
2846–2860 Nucleic Acids Research, 2007, Vol. 35, No. 9 Published online 11 April 2007
doi:10.1093/nar/gkm155

Investigation of spectral conversion of d(TTAGGG)4
and d(TTAGGG)13 upon potassium titration by a
G-quadruplex recognizer BMVC molecule
Cheng-Chung Chang1,2, Chih-Wei Chien1, Yi-Hsueh Lin1,3, Chi-Chih Kang1 and

Ta-Chau Chang1,3,*

1Institute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei, 106, Taiwan, Republic
of China, 2Department of Chemistry, National Chung-Hsin University, Taichung, Taiwan, Republic of China and
3Institute of Biophotonics Engineering, National Yang-Ming University Taipei, 11221, Taiwan, Republic of China

Received September 5, 2006; Revised November 15, 2006; Accepted February 28, 2007

ABSTRACT

We have introduced a G-quadruplex-binding ligand,
3,6-bis(1-methyl-4-vinylpyridinium)carbazole diio-
dide (BMVC), to verify the major structure
of d(T2AG3)4 (H24) in potassium solution and exam-
ine the structural conversion of H24 in sodium
solution upon potassium titration. The studies of
circular dichroism, induced circular dichroism,
spectral titration and gel competition have allowed
us to determine the binding mode and binding
ratio of BMVC to the H24 in solution and eliminate
the parallel form as the major G-quadruplex
structure. Although the mixed-type form could not
be eliminated as a main component, the basket
and chair forms are more likely the main compo-
nents of H24 in potassium solution. In addition,
the circular dichroism spectra and the job plots
reveal that a longer telomeric sequence d(T2AG3)13
(H78) could form two units of G4 structure both
in sodium or potassium solutions. Of particular
interest is that no appreciable change on the
induced circular dichroism spectra of BMVC is
found during the change of the circular dichroism
patterns of H24 upon potassium titration.
Considering similar spectral conversion detected
for H24 and a long sequence H78 together with the
G4 structure stabilized by BMVC, it is therefore
unlikely that the rapid spectral conversion of H24
and H78 is due to structural change between
different types of the G4 structures. With reference
to the circular dichroism spectra of d(GAA)7
and d(GAAA)5, we suggest that the spectral conver-
sion of H24 upon potassium titration is attributed
to fast ion exchange resulting in different loop

base interaction and various hydrogen bonding
effects.

INTRODUCTION

A very challenging question in determining the
G-quadruplex (G4) structures of the telomeric repeats
d(T2AG3)4 (H24) in potassium solutions has currently
received extensive attention (1–7). This is because the
30-overhang G-rich single strand with 50–200 bases
could adopt G-quadruplex structures under physiological
conditions. Since the folding of telomeric DNA into
G4 structure has been shown to inhibit telomerase
activity in vitro (8,9), molecules that stabilize G4
structures have the potential to interfere with telomere
replication and possibly to serve as anti-cancer agents
(10–12). Knowledge of the telomeric structure is
critical for the drug design of structure-specific DNA-
binding ligands.

Two intramolecular G4 structures have been deter-
mined for human telomeric sequence d[AG3(T2AG3)3]
(H22), the NMR structure in Naþ solution (Scheme IA)
determined by Wang and Patel (13) and the crystal
structure in the presence of Kþ (Scheme IB) revealed by
Neidle et al. (14). However, the NMR spectrum of the
H22 in Kþ solution showed a broad envelop with some
fine lines, implying the presence of multiple conforma-
tional isomers (1,15). Bolton et al. (2) suggested that the
propeller G4 structure of H24 occurs in Kþ solution. In
contrast, the sedimentation and fluorescence studies
suggested that the crystal structure of H22 cannot be the
major structure in Kþ solution (3). Analysis of the fine
NMR structures suggested the presence of the mixed-I-
type structure (Scheme ID) (1). The platinum cross-
linking studies suggested that the basket-type structure
(Scheme IA) coexists with other G4 structures in both
Naþ and Kþ solutions (4). The 125I-radioprobing studies
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suggested that a chair-type structure (Scheme IC) is a
major structure in Kþ solution (5). Sugiyama et al. (6)
suggested that a mixture of chair-type (Scheme IC) and
mixed-I-type (Scheme ID) structures coexist for the H22 in
Kþ solution. Up to now, determination of the major
component on the G4 structure of H24 in Kþ solution still
remains open.

