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Abstract

Many recent developments surrounding the functional network organization of the human brain 

have focused on data that have been averaged across groups of individuals. While such group-level 

approaches have shed considerable light on the brain’s large-scale distributed systems, they 

conceal individual differences in network organization, which recent work has demonstrated to be 

common and widespread. This individual variability produces noise in group analyses, which may 

average together regions that are part of different functional systems across participants, limiting 

interpretability. However, cost and feasibility constraints may limit the possibility for individual-

level mapping within studies. Here our goal was to leverage information about individual-level 

brain organization to probabilistically map common functional systems and identify locations of 

high inter-subject consensus for use in group analyses. We probabilistically mapped 14 functional 

networks in multiple datasets with relatively high amounts of data. All networks show “core” 

(high-probability) regions, but differ from one another in the extent of their higher-variability 
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components. These patterns replicate well across four datasets with different participants and 

scanning parameters. We produced a set of high-probability regions of interest (ROIs) from these 

probabilistic maps; these and the probabilistic maps are made publicly available, together with a 

tool for querying the network membership probabilities associated with any given cortical 

location. These quantitative estimates and public tools may allow researchers to apply information 

about inter-subject consensus to their own fMRI studies, improving inferences about systems and 

their functional specializations.
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1. Introduction

A key objective of functional magnetic resonance imaging (fMRI) studies has been to gain 

insight into how brain regions respond during tasks and how they interact with one another 

in distributed large-scale systems. To do so, analyses have typically been performed on 

averages across groups of subjects, to counteract noisy data from individuals. Studies using a 

group-average approach to examine human functional brain networks have produced robust 

and well-validated descriptions of, for example, typical functional network architecture 

(Power et al., 2011; Yeo et al., 2011).

Although the group-average approach has been useful in revealing fundamental qualities of 

functional network organization, recent data have suggested that averaging across subjects 

ignores distinct individual-specific features of cortical organization (Braga and Buckner, 

2017; Finn et al., 2015; Gordon et al., 2017a; Kong et al., 2019; Miranda-Dominguez et al., 

2014; Mueller et al., 2013). Historically, a major barrier to producing reliable connectivity 

estimates at the individual level using resting-state functional connectivity (RSFC) 

techniques has been acquiring a sufficient quantity of data to counteract sampling variability 

(Gordon et al., 2017c; Laumann et al., 2015). Previous work has demonstrated that the 

reproducibility of connectivity estimates and individual-specific features of functional brain 

networks is drastically improved with greater quantities of data per subject (Anderson et al., 

2011; Elliott et al., 2019; Laumann et al., 2015; Noble et al., 2017) Accordingly, RSFC 

studies acquiring a typical 5–10 min. of data per subject may not be sufficient to accurately 

reflect connectivity patterns in a given individual, or to examine individual differences in 

network organization. Several recent works have used higherreliability datasets to illuminate 

regions of high individual differences in functional network topography (Braga and Buckner, 

2017; Gordon et al., 2017a; Seitzman et al., 2019), outlining a geography of brain locations 

that show substantial variability across individuals.

Given known individual differences in functional networks, experimenters are posed with 

the dilemma of how to continue with analyses of these systems in their own work. One 

possibility is to acquire sufficient “precision” fMRI data to overcome sampling variability 

and produce accurate measures of individual brain networks. However, this may be 

expensive, difficult in certain participant groups, and not possible in previously acquired 
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datasets. An alternative is to quantify the degree of consensus in network profiles across 

individuals and focus analyses on locations with known commonalities. Despite individual 

differences, past data have suggested that commonalities in network organization are also 

large and widespread, with many regions of the cortex showing substantial similarity to the 

typical group-average brain (Gratton et al., 2018; Kong et al., 2019; Seitzman et al., 2019). 

The locations of consensus in functional networks can be derived by probabilistically 

mapping networks across individuals where sufficient fMRI data is available to achieve good 

individualized network estimates. Consensus locations from these probabilistic maps can 

then be used to enhance group analyses by (1) reducing heterogeneity (due to averaging 

different systems across participants), (2) limiting confounds from mixing diverse systems 

across individuals (e.g., allowing researchers to better understand functional specialization 

of different brain systems), and (3) determining the extent to which group data can be 

extrapolated to single subjects. For instance, one could use these maps to determine if an 

elicited activity pattern maps on to the frontoparietal network or a combination of networks 

across subjects.

In the present work, we aimed to address this need by probabilistically mapping functional 

networks across participants in four different datasets. With this information, we can 

quantify areas of high group consensus: regions where the greatest group convergence in 

functional network organization is observed across individuals. We provide tools that can be 

directly applied in various experimental contexts to quantify the degree of consistency in 

network assignments across a group. The quantitative probabilistic description of functional 

networks as well as the tools for implementing high-consensus group analyses are likely to 

be useful to many in the field with insufficient data to map individualized brain networks.

