
which did not result in virus neutralization (47, 48).

Original antigenic sin (OAS) refers to the activation of a more
vigorous immune reaction to the priming vs an immunogenic
boost that itself attaches poorly, if at all, to antibodies s caused by
the priming immunogen (Figure 1) (8, 49, 50). MHC diversity
could be a contributor in humans for such an event (30).

OAS and B Cells
Long-lived B memory cells, which persist in the body, develop
during primary infection, and protect against subsequent infection.
To produce antigen-specific antibodies, these memory B cells
respond to particular epitopes on the surface of viral proteins and
are capable of responding to infection faster than B cells react to
novel antigens. This effect reduces the time it takes for subsequent
infections to be resolved (51, 52).

A virus may demonstrate antigenic drift following primary
and secondary infections, in which the viral epitopes are
reshaped by natural mutation, enabling the virus to evade the
immune system. When this occurs, the modified virus
preferentially reactivates previously activated B memory cells
of high affinity and stimulates the production of antibodies. Such
antibodies may prevent the recruitment of higher affinity naive B
cells that could generate more effective antibodies against the
second viral challenge. This contributes to a less efficient immune
response since it can take longer to clear recurrent infections. For
the development and implementation of vaccines, OAS is of
particular interest. The actual impact of OAS in dengue fever has
important consequences for vaccine research. Whenever a
response has developed to a dengue virus serotype, vaccination
to a second serotype is unlikely to be successful, meaning that
balanced reactions to all four virus serotypes should be developed
in the initial formulation of the vaccine (53). However, in 2015 a
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new category of highly effective neutralizing antibodies was
isolated, which were efficient against those four virus serotypes,
boosting hope for the development of a universal dengue vaccine.
In people that are regularly immunized, either by vaccinations or
chronic infections, the specificity and efficiency of the immune
response to new influenza strains are sometimes reduced (54).
The effect of antigenic sin on protection, however, has not been
well characterized and seems to vary for each vaccine with the
particular pathogen, geographical region, and age.
OAS AND CYTOTOXIC T CELLS

A similar pattern in CTLs is implicated in host immunity. With a
second infection by another type of dengue virus, it has been seen
that the CTLs tend to produce cytokines rather than inducing
target cell lysis. As a consequence, the production of these
cytokines is suggested to enhance vascular permeability and
the destruction of endothelial cells is intensified (55).

Many researchers have attempted to formulate HIV and HCV
vaccines based on the induction of host CTL response. The
observation that original antigenic sin can distort the CTL response
can shed light on understanding the restricted efficacy of such
vaccinations. Viruses such as HIV are extremely variable and
regularly undergo mutation. In such circumstances, a vaccine may
fail to control HIV infection if the virus expresses slightly different
epitopes compared to those in the viral vaccine due to original
antigenic sin. In theory, the vaccine could exacerbate the infection
by “trapping” the immune response into the initial, inefficient
response to the virus (56).

Thus, an inadequate immune response to the mutated virus due
to the OAS may generate a significant number of sub-neutralizing
Frontiers in Immunology | www.frontiersin.org 4
cross-reactive antibodies that enhance inflammation and may
paradoxically promote virus entry into host cells (8). The
intracellular presence of the pathogen activates a pyroptosis
mechanism with the subsequent release of danger-associated
molecular patterns (DAMPs) to trigger additional inflammatory
cells, which in response release a great number of cytokines; which
may be the basis of the “cytokine storm” identified in severe cases of
COVID-19 (17, 57).
IS OAS HARMFUL?

