
ORIGINAL RESEARCH
published: 28 October 2021

doi: 10.3389/fnhum.2021.763821

Edited by:

Aleksandra Dagmara
Kawala-Sterniuk,

Opole University of Technology,
Poland

Reviewed by:
Santiago Galdo-Alvarez,

University of Santiago de
Compostela, Spain

Sergio Iglesias-Parro,
University of Jaén, Spain

*Correspondence:
Natalia Jakubowska

njakubowska@swps.edu.pl
Aneta Brzezicka

abrzezi2@swps.edu.pl

Specialty section:
This article was submitted to

Brain Imaging and Stimulation,
a section of the journal

Frontiers in Human Neuroscience

Received: 24 August 2021
Accepted: 12 October 2021
Published: 28 October 2021

Citation:
Jakubowska N, Dobrowolski P,

Binkowska AA, Arslan IV, Myśliwiec M
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Visual working memory (VWM) is the ability to actively maintain visual information over
short periods of time and is strongly related to global fluid intelligence and overall
cognitive ability. In our study, we used two indices of visual working memory capacity:
the behavioral estimate of capacity (K) and contralateral delay activity (CDA) in order
to check whether training in a Real-Time Strategy (RTS) video game StarCraft II can
influence the VWM capacity measured by the change detection task. We also asked a
question whether individual differences in behavioral and psychophysiological indices
of VWM can predict the effectiveness of video game training. Sixty-two participants
(non-players) were recruited to the experiment. Participants were randomly assigned
to either experimental (Variable environment), active control (Fixed environment), and
passive control groups. Experimental and active control groups differed in the type of
training received. Training consisted of 30 h of playing the StarCraft II game. Participants
took part in two EEG sessions (pre- and post-training) during which they performed the
VWM task. Our results showed that working memory capacity (K calculated according
to Pashler’s formula) increases after training in both experimental groups, but not in a
control group. We have also found a correlation between average visual working memory
capacity (calculated as K) and mean CDA amplitude no matter which group we are
looking at. And, last but not least, we have found that we can predict the amount of
improvement in the RTS video game by looking at the psychophysiological indices (CDA
amplitude) recorded at baseline (before training), but only in the experimental group. We
think that the strength of the psychophysiological indicator of VWM capacity might be a
marker of the future success in video game acquisition.

Keywords: action video games, visual working memory, trainings, ERPs, EEG

INTRODUCTION

Visual working memory (VWM) allows us to maintain visual information over short periods
of time for manipulation or later access (Baddeley, 2003; D’Esposito and Postle, 2015). VWM
is an important cognitive function in our daily life and is essential for many higher-level
cognitive processes, like problem-solving, learning by observation, or reading (Fukuda et al., 2010;
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Shipstead et al., 2012). The capacity of VWM relates to
the amount of visual information, which can be maintained
in memory simultaneously and accessible if needed (Luck
and Vogel, 2013). Previous research (including neuroimaging
studies) has shown that VWM capacity is highly limited
(Luck and Vogel, 1997; Todd and Marois, 2004), differs across
individuals (Rouder et al., 2008), and predicts fluid intelligence
in adults (Fukuda et al., 2010; Unsworth et al., 2014). Studies on
VWM have relied on a well-established paradigm that measures
VWM capacity—the change detection task (Luck and Vogel,
1997, 2013), where participant maintains a visual image in
memory over a short delay interval and answers if any item (or
items) in a later probe image have changed compared to the
sample image. The number of items presented (memory load)
is manipulated, and performance (working memory capacity,
an estimate of the number of items stored in WM measured
by K calculated according to Pashler’s formula in our study)
is compared between trials of different loads. Change detection
accuracy mirrors a participant’s limitation of VWM capacity
and is usually limited to 3–4 items (Vogel and Awh, 2008). It
is suggested that the limitation of VWM capacity is associated
with visual search and multiple-object tracking performance
(Drew et al., 2011; Luria and Vogel, 2011). Previous research
has shown that participants with higher VWM capacity are
more effective in ignoring unnecessary items during task
performance (Vogel et al., 2005). In neurophysiological studies
of lateralized VWM, stimuli are presented peripherally, and
the subject’s task is to attend and maintain in VWM only the
items presented in a cued visual hemifield. This generates a
lateralized representation, which is larger contralateral compared
to ipsilateral of the memorized hemifield, in posterior cortical
areas over the retention period that results in a contralateral
delay activity (CDA). CDA is a negative slow-wave evoked
component that amplitude relates to the number of objects
maintained in VWM, so it could be interpreted as a neural
index of WM load (Vogel and Machizawa, 2004; Luria et al.,
2016). Previous research has shown that CDA amplitude is
correlated with memory capacity (Vogel and Machizawa, 2004;
Ikkai et al., 2010) and can be modified as a result of WM
training (Li et al., 2017). In this study, we used video games as a
specific kind of cognitive training having the potential for VWM
improvement.