To create high quality estimates of group consensus, we focused our analyses on datasets 

with relatively high amounts of resting-state data per person (“highly sampled datasets” > 20 

min. of low-motion resting-state data), where individual network maps achieve higher 

reliability. We used a template-matching procedure to identify cortical brain networks in 

these highly sampled individuals and combined the resulting maps to produce a cortex-wide 

probabilistic estimate for each network. We replicated these findings across four datasets (a 

Dartmouth dataset with N = 69 with > 20 min. of data per person as the primary dataset, and 

secondary replications in the Midnight Scan Club: N = 9 with > 154 min., the Human 

Connectome Project: N = 384, with > 43 min., and a Yale dataset: N = 65, with > 22 min.). 

Notably, each of these datasets were collected both on different individuals and with varied 

scanning parameters. Probabilistic maps are presented and quantified at various thresholds 

and are validated by contrasting to past results of high variability regions. Finally, we 

provide two tools for research use: (1) a set of network-specific, high-probability ROIs for 

use in seeding group analyses and (2) a point-and-click tool allowing researchers to explore 

voxel-by-voxel probabilistic network estimates for regions of activation in their own data. 

The use of high-consensus regions may provide greater confidence in ROIs selected as 

priors in network-informed resting-state studies, with the potential for use in task-based 

studies as well.
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2. Methods

2.1. Datasets and overview

Five independent datasets focused on young neurotypical populations were utilized in this 

paper (Table 1): a Washington University dataset (a subset of the participants reported in 

Power et al., 2012), a Dartmouth dataset (Gordon et al., 2016), the Midnight Scan Club 

(MSC) dataset (Gordon et al., 2017c), the Human Connectome Project (HCP) dataset (Van 

Essen et al., 2012b), and the Yale Low-res dataset (Scheinost et al., 2016; note this dataset 

extended to middle age). Each dataset we use here consists of highly sampled subjects with 

a relatively large amount of low-motion data, ranging from a minimum of 20 min. (for N = 

69 in the Dartmouth primary mapping dataset) to upwards of 154 min. (for N = 9 in the 

MSC replication dataset). This large amount of data dramatically increases the reliability of 

functional connectivity measurements relative to more typical 5–10 min. scans (Gordon et 

al., 2017c; Laumann et al., 2015).

The WashU datasets were used to generate network templates: first, the WashU-120 (60 

female, average age 24.7 years) was used to create a data-driven group-average cortical 

network classification, and then a subject “subset” of the WashU-120 consisting of 24 highly 

sampled subjects (the “WashU-24″) was used to create a set of high-quality templates based 

on these group-average networks. Subjects in this subset had at least 35 min. of low-motion 

data when combining across additional resting-state scan sessions previously obtained from 

our group (see Template Generation in the supplement for more details).

These group-average templates were then applied to subjects in the Dartmouth dataset to 

identify brain networks in single individuals. The Dartmouth dataset (N = 69 subjects [56 

female; average age 20.2 years]) included subjects with over 20 min. of low-motion data. 

Given its relatively large sample size and its standard, single-band scanning parameters, this 

dataset was the primary dataset used to determine network probabilities across individuals 

and generate network-specific regions of high inter-subject consensus.

Three additional datasets were used to replicate these probabilistic maps: the MSC dataset 

(N = 9 subjects [4 female; average age 29.3 years] with over 154 min. of low-motion rest 

data), subjects from the HCP dataset (N = 384 subjects [210 female; average age 28.4 years] 

with at least 52 min. of data), and subjects from the Yale dataset (N = 65 subjects [32 

female; average age 32.2 years; subject ages in this dataset ranged higher] with over 22 min. 

of data). Notably, the MSC dataset includes very highly sampled individuals whose 

functional connectivity maps have been demonstrated to have high reliability and validated 

with functional activation studies. The HCP dataset replicates the current findings in a large 

dataset at high spatial and temporal resolution, and the Yale data set replicates the findings 

in a relatively “low-resolution” dataset (voxel size 3.4 × 3.4 × 6 mm). See Supp. Table 1 for 

acquisition parameters for functional data across all datasets; details on all preprocessing 

and functional connectivity (FC) processing procedures are outlined below.

2.2. Preprocessing and FC processing of BOLD data

2.2.1. WashU, Dartmouth, MSC, Yale datasets—All structural and functional data 

were preprocessed to remove noise and artifacts, following Miezin et al. (2000).
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Structural and functional preprocessing:  In the WashU, Dartmouth, MSC, and Yale 

datasets, slice timing correction was performed using sinc interpolation to account for 

temporal misalignment in slice acquisition time. Next, whole-brain intensity values across 

each BOLD run were normalized to achieve a mode value of 1000. Motion correction was 

performed within and across BOLD runs via a rigid body transformation. Functional BOLD 

data was then registered either directly to a high resolution T1-weighted structural image 

from each participant (WashU, Dartmouth, Yale, and HCP datasets) or first to a T2-weighted 

image and then to the T1 (MSC) using an affine transformation. This T1-weighted image 

was aligned to a template atlas (Lancaster et al., 1995) conforming to Talairach stereotactic 

atlas space (Talairach and Tournoux, 1988) using an affine transformation. All computed 

transformations and re-sampling to 3 mm isotropic voxels were simultaneously applied at 

the end of these steps. For some supplemental analyses to test the effects of structural 

alignment procedures, cortical surfaces were also generated by FreeSurfer (Dale et al., 

1999), registered to fs_LR surface space (Van Essen et al., 2012a), and aligned with each 

individual’s functional data using the processing stream described in Gordon et al. (2016).

