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Introduction
Ischemic preconditioning (Zvara et al., 1999), drug treat-
ment (Tian et al., 2011), and physical therapy (Cakir et 
al., 2003) have been used to treat and prevent spinal cord 
ischemia-reperfusion injury. However, these therapeutic 
strategies do not fundamentally eliminate the occurrence 
of paralysis; rather, they only relieve the symptoms. A sig-
nificant amount of money is spent on these patients who 
are hospitalized for an extended period of time. Further-
more, their injury places a heavy burden on their family as 
well as society. Therefore, finding a practical and effective 
strategy to repair spinal cord ischemia/reperfusion injury 
is necessary. 

Bone marrow mesenchymal stem cells are non-hemato-
poietic stem cells of the bone marrow, and can differentiate 

into neurons and astrocytes under appropriate conditions 
(Tsai et al., 2014). Numerous studies suggest that trans-
planted bone marrow mesenchymal stem cells migrate to 
damaged tissue, differentiating into tissue-specific cells and 
repairing the damage to the tissue (Da Silva and Hare, 2013; 
Calió et al., 2014; Gao et al., 2014). Transplanted bone mar-
row mesenchymal stem cells have been used to treat stroke 
(Calió et al., 2014), heart disease (Da Silva and Hare, 2013), 
and diabetes mellitus (Gao et al., 2014). Our previous study 
has shown that transplanted bone marrow mesenchymal 
stem cells differentiate into neurons and astrocytes in the 
injured spinal cord of rats, and repair spinal cord ischemia/
reperfusion injury through anti-apoptotic effects (Yin et al., 
2014). 

Spinal cord injury induces apoptosis (type I programmed 
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cell death) and autophagic death (type II programmed cell 
death) (Shimizu et al., 2014). Autophagy is the basic cata-
bolic mechanism involving cell degradation of unnecessary 
or dysfunctional cellular components through lysosomes 
(Guan et al., 2013). Autophagy has a double action be-
cause it can either promote neuronal injury (Baba et al., 
2009) or repair nerve tissue (Wang et al., 2014). Kanno 
et al. (2009) have shown that the time course of Beclin 1 
expression is similar to that of apoptosis in the injured re-
gion of spinal cord hemi-transection injury in the mouse 
(Yong et al., 1998; Citron et al., 2000). Varying degrees of 
neurological dysfunction in the hindlimb occur after spinal 
cord ischemia/reperfusion injury (Zivin and DeGirolami, 
1980; Zvara et al., 1999; Calió et al., 2014; Yin et al., 2014), 
in which one possible mechanism is autophagy-induced 
neuronal injury after spinal cord injury (Baba et al., 2009) 
Axonal damage-induced conduction block has also been 
postulated to be a mechanism underlying spinal cord inju-
ry-induced neurological disorders (Schwab and Bartholdi, 
1996; Bock et al., 2013; Park et al., 2013). Few reports have 
investigated if the protective effect of transplanted bone 
marrow mesenchymal stem cells in spinal cord ischemia/
reperfusion injury is associated with axonal regeneration 
or autophagy. Therefore, the aim of the present study was 
to explore this association. 

Materials and Methods 
Animals
A total of 40 healthy and clean, adult (weighing 220 ± 20 g) and 
neonatal (5–7 days old) male/female Sprague-Dawley rats 
were purchased from the Center of Laboratory Animals, 
Jilin University, China (license No. SCXK(Ji)2008-0005). 
All rats were fed the standard diet and given water, housed 
at 20–22°C under a 12-hour light/dark cycle. The experi-
mental protocols were conducted in accordance with the 
Animal Care and Use Committee of Jilin Province, China. 
The 40 rats were randomly and equally assigned to control, 
sham surgery,  model, and stem cell therapy groups. 