The growing body of research suggests that playing video
games enhances the performance on tasks measuring visual
and attentional abilities (Green and Bavelier, 2007; Jakubowska
et al., 2021). Potential cognitive benefits are possible even
with relatively short periods of engagement in playing activity
(Green and Bavelier, 2007; Wilms et al., 2013), which makes
video games an attractive training option for restoring cognitive
functions following brain impairments and in preventive
cognitive interventions (Achtman et al., 2008). As there are
different kinds of video games, the particular category called
action video gaming (AVG) is thought to have a substantial
impact on human cognitive functioning. AVG requires players
to scan many different complex visual stimuli at the same time
and react to multiple stimuli or situations under time pressure
(Green and Bavelier, 2003, 2012). AVG is cognitively demanding

because of engaging many cognitive functions like working
memory, visual attention, and inhibitory control (Green and
Bavelier, 2003, 2012). Previous research has shown that long
experience in AVG was associated with VWM improvement
measured with a change detection task (Boot et al., 2008;
Blacker et al., 2014; Li et al., 2015) as well as other tasks
(Colzato et al., 2010; Sungur and Boduroglu, 2012; Waris et al.,
2019). These results suggest that AVG training may lead to
the enhancement of VWM. At the same time, VWM is a key
cognitive function in effective video gaming, because it allows
players to keep task-relevant visual stimuli over short periods
of time for manipulation or later access (Logie, 2011; Blacker
et al., 2014). Noteworthy, some studies suggest that cognitive
enhancement connected to video game playing does not show far
transfer’s characteristics (like general improvement in cognitive
functioning or learning), but seems to be limited to functions
being involved in a given type of video game (Oei and Patterson,
2014).

It is important to note that there are studies that have not
found a cognitive improvement after gaming training (Seçer
and Satyen, 2014; Dominiak and Wiemeyer, 2016). The possible
explanation of these divergent results could be connected to
different kinds of games being considered as AVG is actually a
broad category with wide inclusion criteria. The study conducted
by Dobrowolski et al. (2015) has shown that the achievement of
expertise in two different game genres, while both included in
AVG category called real-time strategy (RTS) and first-person
shooter (FPS), impacts differently cognitive functioning of
players. The higher performance in task engaging visual attention
and task-switching ability were observed only in RTS (but not
in FPS) players as compared to non-players (Dobrowolski et al.,
2015). Similarly, RTS experts seem to have higher accuracy and
larger VWM capacity than non-experts (Yao et al., 2020). The
possible interpretation of these results is that video gaming-
related cognitive benefits may depend on the type of actions
performed within the game (Dobrowolski et al., 2015). As RTS
gaming requires extensive interaction with the complex visual
environments, we assume it is highly possible to improve VWM
through training with this type of video game. While previous
investigations indicate that AVG experts have larger visual
attentional capacities, greater capacity of working memory, and
higher visual acuity as compared to non-gamers (Green and
Bavelier, 2003, 2012; Oei and Patterson, 2013), and that specific
AVG can positively affect the level of a given function (Bejjanki
et al., 2014; Choi et al., 2020), the impact of the initial level
of cognitive functioning on player performance remains largely
unexplored.

That is why we decided to use the (RTS) video game StarCraft
II with two different types of environments requiring diverse
cognitive workloads. Our training types were based on either
variable or fixed game environments. The opponent’s faction and
strategy varied in the variable environment group only (and it
was connected to the higher level of difficulty). Our participants
were randomly assigned to either a Variable environment, a
Fixed environment or the control group. Then it’s important
to mention that differences between variable and fixed training
models were investigated in previous studies, which proved
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that variable training enhances learning rates and retention,
and induce transfer to untrained tasks more, effectively than
fixed training (Kramer et al., 1999; Bherer et al., 2008; Erickson
et al., 2010). Moreover, training based on a variable environment
seems to have more in common—than training with a fixed
environment—with people’s gaming experiences in everyday life.