In addition, a spectral conversion from the G4 structure
in Naþ solution to that in Kþ solution was observed upon
Kþ titration (1,6). Considering the basket-type form of
H22 in Naþ solution and the mixed-I-type form in
Kþ solution, Yang et al. (1) proposed a mechanism for
the spectral conversion resulting from structural conver-
sion via the switch of the orientation of the 50 end GGG
strand from the basket- type form to a mixed-I-type form.
Sugiyama et al. (6) suggested a very similar mechanism to
describe the structural conversion between the chair-type
form and the mixed-I-type form. Considering the possible
correlation of different G4 structures to their biological
roles (3), investigation of structural conversion among
various G4 structures deserves further studies and more
evidences are necessary in verifying the proposed struc-
tural conversion (1,6).

Since different G4 structures could have different
binding sites to the ligand, one may distinguish the
structural isomers of quadruplexes by monitoring the
signal from ligand binding. Particularly, if the ligand
has high binding affinity to the G4 structure of H24, one
could then examine the structural conversion under
Kþ titration. In addition, it would be interesting to exam-
ine if the ligand binding could inhibit spectral conversion.
We have synthesized a novel molecule, 3,6-bis(1-methyl-
4-vinylpyridinium)carbazole diiodide (BMVC), to
stabilize the G4 structure of H24 (16,17). In addition,
significant increase of fluorescence yield and distinctive
fluorescence properties of BMVC upon binding to various
DNA structures have allowed us to map the G4 structure
in human metaphase chromosomes (18,19). Here spectral
titration, induced circular dichroism and gel competition
are applied to determine the binding modes and
compare the binding properties of BMVC to H24 in
Naþ and in Kþ solutions for verifying the major
G4 structure in Kþ solution. In addition, circular
dichroism (CD) spectra of DNA and induced CD spectra
of BMVC together with the melting temperature are used
to study the spectral conversion upon Kþ titration for
examining the structural conversion of the G4 structures
of H24. Furthermore, we have applied BMVC to
determine the units of G4 structure for a long telomeric
sequence, d(T2AG3)13 (H78), by spectral titration and
examine its spectral conversion upon Kþ titration. Table 1
lists the DNA sequences studied in this work.

Table 1. Oligonucleotides used in this work

Sequence "260 (M�1 cm�1) Abbreviation

1 50-TTAGGGTTAGGGTTAGGGTTAGGG 244 600 H24
2 50-TTAGGGTTTGGGTTAGGGTTAGGG 238 700 H24-T9
3 50-TTAGGGTTAGGGTTTGGGTTAGGG 238 700 H24-T15
4 50-TTAGGGTTAGGGTTGGGTTAGGG 230 600 M23
5 50-TTAGGGTTAGGGTTTTGGGTTAGGG 246 800 M25
6 50-GGGTTAGGGTTAGGGTTAGGG 215 000 H21
7 50-TTAGGGTTAGGG 122 400 H12
8 50-(TTAGGG)9 550 100 H54
9 50-(TTAGGG)13 794 500 H78
10 50-AGGGTTAGGGTTAGGGTTAGGG 228 500 H22
11 50-AGGGTTAGGGTTAGGGTTAGGGTT 245 100 H24-B
12 50-TTAGGGTTAGGGTTAGGGTTAGGGTT 261 200 H26

A (basket) B (propeller)

C (chair) D (mixed-I) E (mixed-II)

Scheme I.

(BMVC)

N
H

NNI I

Scheme II.

Nucleic Acids Research, 2007, Vol. 35, No. 9 2847



MATERIALS AND METHODS

Chemicals

Synthesis of the BMVC molecule from 3,6-dibromocar-
bazole has been described elsewhere (16,17). All oligonu-
cleotides were purchased from Applied Biosystems.
Solutions of 10mM Tris-HCl (pH 7.5) and 150mM
NaCl or KCl mixed with each DNA were heated to 908C
for 2min, cooled slowly to room temperature, and then
stored for 42 days at 48C before use. The molar
concentration of DNA was determined by monitoring
the 260 nm absorbance. The calculated molar extinction
coefficient from mononucleotide and dinucleotide by using
the nearest neighbor method (20) are listed in Table 1.
We further assumed that the G-rich sequence is a single
strand at 908C, but forms a G-quadruplex structure at
room temperature. Indeed, the 295 nm positive CD band
of each sequence H24, H54 and H78 detected at 258C is
negligible at 908C. Their absorption spectra could be
found in the Supplementary Data. The extinction coeffi-
cient of the folded structures of H24, H54 and H78 are
estimated to be 2.28� 105, 4.73� 105 and
6.91� 105M�1 cm�1 at 260 nm based on the ratio of the
sample absorbance at 25 and 908C, respectively.