Functional connectivity processing:  Following Power et al. (2014), additional denoising 

was applied to the resting-state data for FC analysis. Temporal masks for each subject’s 

timeseries were created in the WashU, MSC, and Yale datasets by censoring all frames with 

a framewise displacement (FD; Power et al., 2012) greater than 0.2 mm, and in the 

Dartmouth dataset by censoring frames with FD greater than 0.25 mm. This frame-censoring 

approach was implemented to remove timepoints associated with motion, as even small 

movements can induce distance-dependent biases in functional connectivity (Power et al., 

2014, 2018; Satterthwaite et al., 2019), and censoring of high-motion frames has been 

shown to be effective in reducing distance-dependent artifacts (Ciric et al., 2017, 2018). 

Across all datasets, segments with fewer than 5 contiguous frames were censored. 

FreeSurfer 5.0 segmentation using each subject’s T1 image generated a white matter and a 

cerebrospinal fluid nuisance mask per individual. After BOLD data were demeaned and 

detrended, regression of nuisance signals was implemented, regressing out global signal, 

cerebrospinal fluid, and white matter, as well as the six rigid-body motion regressors and 

their expansion terms (Friston et al., 1996). Data from high-motion frames were interpolated 

over via a spectra-matching interpolation technique. Data were then bandpass temporally 

filtered between 0.009 Hz to 0.08 Hz. Finally, the data were spatially smoothed at FWHM (6 

mm).

2.2.2. HCP dataset—Preprocessing and FC processing of HCP subjects were carried out 

similarly to the other datasets with a few differences. First, slice-timing correction was not 

performed, following the recommendations of the minimal preprocessing pipeline guidelines 

(Glasser et al., 2013). Second, prior to censoring high-motion frames, motion parameters 

were low-pass filtered at 0.1 Hz to mitigate effects of respiratory artifacts on motion 

estimates attributable largely to the multi-band, fast-TR data acquisition (Fair et al., 2020; 

Siegel et al., 2017). Following this, a filtered FD threshold of 0.1 mm was applied to censor 

frames. Data were originally processed in MNI atlas space with 2 mm isotropic voxels and 

were transformed into Talairach space with 3 mm isotropic voxels in a single step prior to 

spatial smoothing as described above.
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2.3. Template-matching and generation of high-probability ROIs

In this work, we created network maps for highly sampled individual subjects using a 

template-matching approach. These network maps were then overlaid to generate a 

probabilistic estimate of network distributions across subjects. High-consensus ROIs were 

generated for research use from regions of high cross-subject agreement of network 

assignment. Procedures for template-matching in individuals and probabilistic network map 

generation are illustrated in Fig. 1 and described in more detail below. All analyses were 

performed in volume (Talairach) space with 3 mm isotropic voxels (figures in this 

manuscript show data projected to the cortical surface for visualization purposes only).

2.3.1. Template-matching—Brain networks were identified in individual subjects by a 

winner-take-all procedure (similar to that employed in Gordon et al. (2017b)) which 

assigned each cortical gray matter voxel in a particular subject to one of 14 network 

templates. The generation of volumetric network templates is described in the Supplemental 

Methods. Networks include the default mode (DMN), visual, fronto-parietal (FP), dorsal 

attention (DAN), language (Lang.; this corresponds with the network labeled as “ventral 

attention” in previous work from our group), salience, cingulo-opercular (CO), somatomotor 

dorsal (SMd), somatomotor lateral (SMl), auditory, temporal pole (Tpole), medial temporal 

lobe (MTL), parietal medial (PMN), and parieto-occipital (PON; sometimes called the ret-

rosplenial, contextual association, or parahippocampal systems). Note that the functional/

anatomical nomenclature associated with network labels is a matter of ongoing debate 

(Uddin et al., 2019; here we selected names generally consistent with previous iterations 

from Laumann et al., 2015 and Power et al., 2011).

Networks were matched in each individual by assigning each voxel to one of the 14 

canonical networks based on the voxel seedmap’s “fit” with each network template (similar 

to the approach implemented in past work; e.g., Gordon et al., 2017b). Specifically, a 

seedmap was created for each location and binarized to the top 5% of connectivity values 

across voxels (this threshold was set based on previous work, but Gordon et al. (2017a) 

demonstrated consistent network assignments within a subject across a range of individual-

level connectivity thresholds). Each voxel’s binarized map was iteratively compared with the 

14 network templates (also binarized, see Supp. Fig. 1) and matched to its “best fit.” Fit was 

measured using the Dice coefficient of overlap between the binarized voxel connectivity 

map and each binarized template map (Fig. 1A). This procedure was repeated across all 

cortical voxels, resulting in a cortex-wide individual-specific network map (Fig. 1B). Same-

network clusters of less than 108 mm3 (4 contiguous voxels) were removed from each 

individual’s network map.