The objective of the current study was to investigate the
impact of RTS video game StarCraft II training on VWM
capacity by comparing training groups’ and control group’s
behavioral (k estimate of WM capacity) and ERP (contralateral
delay activity) data in a change detection task. Furthermore we
were also interested in whether initial, individual differences in
behavioral and psychophysiological indices of VWM can predict
the effectiveness of video game training, which could extend
our knowledge of the relationship between VWM and in-game
performance.

MATERIALS AND METHODS

Participants
A total of 104 participants were recruited online via a covert
questionnaire (Sobczyk et al., 2015). As a result of: (1) resignation
(n = 13); (2) wrong hardware configuration (n = 7); (3) failure
to meet all training objectives (n = 6); (4) bad quality of data
(n = 7); and (5) lost data (n = 9) only 62 of participants were
included in analyses reported here. Participants were randomly
assigned to two training groups: with Variable Environment
training (VEG; n = 22; 12 males; Mage = 25.05, SDage = 2.97),
with Fixed Environment training model (FEG; n = 21; 8 males;
Mage = 25.33, SDage = 3.01), and to two control groups: passive
control (PC) group (n = 8; 5 males, Mage = 24.63, SDage = 2.97),
that did not receive any training and active control (AC) group
(n = 11; males = 8; Mage = 25.55, SDage = 4.41). The participants
played Heart Stone for 30 h (8 h in the laboratory and 22 h
at home). As the size of the control groups was inappropriate
to analyze them individually, and neither 4 × 2 × 2 repeated
measures ANOVAs with Load and Session as the within-
subjects factors and Group as the between subject factor, nor
One-way ANOVAs with Group as a factor showed any between
group differences on behavioral or neurophysiological levels,
we decided to merge the groups into one Control group (CG;
n = 19; 13 males; Mage = 25.16, SDage = 3.80). Then it is
important to mention that dropout, which largely contributed
to the reduction of the size of the control groups, is a common
problem in longitudinal training studies (e.g., Moore et al.,
2017). Furthermore, our study employed restrictive recruitment
criteria, especially in terms of experience in video game playing,
which finally resulted in an inability to re-complete the control
groups. All participants reported normal or corrected-to-normal
visual acuity, normal color vision and normal hearing. They
were right-handed and reported not being on any medications,
no history of neurological or psychiatric disorders and injuries,
including no previous head trauma, no previous head or neck
surgery, and no brain tumors. All participants declared less than
5 h of video games played per week over the past 6 months and
no experience with Real Time Strategy or First Person Shooter

games. Informed consent was obtained from each participant
before the start of the experimental procedure.

Procedure
The study design and the informed consent form were approved
by the Ethics Committee of the SWPS University of Social
Sciences and Humanities. The research consisted of three
steps: (1) Pre-training measurement of cognitive function
via change detection task (Visual Working Memory task;
VWM); (2) Training sessions applied to active groups; and
(3) Post-training measurement (Figure 1). Experimenters were
present during all meetings. Measurement and training sessions
took place in the laboratories of the SWPS University in Warsaw.

Experimental Procedure
Prior to the beginning of the experiment, participants were
verbally instructed as to what they would be experiencing and
were shown what the procedure of EEG electrode mounting
entails. Then, after signing a consent form, participants were
brought into a laboratory setting and seated in front of a 24 inch
BenQ XL2411Z computer monitor (1,920 × 1,080 resolution,
100 Hz refresh rate) at a distance of 60 cm. Electrodes were
then mounted and participants were briefly shown the EEG
signal and explained how it is affected by eye blinks and
muscular movements, which was a part of the procedure
aimed at minimizing the number of artifacts in the signal.
The procedure was then started, and upon its completion
subjects were provided with a place to wash their hair. The
entire procedure lasted no more than 2 h and was identical
during both measurements. All subjects, who fulfilled training
requirements and participated in both measurement sessions,
were compensated for their participation with approx. 184 USD
after post-training measurement.