Isolation and culture of bone marrow mesenchymal stem 
cells 
Neonatal rats were sacrificed and immersed in 75% ethanol 
for 15 minutes, as previously described (Guo et al., 2005). The 
femur and tibia were then aseptically collected. The metaph-
ysis was exposed and washed with aseptic Dulbecco’s modi-
fied Eagle’s medium/Ham’s nutrient mixture F-12 (DMEM/
F12; Gibco, Grand Island, NY, USA). The bone marrow was 
obtained and made into a single cell suspension, which was 
then centrifuged. The remaining cells were resuspended in 
DMEM/F12 containing fetal bovine serum (Hyclone, Logan, 
UT, USA), counted, and placed in a 75 mL-culture flask at 
1 × 106/mL, and then incubated in DMEM/F12, supplement-
ed with 10% fetal bovine serum, and 100 U/mL penicillin/100 
μg/mL streptomycin (Sigma-Aldrich, St. Louis, MO, USA), 
in a 5% CO2 incubator with saturated humidity at 37°C. The 
medium was replaced 72 hours after planting. All cells were 
digested with trypsin and passaged 7 days later. 

The spinal cord ischemia/reperfusion injury model
A model of spinal cord ischemia/reperfusion injury was pre-
pared, as previously described (Zivin and DeGirolami, 1980). 
In the model and stem cell therapy groups, rats were intra-
peritoneally injected with 10% chloral hydrate (3 mL/kg) and 
were fixed by lying the rats on their side. A 5-cm incision 
was made down from the lower edge midline of the left ribs. 
The left kidney was then located, followed by the abdominal 
aorta along the renal artery, which was ligated with a 10-g 
bulldog clamp below the renal artery for 1 hour. The bulldog 
clamp was then removed and the abdominal cavity closed 
after it was washed with penicillin. Rats in the sham surgery 
group only received laparotomy without ligation of the ab-
dominal aorta. The model was deemed as being successfully 
established if neurological deficits appeared in the hindlimb. 
Controls were not given any treatment. 

Bone marrow mesenchymal stem cell transplantation 
Passage 4 bone marrow mesenchymal stem cells were collected 
and made into single cells. In the stem cell therapy group, bone 
marrow mesenchymal stem cells (5 × 106,  about 0.1 mL) were 
intravenously injected by retro-orbital injection 1 and 24 hours 
after reperfusion, repectively, as previously described (Yin et 
al., 2014). The rats in the model and sham surgery groups were 
administered an equal volume of PBS. The rats were sacrificed 
by cervical dislocation, 7 days after reperfusion. L3–4 spinal cord 
segments were made into 4–5-μm-thick paraffin sections. 

Immunohistochemistry for microtubule-associated 
protein 2, axonal regeneration marker growth 
associated protein-43, and microtubule-associated 
protein light chain 3B 
After 7 days of reperfusion, the spinal cord was fixed in 10% 
formalin buffer, embedded in paraffin, sliced into sections, 
and dehydrated in graded ethanol. After antigen retrieval 
at 98°C, the spinal cord was incubated with endogenous 
peroxidase blockers for 10 minutes, washed with PBS, and 
blocked with goat serum for 30 minutes. The spinal cord 
section was then incubated with rabbit anti-microtubule-as-
sociated protein 2 polyclonal antibody (1:400; Proteintech 
Group, Chicago, IL, USA), rabbit anti-growth associated 
protein-43 polyclonal antibody (1:500; Proteintech Group), 
or rabbit anti-rat light chain 3B monoclonal antibody (1:200; 
Abcam, Burlingame, CA, USA) overnight at 4°C. The spinal 
cord was incubated with biotinylated goat anti-rabbit IgG 
(ready-to-use; Fuzhou Maixin Biotechnology Development, 
Fuzhou, China), followed by streptavidin-peroxidase (ready-
to-use; Fuzhou Maixin Biotechnology Development) for 40 
minutes at room temperature. Staining was visualized with 
3,3′-diaminobenzidine (Fuzhou Maixin Biotechnology De-
velopment), and spinal cords were then counterstained with 
hematoxylin, dehydrated with graded ethanol, permeabilized 
with xylene, and then mounted with neutral resin. The data 
were analyzed using Image Pro Plus 6.0 (Media Cybernetics, 
Silver Spring, MD, USA). Five fields (at 400 × magnification) 
of the spinal cord of each rat were selected and the mean op-
tical density was calculated. 
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Immunofluorescence for Beclin 1 in the spinal cord
Paraffin sections were dewaxed, dehydrated, subjected to 
antigen retrieval at 98°C, incubated with PBS containing 
1% Triton X-100, and then blocked with goat serum for 
30 minutes. These sections were treated with rabbit an-
ti-Beclin 1 polyclonal antibody (1:300; Proteintech Group), 
overnight at 4°C, then Alexa Fluor® 488 Goat anti-rabbit 
IgG (1:400; Molecular Probes, Eugene, OR, USA) for 40 
minutes at room temperature. Nuclei were stained with 
4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich), and 
sections were then mounted with glycerol. The data were 
analyzed with Image Pro Plus 6.0 (Media Cybernetics). Five 
fields (400 × magnification) of the spinal cord of each rat 
were selected, and the mean optical density was calculated. 