PAGE

The PAGE was conducted in 10mM Tris-HCl and
150mM NaCl or KCl (pH 7.5) with 20% native gels.
Electrophoresis gels were carried out at 100V/cm for 15 h
at 48C. The pre-stained gels were normally conducted by
incubated 20 mM of BMVC with 20 mM of DNA for
10min before running the gels. After photographing with
UV shadowing, gels were post-stained by 10 mM of BMVC
for 10 s at room temperature, rinsed with distilled water,
and then photographed under UV light at 254 nm by
a digital camera.

Absorption, fluorescence and CD spectra

Absorption spectra were taken on a Hitachi U3200
UV-visible spectrophotometer and fluorescence spectra
were recorded on a Hitachi F4010 spectrofluorimeter with
a 2 nm band pass in a 1- or 0.1-cm cell length at room
temperature. The CD spectra were averages of 10 scans on
a Jasco J-715 spectropolarimeter with a 2 nm bandwidth
at room temperature. The scan speed was 50 nm/min with
a 0.2 nm step resolution.

RESULTS

CD spectral conversion of d(T2AG3)4 (H24)

CD spectra have been extensively applied to study the
G4 structures (1–3,21–25). It is well known that linear
parallel G4 structures, such as propeller form, give a
positive band �265 nm and a negative band �240 nm,
while antiparallel G4 structures, such as basket and chair
forms, show two positive bands �295 and 240 nm and
a negative band �265 nm. These spectral features are
mainly attributed to the specific guanine stacking in
various G4 structures. Figure 1A shows CD spectra of

H12 and H24 in solutions containing 150mM of Naþ or
Kþ cation. The CD patterns of H12 and H24 are similar
to each other in Naþ solution, but quite different in
Kþ solution. The CD pattern detected in Naþ solution
indicates the presence of alternative anti/syn glycosidic
conformations from guanines of adjacent G-tetrads (26).
The 265-nm positive CD band associated with a 295-nm
positive shoulder of H12 is probably due to coexistence
of dimeric parallel and antiparallel G4 structures in
Kþ solution. This is because the CD pattern of H12 is
similar to the CD pattern of d(TAGGGTTAGGGT)
(H12-B) (7) and NMR analysis has revealed the
coexistence of the dimeric antiparallel and parallel G4
structures of H12-B in Kþ solution (15). According to the
finding of multiple conformations from NMR analysis
(1,15), the positive CD band �290 nm associated with a
positive shoulder �270 nm in the CD spectrum of H24 in
Kþ solution can be attributed to a combination of several
components.

Figure 1B shows CD spectra of H24 in 150mM
Naþ solution upon Kþ titration. Each CD spectrum was
recorded right after the Kþ titration. Our data show
a rapid conversion from the spectral pattern of H24 in
Naþ solution to that in Kþ solution. In contrast, we have
not found any appreciable difference in the CD spectra of
H24 in Kþ solution by adding Naþ, even after incubation

Figure 1. (A) CD spectra of 10 mM H12 and H24 DNA in the solutions
containing 150mM of Naþ or Kþ cation. (B) CD spectra of 20 mM H24
in 150mM Naþ solution upon Kþ titration. Each CD spectrum was
recorded right after the Kþ titration.
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overnight (data not shown). It appears that the
G4 structure of H24 in Kþ solution is more stable than
that in Naþ solution. Indeed the melting temperature
of the G4 structure of H24 is �658C in Kþ solution,
higher than the �558C in Naþ solution. Similar spectral
conversion of H22 upon Kþ titration has been described
by a structural conversion via the switch of the orientation
of the 50 end of the GGG strand from the basket form
(Scheme IA) to the mixed-I form (Scheme ID) (1).
However, we consider that the rapid spectral conversion

due to the drastically structural conversion deserves
more study.