Experimental Task—Change Detection
Task Paradigm
The experimental task was based on the procedure outlined
by Vogel and Machizawa (2004). An initial fixation cross was
followed by an arrow, pointing which side of the screen needs
to be attended (whether right or left hemifield), after which a
pattern (memory array) of two to five colored squares appeared
in each hemifield of the screen. The same array appeared again
(test array) after a brief retention interval, with a 50% chance
that one of the squares in the cued hemifield changed its
color. Participants were tasked with detecting changes between
the memory and test array by responding with one of the
keys (same or different). Square colors were chosen at random
from seven possibilities (red, blue, violet, green, yellow, black,
white), with the constraint that one color appeared no more
than twice in a given test array. Squares (0.65 × 0.65 visual
degrees) were randomly positioned at the start of each trial in
two 4 deg. × 7.4 deg. hemifields (centered 3 deg. to the left
and right of a central fixation, light gray background), with a
minimum 2 deg. (center to center) distance between squares. All
participants completed 576 trials (144 per load) of the task along
with 16 initial practice trials.
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FIGURE 1 | (A) Study design: two measurement sessions were carried out during the study (pre-training and post-training). Training included 30 h of playing in the
real-time strategy game (StarCraft II), spread over 4 weeks. Training varied depending on the group. The Control group (CG) merges participants from Passive
Control, who participated only in the measurement sessions and Active Control, who additionally played Heart Stone for 30 h (8 h in the laboratory and 22 h at
home). (B) The visual-working memory task. Participants directed their attention to a cued hemifield (left of right, guided by an arrow at the beginning of each trial)
and compared two arrays of colored squares (memory and test arrays) separated by a retention interval. The test array was either identical to the memory array
(no-change condition) or differed by one color (change condition). Participants answered whether the two arrays were identical or not. (C) While all of the participants
from training groups played as a Terran faction during training, the opponent’s race and strategy varied according to the training group type. Participants from the
Variable Environment Group (VEG) could match three factions, from each could use one of five strategies. The faction and the strategy were randomly selected
before each match for the Variable group. In the case of a Fixed Environment Group (FEG), participants always played against the Terran faction, which used an
economic strategy.

Training
StarCraft II Training
The StarCraft II (SC2) training consisted of 30 h of training
time over a 4-week period. Training consisted of playing
matches (approx. 20 min each) against SC2’s artificial intelligence
(AI), and all matches were played at our laboratory. Training
objectives required the participants to train a minimum of 10 h
per week, but no more than 5 h per day. This was done to
avoid excessive skew in the distribution of training hours across
the training period. There were also two possible training types:
Fixed and Variable. The exact differences between the types of
training are described below and were presented in Figure 1.

Participants had to access an online platform before each
match in order to receive configuration parameters; the
parameters consisted of the difficulty setting, the opponent’s
faction, the opponent’s strategy, and the game map. Participants
from both groups played all of their matches as a Terran
faction. While the map was randomly selected from 14 maps
before each match in both—Fixed and Variable—training

versions, the opponent’s faction, and strategy only varied in
the Variable group. The Fixed group always faced the same
faction (Terran), and their opponent always applied a more
passive ‘‘Economic Focus’’ strategy. The Variable group could
face any of the three factions (each with their own unique
units and abilities) and also any of five opponent strategies:
Full Rush, Timing Attack, Aggressive Push, Economic Focus,
Straight to Air. The game difficulty was set adaptively for
both training types spanning across eight levels (1. Very
Easy; 2. Easy; 3. Medium; 4. Hard; 5. Harder; 6. Very Hard;
7. Elite; 8. Cheater) The online platform software recorded
the number of wins (+1) and losses (−1) and each time
the total passed the multiple of four threshold, the difficulty
was increased by one. The difficulty decreased whenever the
total dropped below the multiple of four threshold. The
training was preceded by an introduction phase designed to
familiarize participants with the core concepts of the game
and basic gameplay mechanics (see ‘‘StarCraft II Introduction’’
section).
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Starcraft II Introduction
The introductory phase consisted of eight parts: (1) a short
text describing the goals of the meeting; (2) a text and video-
based description of the overall game; (3) a video introduction
to the Terran faction, its units and buildings; (4) a text-based
description of the fundamental game concepts and in-game
interface; (5) an AI guided tutorial that introduces the gameplay
in real time, allowing participants to experience the game for
the first time; (6) a quiz requiring that the correct labels be
attached to each of the five basic unit and building types that
are available to the Terran faction, which was intended to check
if participants were attentive to the training materials; (7) two
films (25 min. each) describing basic strategies and explaining
the various stages that each match progresses through; and (8) a
three-match series in which the game progressively increased its
difficulty, speed, and available units, with no specific guiding
instructions. The entire introduction lasted approx. 2.5 h, and
did not count into the required 30 h of training. It was also
automated and self-paced, with experimenters only providing
assistance when needed and also during part 8 of the introduction
where assistance was provided to keep up the pace and direction
of each training game. Upon completion of this introduction,
participants were free to begin training on the following day.