Rather than using a data-driven community detection approach to map individualized 

networks, this template-matching approach was chosen based on our goal of investigating 

known, previously described brain networks to allow for a reliable comparison of network 

structure across individuals. However, supplemental analyses in the Midnight Scan Club 

dataset show comparisons between probabilistic maps derived from data-driven vs. template-

based assignments (e.g., see Supp. Fig. 5).
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2.3.2. Creating probabilistic maps—After individual-specific network maps from the 

Dartmouth dataset had been generated with the template mapping procedure, these maps 

were overlapped to produce a cross-subject probabilistic map for each network (Fig. 1C). To 

generate this cross-subject probabilistic map, individual network assignments at each brain 

location were tallied to calculate the total occurrence (in number of subjects, with a given 

network assignment out of the total N = 69). This produced a continuous probabilistic map 

for each network which specified the probability of a given network assignment at every 

voxel within the cortical mask. Frequency values of network assignments were divided by 

the number of subjects within the primary dataset and were converted to percentages to 

illustrate the probability of network membership at each voxel. Probabilistic maps were 

created in the same manner from the MSC, Yale, and HCP datasets based on the number of 

subjects included (9, 65, and 384, respectively), and were compared to the results from the 

primary dataset. Thresholded versions of the network-specific probabilistic maps were also 

produced (Fig. 1D), allowing for visualization of the network assignment frequencies at 

various probability thresholds (e.g., in 50, 60, 70, 80, or 90 percent of subjects). Network-

specific probabilistic maps for the Dartmouth and HCP datasets are available a https://

github.com/GrattonLab/Dworetsky_etal_ConsensusNetworks.

Two approaches were taken to quantify the similarity of probabilistic network maps between 

the primary and replication datasets. First, we calculated the spatial correlation between the 

unthresholded probability maps across each dataset for each network. Second, we conducted 

a network-wise random rotation analysis on the thresholded high-consensus locations 

similar to Gordon et al. (2016). Each network in the (volume-to-surface-mapped) 70% 

probability map from the Dartmouth dataset was randomly rotated around the 32k_fs_LR 

cortical surface such that it maintained its size and shape. This rotation was repeated 1000 

times for each network in each hemisphere. For each of rotation, we calculated the Dice 

coefficient between the randomly rotated network in the Dartmouth dataset and the 

thresholded 70% probability map in each of the replication datasets (MSC, Yale, and HCP). 

Iterations where a network rotated into the medial wall were ignored and these Dice values 

were assigned with the average coefficient across all random rotations for that network 

(Gordon et al., 2016). The similarity between the original (true) Dartmouth consensus map 

and the replication maps was also assessed via a Dice coefficient. Finally, a p-value was 

calculated based on the proportion of rotations in which the rotated Dice value exceeded the 

true Dice value.

2.3.3. Creating ROIs of high group consistency for studies in other 
modalities—Once probabilistic maps were defined, we next set out to create a set of 

regions of interest (ROIs) with high group consensus for use in future (and retrospective) 

studies. These ROIs were created by contrasting the probabilistic maps generated above 

from the Dartmouth dataset with 248 (of 264) ROIs of the larger set previously proposed in 

Power et al. (2011) found in the cerebral cortex.

Specifically, high group consensus regions were derived from the probabilistic maps of the 

Dartmouth dataset by identifying locations that showed consistent network assignments 

across a large majority (i.e., > 75%) of subjects. A spherical 7 mm diameter region was 

placed on each of the center coordinates reported in Power et al. (2011). ROIs were 
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identified as “high-probability” if their average probability (across voxels) was ≥ 75%. If a 

region failed to meet the 75% criteria to be identified as “high-probability,” it was shifted 

one voxel in space (i.e., 3 mm in the x, y, or z direction) and was retained if this shift 

produced an average ROI probability that met the threshold, as the intention was to keep the 

original ROI set relatively intact but optimized for probabilistic mapping. As a result of this 

procedure, a total of 44 ROIs were shifted from their original position. ROIs that failed to 

meet the high consensus definition with a single voxel shift were dropped from the final 

group. The full probabilistic maps are also provided to the public, allowing authors the 

possibility to generate additional ROIs with more varied characteristics if desired.

2.3.4. Creating point and click voxel-wise network tool—Finally, we created a 

tool for displaying the probability of network membership at each cortical voxel for research 

use. Specifically, a scene file was created using the Connectome Workbench software that 

contains each network’s probabilistic map in volume space and allows for point-and-click 

usability to identify the probability (across subjects) that a given voxel is associated with 

each network.

High consensus ROIs and full probabilistic maps are provided at https://github.com/

GrattonLab (ROIs are provided as center coordinates so they can be shaped to a preferred 

size; coordinates are provided in both Talairach and MNI space for convenience). Data from 

the Midnight Scan Club is available at https://openneuro.org/datasets/ds000224; data from 

the Human Connectome Project can be accessed at https://db.humanconnectome.org/; data 

associated with the WashU-120 is available at https://openneuro.org/datasets/ds000243/

versions/00001.