Consequentially, the OAS phenomenon can be both advantageous
and detrimental to host defense. Perhaps the biggest influence of
both the risks and benefits of OAS is an ever-present threat from
strongly pathogenic strains of zoonotic viruses with pandemic
potential. These are new pathogens for humans and it can be
dangerous for any individual who does not have an element of
pre-existing cross-protective immunity once a strain of this type
appears. However, imprinting with a strain from the same group of
phylogenies may protect against serious infection. Both the H1N1
pandemics of 1918 and 2009 have been accelerated by the reduced
vulnerability of aging populations to cross-protection from
antibodies generated to strains throughout childhood (58, 59).
Also, heterosubtypic defense against highly pathogenic avian
strains may rely on the year of birth, and hence the dominant
strain during early life (60). This raises the possibility of a degree of
protective immunity conferred by SARS-CoV and MERS-CoV-
specific antibodies to decrease the susceptibility to SARS-CoV-2 in
Africa by the higher prevalence of HLA-B*15:03, which has the
highest strength to present strongly conserved SARS-CoV-2
peptides shared by common human coronaviruses. Resolving this
FIGURE 1 | In the optimal immune response (on the left) against SARS-CoV-2 and its antigenic variants, the particular adaptive immunity is often associated with
(color matching) the symbolic antibody and the spike proteins that cover the outer surface of the virion; Original antigenic sin explains the propensity of the immune
response to use immunological memory that relies on the previous infection when a new slightly altered strain of the foreign pathogen is identified. As we see in the
OAS model (right), the particular adaptive immune response is only installed against the original virus and is not used to combat the mutated forms of the virus,
leading to a less specific and less efficient maladaptive response (Created in BioRender.com) (8).
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interaction may allow cross-protective T cell immunity to be
derived (8, 61).

These correlations were also found between immunodominant
sequences [N protein from SARS-CoV-2/SARS-CoV and
thrombospondin-anonymous-related protein (TRAP) from P.
falciparum] and [S protein-SARS-CoV-2/SARS-CoV and
predicted epitope in sporozoite surface protein -2 (SSP-2) from P.
falciparum]. Individually, both epitopes could induce the response
of CD8+ CTL by HLA-A*02:01 presentation (1, 2). Lesa et al.
presumed that the memory of adaptive immunity elevated against
the described TRAP immunodominant epitope could recognize
peptide-HLA-A*02:01 complexes originating from SARS-CoV-2
infection in malaria-endemic regions, particularly in Africa, and
modify the host immune system response. Of course, such an
assumption needs further empirical testing to prove its validity and
ascertain the strength of the primed response (1).
VACCINE DESIGN

The creation of an efficient subunit vaccine seems to be rather
challenging in the presence of OAS and the potential adaptive
mutation of SARS-CoV-2. Thus, an attractive option is to
concentrate on an alternative method of vaccination that is
capable of stimulating innate immunity instead of adaptive
immunity. In children, where the immune system is immature
and susceptible to challenge with new antigenic stimuli, innate
immunity may be more effective, while adaptive immunity may
play are larger role in the mature immune response in adults.
This may relate to the observation that children rarely suffer fatal
complications during the current COVID-19 pandemic (8, 62).

One of the representative processes of immune evasion of
pathogens is to mask or alter pathogen molecules which are
usually recognized by innate pattern recognition receptors. When
developing vaccines against infectious agents, there is also a need to
focus an immune response towards a particular conformational
epitope (63). The approach is to develop vaccines that can provide
epitope-specific immunofocusing and induce antibodies
specifically targeting epitope (64). A specific monoclonal antibody
Frontiers in Immunology | www.frontiersin.org 5
could be used to shield the target epitope on the protein. The
remaining uncovered surface proteins would then be altered to
make them non-immunogenic. The epitope is eventually
unprotected by eliminating the monoclonal antibody (64). The
conserved immunodominant regions from Coronaviruses have
implications for vaccine design against SARS-CoV-2 because of
the OAS phenomenon. Research strategies must seek to maximize
antibodies to conserved epitopes and induce broadly protective
immunity againstmultiple strains. By utilizing an adjuvant vaccine,
an increased cellular reaction will yield enhanced host protection
benefits (65).
CONCLUSION

The clinical course of infection with SARS-CoV-2 is strongly
dependent on the relationship between the virus and the host
immune system, in which the host HLA plays a central role in the
activation and regulation of the immune response. There is scope
for further study into the role of HLA in COVID-19, and
epidemiological studies need to focus on HLA profiles as host
immune determinants. Such studies should include HLA typing
of COVID-19 patients, both to unravel the complexity of the
disease response and also to inform customized therapies. In
addition, a prior history of coronavirus infection in the patient
can be relevant to the magnitude of the immune response to the
current SARS-CoV-2 infection, a phenomenon referred to as
“original antigenic sin”. This concept refers to cross-reacting
immunity due to past infections of similar coronavirus strains,
which must be considered in interpreting immune responses to
infections and vaccinations.
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