EEG Recording and Analysis
A 64-channel SynAmps RT Neuroscan EEG amplifier and
BrainProducts actiCap Ag/AG-Cl active electrode set were used
to record brain activity during task performance. All channels
were recorded at 1,000 Hz sampling rate. Impedances were held
below 5 kΩ. All data were preprocessed offline using MATLAB
environment and EEGlab (Delorme and Makeig, 2004), and
ERPlab (Lopez-Calderon and Luck, 2014) software packages. The
signal was initially re-referenced to a common average and then
down-sampled to 250 Hz, followed by a band-pass filter between
0.1 and 40 Hz. Data epochs between −0.2 and 0.996 s were
extracted, and all epochs with incorrect behavioral responses
were rejected. The remaining epochs were manually filtered for
eye-blinks/movements and excessive muscle activity and then
averaged.

Data Reduction and Analysis
All analyses were conducted using R Statistical Software
(Foundation for Statistical Computing, Vienna, Austria), IBM
Corp. Released 2017. IBM SPSS Statistics for Windows, Version
25.0. Armonk, NY: IBM Corp, python and MATLAB custom
scripts.

Mixed ANOVAs (3 × 4 × 2) were used to analyze
the behavioral and neurophysiological data including the
between group variables of group (three levels: CG vs.
FEG vs. VEG) and the within group variables of load
(four levels: 2 vs. 3 vs. 4 vs. 5) and session (two levels:
pre-training measurement vs. post-training measurement).
Group comparisons for telemetric data were conducted by a
series of t-tests (two-group comparisons). Post hoc pairwise
t-tests were also performed in case of significant main
effects or interactions, with Bonferroni correction for multiple
comparisons.

Telemetric data were collected from a total of 5,494 games.
While SC2 replays allow obtaining dozens of different variables,
participants’ expertise or game results do not depend on any
particular one. Nevertheless, we selected basic predictor variables
that relate to cognitive-motor abilities and game proficiency. We
focused on (1) the number of matches played by each player;
(2) first army unit creation latency; and (3) first supply collection
latency. As better SC2 players play shorter matches, the first of
mentioned variables should reflect general players’ proficiency.
It should be emphasized that the number of played matches
positively correlated with the number of won matches (r = 0.964,
p < 0.001) and matches played on more difficult levels (Harder:
r = 0.458, p = 0.002; Very hard: r = 0.634, p < 0.001, Elite:
r = 0.605, p < 0.001; Cheater: r = 0.595, p < 0.001), but not
easier ones (Very Easy: r = −0.145, p = 0.354; Easy: r = −0.146;
p = 0.351; Medium: r −0.239, p = 0.122; Hard: r = −0.019;
p = 0.904). Then it can be assumed that a higher number of played
matches is due to players’ higher skills rather than multiple lost
matches. Latencies of first army unit creation and first supply
collection relate to two key moments in the game environment,
which faster execution should result in better performance in the
game. We also calculated the overall time each player spent in the
game environment which allowed us to confirm the fulfillment
of training assumptions. All mentioned telemetric variables were
tested for between-group differences by a series of t-tests.

For behavioral data, the capacity of visual working memory,
which is measured by the K value, was calculated using the
formula proposed by Pashler (1988),

where P(hit) = hits/(hits + misses), and P(FA) = false
alarms/(false alarms + correct rejections). In addition to the K
values of each set size, we also computed the average K value
(Kmean) for each participant’s visual working memory capacity.

For neurophysiological data, mean amplitudes of CDA
(lateralized waveforms; contra—ipsi), averaged across
P7/P8 electrodes, from 400 to 900 ms time window were
outcome variables (Figures 4A–C).

To examine the relationship between behavioral,
psychophysiological, and telemetric data, linear regression
analyses were conducted.