3. Results

3.1. Overview of results

In this work, we sought to characterize high-consensus network locations for use in analysis 

and interpretation of group research studies. To this end, we compiled individualized 

network assignments in several datasets of highly sampled subjects to create a reliable cross-

subject probabilistic map of network definitions. We show these results first for the 

Dartmouth dataset (primary) and then replicate these findings in three additional datasets to 

demonstrate their stability. Using these datasets, we explored the degree of consensus for 

networks across different probability thresholds. Finally, we created two tools for use in 

future research studies: (1) a set of “high-probability” regions of interest, and (2) a publicly 

available point-and-click tool for determining network probabilities in researcher-specified 

locations.

3.2. Estimated probabilistic maps of 14 canonical networks

As described in the Methods, we used a template-matching approach to determine a voxel-

based network assignment for each individual (N = 69) in our primary Dartmouth dataset, 

based on templates created from the WashU cohort. We then overlapped the individuals’ 

network maps within the Dartmouth dataset for each canonical network. This overlap was 

used to generate a cross-subject probabilistic map (Fig. 2; see Supp. Fig. 2 for maps for the 
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remaining 8 canonical networks we examined). As can be seen, all networks demonstrated 

some regions with high-group consensus (warm colors), but also a spread of lower-

consensus locations. While this analysis was conducted in volume space, analyses 

performed with surface-based alignment produced similar results in the primary dataset 

(Supp. Fig. 3).

3.3. Consensus locations replicate across multiple datasets

Next, we implemented the probabilistic map procedure in three supplemental datasets 

(consisting of 9 MSC subjects, 384 HCP subjects, and 65 Yale subjects; Fig. 3). Despite 

differences in participant populations, scanners, and acquisition parameters (most notably in 

the HCP dataset), probabilistic network assignments generally replicate, with results from 

the three test datasets visually appearing similar at the 50 percent probability threshold and 

experiencing similar patterns of network “dropout” as the probability of assignment 

increases at 70 and 90 percent. We note that more dropout is observed in the HCP dataset, 

perhaps due to the lower SNR associated with these scans (e.g., see Seitzman et al., 2020, SI 

Fig. 4).

This observation was supported by quantitative comparisons as well. All three supplemental 

datasets showed a high spatial correlation with the Dartmouth dataset: on average, the 

network-specific probabilistic maps were correlated at r = 0.90 for Dartmouth:MSC, r = 0.90 

for Dartmouth:Yale, and r = 0.70 for Dartmouth:HCP (see Supp. Fig. 4A for full breakdown 

by network). Furthermore, the high consensus locations (> 70%) also replicated, as shown 

by network-wise rotation-based per-mutation analysis (p < 0.001 relative to random null for 

all networks between Dartmouth and MSC and between Dartmouth and Yale; in the 

Dartmouth–HCP comparison, 10 of the 14 networks showed a Dice coefficient significantly 

higher than the null; see Supp. Fig. 4B for full breakdown by network).

Finally, in the highly sampled MSC dataset, we also demonstrate that probabilistic maps 

based on data-driven network assignments show high correspondence to the template-based 

assignments used here (Supp. Fig. 5). This suggests that template-matching and data-driven 

procedures converge with sufficient high-quality data, at least in neurotypical populations.

3.4. Individual networks vary in the size of their core and the span of surrounding 
components

While core regions of high consensus exist in all of the canonical networks investigated here, 

the networks vary in the extent of their more peripheral (i.e., low consensus) regions. As 

shown in Fig. 4, networks retain cortical territory at varying rates as the probability 

threshold (i.e., consensus across subjects) increases. For example, while the visual network 

consistently remains the most highly represented network across the highest probability 

thresholds, the inverse is true for FP: it is the third-most highly represented network across 

at least 50% of individuals, but when group consensus is examined at 80% or 90% of 

individuals, cortical representation of FP diminishes significantly.

Differences in the rate of network “dropout” seem not to be driven purely by a distinction of 

sensorimotor vs. association networks. While sensorimotor networks tend to have higher 

consensus, some association networks also maintain a relatively high group consensus 
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across thresholds, including DMN and CO. It appears unlikely that network size alone is 

driving the effect (i.e., that smaller networks taper off more quickly across probability 

thresholds); while some smaller networks experience relatively fast dropout (e.g., Lang.), 

others (e.g., PON and MTL) remain consistent across a high percentage of subjects. 

Regardless, all networks have some core regions of high inter-subject consensus, and 

networks vary in the cross-subject variability observed in locations surrounding these core 

regions.

3.5. Non-core areas overlap with previously described locations of network variants

Next, we sought to provide support for our approach by examining how consensus regions 

from this template-matching probabilistic procedure compared with previously identified 

locations of individual variability in functional network organization. Transparent white 

regions in Fig. 5 show “network variant” locations across 752 HCP subjects from Seitzman 

et al. (2019) where a given individual’s correlation pattern differs significantly from the 

group-average (this was computed using continuous measures, without reference to a 

discrete network assignment). Despite differences in methodological approaches used for 

identifying consensus probabilistic assignments (via template-matching) and individual 

variants (via low spatial correlations), we find that there is a good contrasting 

correspondence between these two methods. As would be expected, regions of high 

consensus lie mostly outside of the boundaries of network variants, and appear to fill in gaps 

where there is the greatest inter-subject variability in network assignment (e.g., 

temporoparietal junction, lateral frontal cortex).