Spectral titration for binding characters of BMVC to H24

We have conducted spectral titrations to compare the
binding ratio and binding affinity of BMVC to H24 in
Naþ and in Kþ solutions. Figure 2A shows the absorption
spectra of free BMVC and its complexes with H24 in
Kþ solution as a function of BMVC concentration.
The absorption maximum at �435 nm for free BMVC is
red-shifted to �475 nm for bound BMVC at 1:2 molar
ratio of BMVC to H24 and then gradually blue-shifted
upon adding more BMVC. To determine the binding ratio
of BMVC to H24, Figure 2B shows the job plots of
BMVC to H24 in Naþ and in Kþ solutions. A job plot is
obtained by taking the intensity difference between the
free and bound BMVC to the molar ratio of BMVC–H24.
Our results reveal a �2:1 binding ratio for BMVC to H24
both in Naþ or Kþ solutions, implying that both ends
of the G-quartet are binding sites of H24 for BMVC in
both solutions.
To measure the binding affinity of BMVC to the

G4 structure of H24, we have studied both absorption and
fluorescence titration of 15 mM BMVC by adding
H24 from 0.015 to 6 mM in Kþ solution (data not
shown). The strong enhancement of the BMVC fluores-
cence upon interaction with H24 allowed us to measure
the binding affinity by using a low concentration in
fluorescence titration. Figure 2C shows the fluorescence
titration of 10 nM BMVC by adding H24 from 0.25
to 12 nM in Kþ solution. The titration data applied to
construct the binding plots of g versus Cf are shown in the
inset. The binding ratio g is defined as Cb/CDNA, where Cf,
Cb and CDNA are the molar concentrations of free BMVC,
bound BMVC and DNA, respectively. The difference
between Ct and Cb gives the magnitude of Cf, where Ct is
the total concentration of BMVC. The curve of the
binding plots again indicates that the binding is a complex
process. Binding parameters can be obtained by fitting the
plots with a multiple-equivalent-site model (27):

� ¼
nKCf

1þKCf
,

where K is the equilibrium binding constant, and n
represents the average number of ligands bound per
each DNA structure. Note that this equation is identical
to the Scatchard equation, g/Cf¼K(n� g). Using the
binding plots of g versus Cf, the question of slightly non-
linear Scatchard plots for obtaining both K and n values
becomes irrelevant (27). Here the K values for BMVC to
the H24 are 1.12� 109 and 1.07� 109mol�1 with n� 2.4
and �2.3 in Naþ and Kþ solutions, respectively. The large
value of g at very low concentrations of H24 is probably
due to nonspecific binding.

Binding sites of the G4 structures

Since the loops and tails of the G4 structures could play
an important role in ligand binding (23–25), substituting
the base or varying the length in the loops might allow

Figure 2. (A) Absorption spectra of free BMVC and its complexes with
H24 in Kþ solution upon BMVC titration. (B) The job plots of BMVC
to the H24 in Naþ and in Kþ solutions obtained from (A).
(C) Fluorescence titration of 10 nM BMVC by adding H24 from 0.25
to 12 nM in Kþ solution. The inset showed the binding plots of g versus
Cf for the titration. The fitting parameters to the equation,
g¼ nKCf/(1þKCf), are K¼ 1.12� 109 with n� 2.4 in Naþ solution,
and K¼ 1.07� 109mol�1 with n� 2.3 in Kþ solution.
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us to distinguish structural isomers and to determine
the binding modes of different G4 structures. Figure 3A
and B shows the CD spectra of H24, H24-T9, H24-T15,
M23, M25 and H12 and the induced CD spectra of
BMVC upon interaction with these G4 structures at their
molar ratio 1:1 in Naþ solution, respectively. It is found
that substitution of the A-base in a TTA lateral loop by a
T-base could substantially change the CD spectra. Of
particular interest is the region around the 265 nm CD
band. Note that the CD pattern of H24-T21 is very similar
to that of the H24-T9 (data not shown). On the other
hand, both diagonal loops of the TTT in H24-T15 and the
TTTT in M25 enhance the negative CD band at �265 nm.
In addition, similar CD patterns of H24 and M23 with
slight band shifts are observed. Considering the relative
short TT loop, the M23 is likely to form a chair-type
G4 structure with two antiparallel TTA lateral loops and a
TT lateral loop at the other end of the G-quartet, whereas
the H24 forms a basket-type G4 structure with two
parallel TTA lateral loops and another TTA diagonal
loop at the other end of the G-quartet. Our data clearly
show no appreciable difference in the �295 nm positive

CD band, but show some changes to the �265 and
�240 nm CD bands upon loop modification.