RESULTS

Telemetric Data
We started by calculating the total time spent in the game
and the mean number of played matches for each player.
Although there were no significant difference between groups in
time spent playing SC2 (p = 0.513), participants from Variable
group were able to play significantly more matches in that time
period (VEG: Mean = 99.68, SD = 24.782; FEG: Mean = 85.05,
SD = 14.5); t(34.152) = 2.376, p = 0.023 (Figure 2). Then we
calculated the mean latencies of first army unit creation and
first supply collection. Analysis revealed that participants from
the Variable group created their army units significantly faster
(VEG: Mean = 170.685, SD = 40.505; FEG: Mean = 219.243,
SD = 66.683); t(41) = −2.901, p = 0.006, but there were no
differences in the latency of the first supply collection (p = 0.696).
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FIGURE 2 | Telemetric variables obtained from the StarCraft II (SC2) environment. While hours spent playing SC2 (upper left) allows us to confirm that both groups
(VG: Variable Group; FG: Fixed Group) fulfill training assumptions, other variables indicate players’ proficiency. Barplots presenting first army unit creation (lower left)
and first supply collection (lower right) give latencies in seconds. Asterisks indicate statistical significance: ∗p < 0.05, ∗∗p < 0.01.

FIGURE 3 | The average K values for each set size in the two tests presented separately for each group. Lighter colors in the pair correspond to the pre-training
measurement and darker to the post-training measurement. Asterisks indicate statistical significance: •p < 0.08, ∗p < 0.05, ∗∗p < 0.01.

Behavioral Data
The capacity of visual working memory, measured by the K
values, were analyzed using a 4 (Load: load 2 vs. load 3
vs. load 4 vs. load 5) × 2 (Sessions: pre-training vs. post-
training) × 3 (Group: Control vs. Fixed vs. Variable) repeated-
measures ANOVA, with Load and Session as the within-subjects
factors and Group as the between subject factor (Figure 3).

Analysis revealed the main effects of Group [F(2, 59) = 3.209,
p = 0.048, η2 = 0.1], Load [F(3, 57) = 134.515, p < 0.001,

η2 = 0.49], Session [F(1, 59) = 30.22, p < 0.001, η2 = 0.07],
Load ∗ Session interaction [F(3, 57) = 2.808, p = 0.039,
η2 = 0.02] and Group ∗ Load interaction [F(6, 116) = 3.992,
p < 0.001, η2 = 0.05] but no Load ∗ Session ∗ Group
interaction [F(6, 116) = 1.806, p = 0.104, η2 = 0.085] or
Session ∗ Group interaction [F(2, 59) = 0.541, p = 0.585,
η2 = 0.018].

Additional analyses revealed that, while Control group wasn’t
able to significantly increase its capacity of visual working
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FIGURE 4 | (A) Grand average lateralized waveforms (contra—ipsi),
averaged across P7/P8 electrodes, separately for all lateralized target
distributions. For statistical analyses of CDA, the mean amplitude from 400 to
900 ms was used. (B) Mean CDA amplitude from 400 to 900 ms, separately
for each load. Error bars denote standard errors of the mean, corrected with
within-subjects comparisons. (C) Topography of the average activity at each
electrode site from 400 to 900 ms. As values were averaged across paired
electrodes, the topography is perfectly symmetrical. (D) Scatterplot of
working memory capacity (K) averaged across loads and contralateral delay
activity (CDA) averaged across loads.

memory at any of used loads, Fixed group increased it at the load
4 (p = 0.025) and load 5 (p = 0.049) and Variable group was able
to significantly increase it at every load (load 2, p = 0.029; load 3,
p = 0.008; load 4, p = 0.003, load 5, p = 0.044).

Psychophysiological Data
Contralateral delay activity was analyzed using a 4 (Load: load
2 vs. load 3 vs. load 4 vs. load 5) × 2 (Sessions: pre-training
vs. post-training) × 3 (Group: Control vs. Fixed vs. Variable)
repeated-measures ANOVA, with Load and Session as the
within-subjects factors and Group as the between subject factor.

Analysis revealed that the only significant effect was the Load
effect [F(3, 57) = 89, p < 0.001, η2 = 0.288], but no Session

FIGURE 5 | In-game behaviors relationship to psychophysiological and
behavioral variables. (A) Initial (from the 1st measurement point) contralateral
delay activity (CDA) averaged across loads 4 and 5 predicts the overall
number of played matches in the Variable Environment Group (VEG).
Observed effect turned out to be insignificant in the Fixed Environment Group
(FEG) only. (B) The averaged across training latency of first army unit creation
predicts participants’ mean K value obtained in post-training measurement.
The effect was significant in both groups.