3.6. Generation of a high-probability set of ROIs and point-and-click tool

A major goal of the current work was to improve group studies by allowing researchers to 

evaluate network probabilities across participants and focus on locations of consensus. To 

this end, we sought to refine previous group-average ROI definitions based on these 

probabilistic network assignments to generate a set of high-consensus ROIs for future 

research. We began with the 248 cortical ROIs from the commonly used 264 regions from 

Power et al. (2011). We then restricted this set to regions where the average network 

assignment probability was ≥ 75% within the 7 mm diameter ROI. This resulted in 153 

cortical ROIs. Thirteen of the 14 canonical networks were represented (no ROIs were 

retained for the temporal pole network), although the quantity of high-probability ROIs 

varied by network (see Fig. 6A for locations and network descriptions of ROIs). While the 

regions cover much of the cortex, some higher-variability areas such as the temporo-parietal 

junction and the lateral frontal cortex are more sparsely represented, as expected (e.g., see 

Gordon et al., 2017b; Laumann et al., 2015; Mueller et al., 2013; Seitzman et al., 2019). 

ROIs with the highest peak probabilities were identified largely in dorsal somatomotor and 

visual regions, with relatively lower peaks in lateral frontal and orbitofrontal regions (Fig. 

6B)

We provide each network’s probabilistic maps as a series of downloadable volume images, 

along with the 153 ROIs at https://github.com/GrattonLab/

Dworetsky_etal_ConsensusNetworks (given the added differences seen with the HCP 

analyses, HCP-specific probabilistic maps are also provided). For researchers using 

Dworetsky et al. Page 10

Neuroimage. Author manuscript; available in PMC 2021 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/GrattonLab/Dworetsky_etal_ConsensusNetworks
https://github.com/GrattonLab/Dworetsky_etal_ConsensusNetworks


Connectome Workbench, a scene file was created to allow researchers to explore network 

probabilities at every cortical voxel. Fig. 7 displays an example of this tool’s utility by 

exploring the DMN map, including an “Information” window with probabilities listed across 

all networks.

4. Discussion

Here, we probabilistically mapped functional networks across a group of highly sampled 

individuals. We found that there are “core” locations of high group consensus within each 

network. Networks vary in the extent and peak probability of their core regions, suggesting 

that networks with a higher group consensus may be more amenable to group-level analyses. 

The ability to identify locations with high group consensus allows for better-informed group 

studies of functional network properties, using either task or functional connectivity 

approaches. To facilitate this process, we provide a set of voxelwise probability maps for 

each of 14 canonical networks. In addition, we provide two tools for research use: (1) a set 

of network-specific, high-probability ROIs for use in task- and functional connectivity-based 

analyses and (2) a point-and-click tool allowing researchers to explore voxel-by-voxel 

probabilistic network estimates of regions in their own data.

4.1. Probabilistic approaches in imaging

In the imaging literature, probabilistic atlases have been utilized as a way to quantify spatial 

distributions of anatomical structures or functional areas to pinpoint locations of high 

consensus across a group. Many popular probabilistic atlases of the brain are based on 

anatomical data – e.g., the cerebellum (Diedrichsen et al., 2009), subcortical nuclei (Pauli et 

al., 2018), the basal ganglia (Keuken and Forstmann, 2015), tissue type, lobes, and sulci 

(Mazziotta et al., 1995) – to provide references for cross-subject comparisons. However, 

functional areas (at least in the cortex) do not necessarily conform well to anatomical 

definitions (Eickhoff et al., 2018; Gordon et al., 2016), suggesting that anatomical atlases are 

less well-suited for definition of functional ROIs in task-based or resting-state fMRI. The 

current cortical probabilistic atlas based on functional network mapping fills this gap. Future 

work in other age groups (e.g., youth, older adults) and clinical populations (e.g., 

schizophrenia, depression) may use a probabilistic approach to build additional probabilistic 

maps of functional networks and further enhance group studies in these domains.

4.2. Utility of a probabilistic mapping approach to functional networks

We have adopted a probabilistic approach in this study given past evidence for both 

individual differences and group consensus in functional neuroanatomy (Gordon et al., 

2017a, Gordon et al., 2017b; Gratton et al., 2018; Power et al., 2011; Yeo et al., 2011). It 

became increasingly apparent in our own work that, rather than qualitative statements about 

the magnitude of variability or the extent of similarity of networks across individuals, it 

would be useful to have a quantitative probabilistic view of the variability associated with 

each cortical location and each network to evaluate the consistency of our findings. 