Western blot analysis of growth associated 
protein-43, neurofilament-H, light chain 3B, and Beclin 1 
Total protein was extracted from the rat spinal cord, separat-
ed by Tris-sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis, and then transferred to polyvinylidene fluoride 
membranes (Millipore, Schwalbach, Germany). Membranes 
were blocked and supplemented with 5% skimmed milk pow-
der in Tris-buffered saline with Tween, 20 mmol/L Tris-HCl 
(pH 7.5), 150 mmol/L NaCl and 0.05% Tween 20, slowly 
shaking for 2 hours at room temperature. Rabbit anti-growth 
associated protein-43 polyclonal antibody (1:1,000), rabbit 
anti-neurofilament-H (marker for mature neuronal axons) 
(Yabe et al., 2001) polyclonal antibody (1:1,000; Proteintech 
Group), rabbit anti-rat light chain 3B monoclonal antibody 
(1:1,000), or rabbit-Beclin 1 polyclonal antibody (1:1,000) 
were added overnight at 4°C. Mouse anti-rat β-actin mono-
clonal antibody (1:2,000; Proteintech Group) served as the 
reference marker/positive control. After three washes with 
Tris-buffered saline with Tween, membranes were incubated 
with horseradish peroxidase -conjugated goat anti-rabbit/
mouse IgG (1:2,000; Proteintech Group) for 1 hour at 37°C. 
Following three washes with Tris-buffered saline with Tween, 
Immobilon™ Western Chemiluminescent horseradish per-
oxidase substrate kit (Millipore, Billerica, MA, USA) was 
used, followed by band visualization and fixing. The data 
were analyzed using Quantity one image analytical system 
(BioRad, Hercules, CA, USA). Relative expression was calcu-
lated and expressed as a ratio of integrated optical density of 
the target band to β-actin. 

Statistical analysis 
All data were expressed as the mean ± SD, and were analyzed 
by one-way analysis of variance followed by the Fisher’s least 
significant difference test. A value of P < 0.05 was considered 
statistically significant. SPSS 17.0 software (SPSS, Chicago, 
IL, USA) was used.

Results
Bone marrow mesenchymal stem cells elevated the
expression of microtubule-associated protein 2 and growth 
associated protein-43 in the spinal cord of rats with spinal 
cord ischemia/reperfusion injury
Quantification of immunohistochemistry revealed that the 

expression of microtubule-associated protein 2 and growth 
associated protein-43 was significantly reduced in the spinal 
cord of rats from the model group at 7 days after reperfusion 
(P < 0.05; Figure 1). Furthermore, neuronal processes were 
absent. Compared with the model group, the expression 
of microtubule-associated protein 2 and growth associated 
protein-43 was significantly  higher in the spinal cord of 
rats from the stem cell therapy group (P < 0.05; Figure 1). 
Moreover, long processes were present in the transplanted 
neurons. 