[F(1, 59) = 0.087, p = 0.769, η2 = 0.002], Group [F(2, 59) = 2.212,
p = 0.118, η2 = 0.02], Load ∗ Session interaction [F(3, 57) = 1.336,
p = 0.272, η2 = 0.066], Load ∗ Group interaction [F(6, 116) = 0.412,
p = 0.87, η2 = 0.021] or Session ∗ Group [F(2, 59) = 0.667, p = 0.517,
η2 = 0.022].

Psychophysiological, Telemetric, and
Behavioral Data Relations
In the next step, we created a model containing a mean
contralateral delay activity (CDA) averaged across loads 4 and
5 obtained from pre-training measurement as a predictor, Group
as a moderator variable and mean number of played matches as
a dependent variable. Created model turned out to be significant
[F(3, 39) = 3.387, p = 0.028, R2 = 0.207] and contained significant
influence of the Group [b = 29.077, t(39) = 2.68, p = 0.011] and
tendency of interaction between CDA and Group [b = 10.736,
t(39) = 1.734, p = 0.079]. Next, it was revealed that while there
was no relationship between CDA and number of played matches
in the Fixed Group (p = 0.891), there was a significant negative
relationship in the Variable Group: the smaller initial CDA
amplitude averaged from loads 4 and 5, the more matches
participants played [one unit decrease in the average CDA
component’s amplitude resulted in an increase of 10.219 matches
played (t(39) = 2.077, p = 0.044); Figure 5A].

In the final analysis, we created a model containing a mean
latency of first army unit creation as a predictor, Group as a
moderator variable, and mean K obtained from post-training
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measurement as a dependent variable. Created model turned
out to be significant [F(3, 39) = 8.384, p < 0.001, R2 = 0.392]
and contained significant influence of the predictor [b =−0.009,
t(39) =−2.499, p = 0.017]. Group influence and interaction turned
out to be insignificant (p = 0.349; p = 0.12; Figure 5B).

DISCUSSION

The study presented here examined the relationship between the
RTS video game proficiency acquired during the training and the
improvement of the VWM capacity indexed with behavioral and
ERP measures. To properly inspect players’ game proficiency,
telemetric data from the game environment were used. EEG
and behavioral data were collected from non-gamers, who were
assigned to one of three groups (Control Group, Fixed Group,
and Variable Group).

Participants completed a change detection task, which is
the typical experimental paradigm used to examine the VWM
capacity, twice during their participation (pre-training and
post-training in active groups or over a period of 4 weeks in the
passive control group).

The obtained results suggest that VWM capacity
improvement was the most significant in the group of
participants with the Variable training model. This finding
stands in agreement with our initial hypothesis, which assumes
that video game influence may vary depending on the training
model.

Most importantly, our results show that we can successfully
explain game performance by looking at the initial values of
the psychophysiological index of VWM and also the behavioral
index of VWM (mean K value) at the post-training measurement
can be predicted from in-game behavior.

We believe that natural predispositions are an important
aspect of achieving success in training, but a good training
environment is no less crucial. Therefore, potential players can
reach their full potential only under the right conditions. The
combination of aspects of natural predispositions and different
training models allows for a better understanding of differences
in the obtained results, but above all—it shows how important it
is to control game environment conditions, which can diversify
the gameplay in an enormous number of ways.

VEG Participants Were Able to Achieve the
Biggest Improvement of Their VWM
Capacity During the Study
The participants from the group with the variable environment
training model were able to significantly improve their VWM
capacity (measured by Pashler’s formula of K value) on each
of the tested loads (from load 2 to load 5). This after-training
improvement in accuracy stands in agreement with studies,
which show that AVG experience is related to VWM abilities
(Green and Bavelier, 2003; Boot et al., 2008; Colzato et al., 2010;
Clark et al., 2011; Blacker and Curby, 2013; Oei and Patterson,
2013; Li et al., 2015). Still, the Fixed Environment Group had only
a significant increase on load 4 and load 5. Then it is important
to emphasize that AVG influence corresponds to applied game

mechanisms: SC2 matches require players to rapidly switch
between multiple sources of action and information in general,
but the training’s demands were different depending on the
training’s model. A similar effect was not observed in the
control group. Presented results argue that variable training
strategies can be more beneficial and allow not only to achieve
bigger improvement in specific task but also the occurrence
of the far transfer. The fact that VEG players were able to
achieve the biggest improvement of their VWM capacity after
their training is consistent with this interpretation. In contrast,
FEG players were not encouraged to thoroughly explore the
game environment, learn different strategies and maximize their
various skills, but rather, were trained to repeat one gameplay
model in a non-engaging way.