Identifying regions of group consensus provides a wealth of opportunity for more well-

informed research on brain networks.
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The probabilistic network maps that we have produced can be used by researchers in a 

number of ways. First, these maps can be thresholded to create regions of interest for future 

(or retrospective) group analyses. For example, these maps may be thresholded to select 

regions of the frontoparietal and cingulo-opercular systems where we have high confidence 

in group consensus. This would allow for a re-analysis of past task dissociations between 

these two systems (Dubis et al., 2016; Gratton et al., 2017; Neta et al., 2015; Power and 

Petersen, 2013), but now accounting for potential individual variability in network 

assignments. To facilitate this application, we have provided a set of 153 ROIs that identify 

high-consensus regions within 13 of the 14 networks examined. Should a researcher wish to 

perform task-based or rest-based analyses at the group level, high-probability ROIs would be 

crucial in ensuring that the brain regions being analyzed are those which are most consistent 

across individuals; researchers can be more assured that a majority of individuals are 

providing information from the same network.

Secondly, these regions may be used to help interpret ambiguous results in group studies. 

For instance, a region which is assigned to the CO network in 70% of subjects and the 

salience network in the other 30% of subjects may serve as a meaningful distinction from a 

region which is assigned to CO in 70% of subjects but FP in the other 30%. Thus, while the 

high-probability ROIs focus on regions of group similarity, useful information on the 

locations and forms of individual variability can also be gleaned from the point-and-click 

probabilistic tool. In the future, researchers may use the probabilities associated with this 

paper to provide quantitative estimates for the typical (and atypical) network assignments 

associated with findings of interest.

Third, probabilistic network mapping may deepen our understanding of the clinical utility of 

mapping functional brain networks by providing reliable quantitative priors about the 

network assignments of each region. This probabilistic approach may provide a basis for 

more precisely identifying network deviations in individuals with specific diagnoses, as well 

as network changes across development. For example, one possible future investigation may 

be to examine whether individuals with a given clinical diagnosis vary predictably from the 

probability map of any network of interest; perhaps in clinical groups there will be more 

variability in higher-probability regions.

4.3. Group consensus in core regions within large-scale networks

Our probabilistic maps demonstrated that each network was comprised of a set of “core” 

regions exhibiting very little or, in some cases, no variability (note that our use of “core” is 
based on anatomical location, separate from the graph theoretical connotation of the word). 

This suggests that the core areas of each network are relatively fixed across individuals, with 

little possibility for variation, and these regions complement previously described locations 

of high individual variability (see Fig. 5). The consensus areas of each network were larger 

in sensorimotor than association systems, consistent with the idea that association systems 

are more variable across individuals, maturation, and evolution, which has been suggested to 

be due to a lack of genetically encoded tethering markers in these areas (Buckner and 

Krienen, 2013). However, we found a consistent core in each of the association systems as 

well, which would appear to be at odds with a strong interpretation that association networks 
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lack fixed constraints (Buckner and Krienen, 2013). Indeed, the consistency of association 

networks differed markedly between systems with, e.g., relatively robust consensus in the 

DMN and CO and high variability in the FP, despite their similar overall sizes and complex 

“high-level” natures. Exploring the basis for commonalities and plasticity in association 

networks will be an interesting avenue for future work.

Importantly, while our results speak to areas of high and low variability in network 

assignment across subjects, less light is shed on locations that assign to multiple networks 

within a subject. The implementation of a template-matching approach to map networks in 

individuals, which necessarily forces a discrete network assignment, is not best suited to 

capture locations that may have network profiles intermediate to multiple networks. Some 

interpretations have characterized these regions as hubs (Gordon et al., 2018; Gratton et al., 

2012, 2018; Power et al., 2013; Warren et al., 2014) while others describe them as multi-

network integration zones reflective of a set of cortical gradients (Huntenburg et al., 2018). It 

will be interesting in future work to determine the correspondence between these “hub”-like 

intermediate regions that show inconsistent discrete network labels within a person and 

those that are variable across individuals. We note that the agreement between the current 

template-matching work and previous findings of individual differences based on continuous 

metrics (Seitzman et al., 2019) provides tentative evidence that these intermediate zones are 

not large contributors to the cross-person variability observed here.

4.4. Limitations

The findings presented here have several limitations that are worth noting. First, in an effort 

to optimize the tradeoff between data quantity and the number of subjects retained for our 

probabilistic estimates, the amount of data required per subject was set to a minimum of 20 

min. of low-motion data. While this represents relatively higher-data subjects than a majority 

of group studies (which collect 5–10 min. of data), most of these subjects did not reach the 

30–45 min. threshold that is ideal to produce asymptotic individual-subject reliability 

(Laumann et al., 2015). However, we were able to repeat the probabilistic analyses within 

the smaller but highly sampled Midnight Scan Club (MSC) dataset, which produced 

comparable results; in this dataset we were able to demonstrate that data-driven approaches 

show similar correspondence to the template-matching approaches used here (Supp. Fig. 5), 

further validating our findings.