Bone marrow mesenchymal stem cells decreased the 
expression of Beclin 1 and light chain 3B in the spinal cord 
of rats with spinal cord ischemia/reperfusion injury 
Immunofluorescence and immunohistochemistry results 
demonstrated low-level expression of light chain 3B and 
Beclin 1 in the spinal cord of rats from the control and sham 
surgery groups at 7 days after reperfusion (Figure 2). Light 
chain 3B and Beclin 1 expression significantly increased in 
the model group (P < 0.05; Figure 2). The expression of light 
chain 3B and Beclin 1 was significantly lower in the stem cell 
therapy group than that in the model group (P < 0.05; Figure 2). 

Bone marrow mesenchymal stem cells affected the 
expression of growth associated protein-43, 
neurofilament-H, light chain 3B and Beclin 1 in the spinal 
cord of rats with spinal cord ischemia/reperfusion injury 
by western blot analysis
Western blot analysis of spinal cord samples showed that 
the expression of growth associated protein-43 and neuro-
filament-H was markedly lower (P < 0.05), but light chain 
3B and Beclin 1 was significantly higher in the model group 
compared with the control and sham surgery groups at 7 
days after reperfusion (P < 0.05; Figure 3). In the stem 
cell therapy group, the expression of growth associated 
protein-43 and neurofilament-H expression was markedly 
higher, but light chain 3B and Beclin 1 expression was sig-
nificantly lower than that of the  model group (P < 0.05; 
Figure 3).

Discussion
The main marker of spinal cord injury is axonal injury 
because of conduction block-induced neurological deficit 
(Schwab and Bartholdi, 1996; Bock et al., 2013; Park et al., 
2013). A central hallmark of spinal cord injury is axonal 
damage (Schwab and Bartholdi, 1996). Axonopathy is associ-
ated with the destruction of the fast axonal transport mech-
anism and phosphorylated neurofilament protein alteration 
(Coleman and Perry, 2002; Tobias et al., 2003; Petzold, 2005). 
In the present study, we investigated the expression of growth 
associated protein-43, microtubule-associated protein 2, and 
neurofilament-H. Growth associated protein-43 is expressed 
in developing and regenerating neurons, during axonal re-
generation, the regeneration of growth cone navigation, and 
synaptic remodeling, which is also the most common marker 
of axonal regeneration (Deumens et al., 2005; Petzold, 2005). 
Cytoskeletal protein microtubule-associated protein 2 main-
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tains structural integrity of neurons and is very sensitive to 
ischemia. The immune response of microtubule-associated 
protein 2 has been shown to be sensitive, and is a selective 
and early marker of ischemic injury in the central nervous 
system (Dawson and Hallenbeck, 1996). Our previous results 
have shown that neurological impairment in the rat hindlimb 
after spinal cord ischemia/reperfusion injury is improved 
after bone marrow mesenchymal stem cell transplantation 
(Yin et al., 2014), a finding that was also observed in the pres-
ent study. Our current results showed that the expression of 
growth associated protein-43 and microtubule-associated 
protein 2 was reduced in the injured spinal cord of rats, sug-
gesting that spinal cord injury damages neuronal structure 
and weakens the capability of nerve regeneration and synapse 
reconstruction. We also found that the expression of growth 
associated protein-43 and microtubule-associated protein 2 

was markedly higher in the stem cell therapy group compared 
with the model group. These results indicate that stem cell 
therapy repairs neuronal structure as well as enhancing nerve 
regeneration and synapse reconstruction. Neurofilament-H 
is important for maintaining the stability of mature neuronal 
axons (Yabe et al., 2001). Immunohistochemistry results from 
our previous study demonstrated that the markedly decreased 
expression of neurofilament-H in the spinal cord ischemia/
reperfusion injury group occurs simultaneously with the low-
ering of axon number in the injured region. This correlated 
with the neurological dysfunction in the hindlimb (Yin et al., 
2014). After bone marrow mesenchymal stem cell transplan-
tation, neurofilament-H (western blot) expression noticeably 
increased and neurological function in the hindlimb improved 
(Yin et al., 2014). Our present results showed that the expres-
sion of growth associated protein-43, microtubule-associated 