VEG Participants Were Able to Achieve the
Biggest Game Proficiency
As mentioned above, three in-game indicators were chosen to
measure game proficiency. (1) The number of played matches by
each player; (2) latency of creating the first army unit; and (3) first
supply collection latency. Telemetric data analysis shows us, even
though there were no significant differences in groups about time
spent on games, VEG players were able to play significantly more
games in that period of time.

In comparison with FEG, VEG participants were significantly
faster in creating their first army unit. However, there were no
associations between the collection of first supply latency and
group types.

These taken into account, we see that comparing with FEG,
VEG settings allowed non-gamer participants to be greatly
proficient in SC II.

CDA Component, K Value, and
Game-Related Factor Analysis
Neurophysiological output was closely analyzed with all
parameters using repeated-measure ANOVA. Analyses did not
pinpoint significant association either for group type or session.
Yet, the load variable had a significant effect on mean CDA
amplitudes. This means we observed different CDA amplitudes
on different loads. Our data support the notion that CDA is a
VWM indicator (Figure 4D).

Additionally, the K value had a correlation with CDA.
Therefore we understand that low-valued CDA components are
significantly associated with both increased VWM capacity and
increased input on VWM.

Game Proficiency Indicator Predicts VWM
Capacity (K Value)
Two predictive models give us key insights about the
relation between game performance, CDA, and K value
obtained from the measurements. Model A holds a predictive
value about the number of played SC II matches and the
mean CDA amplitude on loads 4 and 5 (collected from
pre-training session). Participants who have lower initial
mean CDA amplitude are less likely to play a higher number
of matches, which implies greater natural predispositions
to succeed in the game environment. Then it needs to be
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highlighted that this model was only found to be significant
for VEG. It shows that players’ natural predispositions can
result in better in-game development only in a favorable
environment.

Model B enables us to obtain information about participants’
level of VWM (K-value obtained from post-training
measurement) just by looking at the latency of creating the
first army unit. Such a model could help us (in the future) not
only to create a rule of thumb for measuring VWM in a specific
setting but also to determine players’ level of specific cognitive
skills in a more natural environment.

Although performed analyzes did not reveal a significant
model of moderated mediation, two independent regression
models, it’s important to interpret obtained results in a broader,
common context. As a complex game environment can be
reflected by dozens of telemetric variables, which only together
make up the full picture of the match and players’ skills, it may
not be possible to create a simple and efficient model with only
one telemetry variable.

Furthermore, initial VWN capacity, measured by K-value,
didn’t determine in-game performance regardless of the analyzed
indicator. Then behavioral results obtained from pre-training
measurement cannot be clearly associated with participants’
natural predispositions. It should be noted then, that AVG
requires more than one cognitive function, so the result of any
single behavioral variable may turn out to be insufficient to fully
reflect players’ in-game proficiency or predispositions.

Presented models, taken together, hold promising results
for both: RTS gaming’s impact on VWM, and the role
of neurophysiological indicators in recognizing the natural
predispositions of AVG players. In conclusion, this study
confirms that playing RTS games increases VWM capacity. As
these improvements were majorly observed in VEG participants
(yet still, FEG showed higher results in comparison with the
control group), it can be assumed that the intensity of AVG
influence depends on the adopted training model. What is
more, in the presented study we propose a neurophysiological
indicator, which may allow us to identify AVG players with
higher predispositions to become better gamers. Last but
not least: telemetric data sheds light on game performance,
and combining it with other variables via regression models
holds promising information as such, predicting the capacity

of VWM (K-value, scored) from just one game proficiency
indicator.

All these findings combined and experimental settings may
hold a guiding reference for future research opportunities and
commercial usage. Therefore it’s important to mention that
future investigations should examine a wider range of carefully
selected tasks, which can contribute to create a more complete
spectrum of cognitive functions and changes that they undergo
through VG training.
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