Second, while there was general agreement in the probabilistic maps from the 4 datasets 

examined here, there were some differences, which may be driven by differences in scan 

parameters or dataset size/quality. This was particularly the case in the probabilistic map 

generated from the Human Connectome Project (HCP) dataset relative to the other three 

datasets. The probabilistic maps displayed in Fig. 3 reveal that some high-consensus regions 

that are conserved across probability thresholds in the Dartmouth, MSC, and Yale datasets 

show a lower degree of consensus in the HCP dataset. Such differences might be driven by 

the smaller voxel size and higher spatial and temporal resolution of the HCP dataset, which 

may lead to a lower signal-to-noise ratio (SNR; as demonstrated in Fig. S4 in Seitzman et 

al., 2020). Thus, the extent to which the probabilistic assignments replicate in datasets using 

similar acquisitions as the HCP is less certain and may require further investigation. Given 
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this observation, we have also separately released the HCP-specific probabilistic network 

maps for use for those using the HCP dataset or others with similar acquisition parameters.

Lastly, we note that probabilistic assignments were calculated at the level of 14 canonical 

functional networks. This set of networks was selected because they are among those that 

have been most consistently defined and investigated in studies of cortical functional 

systems (Power et al., 2011; Yeo et al., 2011) and are thus likely to be useful to a broad set 

of individuals. However, this selection necessarily limits the observation of probabilistic 

maps at other resolutions, including those of interesting sub-network structure such as the 

default mode sub-networks identified by Braga & Buckner (2017), Gordon et al. (2020), and 

Kong et al. (2019). Moreover, the current approach is based on a probabilistic representation 

of the systems, not areal, level of brain organization. A consistent network assignment across 

individuals is not a guarantee that a region belongs to the same brain area across those 

individuals. We know from past work based on functional localizers that there is variability 

across subjects at the areal level as well (e.g., Kanwisher et al., 1997; Wang et al., 2015); 

variation at the areal level may also carry information about individual differences, and will 

be important in studies requiring area-level precision. An exciting avenue for future work is 

to expand on the techniques in this manuscript to probabilistically map sub-networks and 

areal level organization.

5. Conclusions

Here, we produce a probabilistic representation of distributions of functional network 

assignments across a group of highly sampled subjects. While individual networks vary in 

the span of their “core” high-probability locations, all networks examined showed regions of 

high group consensus. These probabilistic maps and core regions replicated across four 

diverse datasets. The quantitative probabilistic maps, high-consensus ROIs, and point-and-

click tool produced from these analyses will allow researchers to improve group studies by 

providing information about cross-subject consensus.
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Fig. 1. 
Template-matching procedure (A) and creation of probabilistic network maps (B–D). A set 

of group-average network templates were created from the WashU dataset. These group-

average templates were binarized at the top 5% of connectivity values. Next, for each single 

individual in the Dartmouth and replication datasets, a voxelwise seedmap was created for 

all gray matter voxels. Seedmaps were thresholded at the top 5% of values across voxels. 

The individual’s voxel-level binarized map was then iteratively compared (by Dice overlap) 

with each group-average network template, and the network with the highest Dice 

coefficient was assigned to the voxel (A). Once all voxels were assigned in all subjects (B), 

the number of network assignments at each voxel were tallied across subjects (C) to generate 

probabilistic maps of networks. These probabilistic maps were then thresholded (D) to 

represent locations with network consensus in a large majority of subjects. Note that while 

all steps were performed in volume (Talairach) space, results are mapped onto a template 

surface for visualization purposes only.
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Fig. 2. 
A probabilistic representation of 6 association networks. Cooler colors represent regions 

with the least confidence in network assignment across subjects, while warmer colors 

represent brain regions with the highest group consistency– in bright red regions, up to 

100% of subjects converged on a given network assignment. (See Supp. Fig. 2 for 

probabilistic maps produced for both hemispheres and for all 14 networks.).
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Fig. 3. 
Thresholded probabilistic maps across 4 datasets. Probabilistic maps were generated for the 

primary Dartmouth datasets and from three additional datasets (MSC, HCP, and Yale). For 

each dataset, network assignments consistent across 50%, 70%, and 90% of subjects are 

displayed.
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Fig. 4. 
Representation of the proportion of cortical territory covered by each network at each 

probability threshold. Each line represents the total percentage of the cortex covered at a 

given threshold. Inset shows percent of cortical territory for the smaller networks at 80–90% 

consensus.
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Fig. 5. 
The spatial distribution of network variants across 752 HCP subjects (as identified in 

Seitzman et al., 2019) is displayed in transparent white, overlaid on the network map at 75% 

probability. The distribution displayed here is thresholded to show variant locations 

exhibited by at least 11% of subjects. Notably, the variants distribution appears to fill in gaps 

where there is the most inter-subject variability in network assignment, including 

temporoparietal junction and the left and right lateral frontal cortex.
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Fig. 6. 
(A) 153 high-probability ROIs colored by their network assignment. (B) ROIs colored by 

peak probability across voxels within the ROI. (C) Histograms of peak probability values 

across all 153 ROIs (top) and mean probability values (bottom).
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Fig. 7. 
Schematic of publicly available research tool for exploring network probabilities. The DMN 

map is displayed, and probabilities of network membership to all 14 networks for the given 

voxel are listed in the “Information” window with non-zero probabilities outlined in red.
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