Figure 1 Effects of bone marrow mesenchymal stem cells on the expression of microtubule-associated protein 2 (MAP-2) and growth-
associated protein 43 (GAP-43) in the spinal cord of rats with spinal cord ischemia/reperfusion injury.
(A) Immunohistochemistry for MAP-2 and GAP-43 in the rat spinal cord (arrows show positive cells)(× 400). (B) Semi-quantitative analysis of 
MAP-2 and GAP-43 immunostaining. n = 10 rats/group. Data were expressed as the mean ± SD. *P < 0.05, vs. control group; #P < 0.05, vs. sham 
surgery group; †P < 0.05, vs. model group (one-way analysis of variance followed by the Fisher’s least significant difference test).
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protein 2, and neurofilament-H increased in the injured spinal 
cord after bone marrow mesenchymal stem cell transplanta-
tion, indicating that cell transplantation promotes axonal re-
generation, a hypothesis that is consistent with a study by Park 
et al. (2013). 

Apoptosis and autophagy are closely related biological 
processes. Recent studies have verified that neuronal apop-
tosis and autophagic cell death occur during spinal cord 
injury. Light chain 3B and Beclin 1 are two markers of auto-
phagy. Light chain 3 is related to the formation of autophagy 
(Kabeya et al., 2000). Light chain 3B, an isoform of light 
chain 3, is associated with autophagy, and is often used to be 
a marker for monitoring autophagy. Beclin 1, an autophag-
ic regulator, takes part in the initiation of autophagosome 
formation (Miracco et al., 2010). Our results showed high 
expression of light chain 3B and Beclin 1 in the spinal cord 
of rats with spinal cord ischemia/reperfusion injury, which 

was significantly diminished after bone marrow mesenchy-
mal stem cell transplantation, suggesting that autophagy 
contributes to neuronal cell death in the injured spinal cord. 
Transplanted bone marrow mesenchymal stem cells signifi-
cantly lowered the occurrence of autophagy. Our previous 
study has confirmed that hindlimb function improves after 
cell transplantation (Yin et al., 2014), suggesting that the 
improvement of neurological function in the hindlimb may 
be associated with the reduction in autophagy. Baba et al. 
(2009) suggest that autophagy promotes neuronal death. 
The expression of Beclin 1 expression has been shown to 
increase 4 hours after  spinal cord hemisection injury in 
rats, and peaking at 3 days and lasting until 21 days (Kanno 
et al., 2009). Furthermore, autophagy has been shown to 
be expressed after spinal cord injury, with active effects on 
nerve tissue repair (Wang et al., 2014). In the present study, 
autophagy promoted neuronal cell death after spinal cord 

Figure 2 Effects of bone marrow mesenchymal stem cells on the expression of microtubule-associated light chain 3B (LC3B) and Beclin 1 in the 
spinal cord of rats with spinal cord ischemia/reperfusion injury. 
(A) Immunostaining for LC3B and Beclin 1 in the rat spinal cord (arrows show positive cells) (× 400). (B) Semi-quantitative analysis of LC3B and 
Beclin 1 immunostaining. n = 10 rats/group. Data were expressed as the mean ± SD. *P < 0.05, vs. control group; #P < 0.05, vs. sham surgery group; 
†P < 0.05, vs. model group (one-way analysis of variance followed by the Fisher’s least significant difference test).
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ischemia/reperfusion injury. Moreover, transplanted bone 
marrow mesenchymal stem cells decreased the occurrence of 
autophagy, and this effect may possibly be a mechanism that 
underlies the bone marrow mesenchymal stem cell trans-
plantation-mediated repair of spinal cord ischemia/reperfu-
sion injury. 

In summary, transplanted bone marrow mesenchymal 
stem cells contribute to the growth and regeneration of ax-
ons. Anti-autophagy resulting from bone marrow mesenchy-
mal stem cell transplantation may be a mechanism by which 
spinal cord ischemia/reperfusion injury is repaired, thereby 
providing a new therapeutic target for the treatment of spi-
nal cord ischemia/reperfusion injury.
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