In contrast to very different CD patterns between H24
and H24-T9, Figure 3B shows similar induced CD
patterns of BMVC in H24 and H24-T9. It implies that
the binding is not appreciably perturbed by substituting
the A-base in the lateral TTA loops by a T-base. On the
other hand, the induced CD pattern changes a lot in
H24-T15 when substituting the A-base in the diagonal
TTA loop by a T-base. The induced CD patterns of
BMVC in H24-T15 and M25 characterized by a broad
positive band �470 nm is mainly attributed to the
interaction with the TTT or the TTTT diagonal loops,
since similar induced CD pattern of BMVC has been also
observed in the dimeric hairpin G4 structure of Oxytricha
telomeric sequence [d(G4T4G4)]2 (Oxy12) (28,29) with
a TTTT diagonal loop at each end of the G-quartet
(data not shown). It appears that the induced CD pattern
is dominated by the interaction of BMVC to the end of
G-quartet with the diagonal loop. Considering the same
parallel TTA lateral loops at the other end of the
G-quartet in H24 and in H24-T15, different induced

Figure 3. (A) CD spectra of H24, H24-T9, H24-T15, M25, M23 and H12 and (B) the corresponding induced CD spectra of 20 mM BMVC upon
interaction with these G4 structures at their molar ratio 1:1 in Naþ solution. (C) Induced CD spectra of BMVC upon interaction with H24-T15 at
molar ratio from 0.5 to 5.0 in Naþ solution. (D) Differential spectra obtained from the difference between the induced CD spectra at molar ratios of
2 and 1.5 (upper) and molar ratios of 5 and 4 (lower). (E) CD spectra of H24, H24-T9, H24-T15, M25, M23 and H26 and (F) the corresponding
induced CD spectra of 20 mM BMVC upon interaction with these G4 structures at their molar ratio 1:1 in Kþ solution.
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CD patterns of BMVC confirm that the end of G-quartet
with the diagonal loop and a 50-TTA tail of H24 is the
major binding site for BMVC at the molar ratio of 1:1.
On the other hand, the induced CD pattern of BMVC
in H12 is quite different from the others, implying that
the external stacking to the end of the G-quartet is not
the major binding site of H12 for BMVC. It is important
to elucidate the possible binding sites of H12 for the
interaction with BMVC.

It would be useful if each binding site can be
characterized by its induced CD pattern. Figure 3C
shows the induced CD spectra of BMVC at different
molar ratios with 20 mM H24-T15. Different induced CD
patterns are found, for example, at molar ratios of 1:2, 2:1
and 5:1. Considering the binding preference of BMVC to
H24-T15 at the end surface of G-quartet with a TTT
diagonal loop and a 50-TTA tail over the end surface of
G-quartet with two lateral TTA loops, the contribution to
spectral difference of the induced CD spectra between
the molar ratio of 2:1 and 3:2 is mainly by external
stacking to the end surface of G-quartet with two lateral
TTA loops. Similarly, the spectral difference of the
induced CD spectra between the molar ratio of 5:1 and
4:1 could be attributed to contribution from some minor
binding sites with BMVC, such as groove interaction.
These two different patterns are shown in Figure 3D.
Surprisingly, the difference between the latter two induced
CD spectra resulting from the minor binding sites is quite
similar to the induced CD pattern of BMVC in H12,
indicating that BMVC is not external stacking to the end
surface of the G-quartet, but may externally interact with
the groove of H12. Hence we have illustrated a simple
approach for characterizing different binding sites of the
G4 structures by the induced CD spectra. Moreover, it is
clear why the binding strength of BMVC to H12 is much
weaker than that of H24 (17).

It is of interest to compare the induced CD spectra of
BMVC upon interaction with these G-rich sequences in
Kþ solution. Figure 3E and F shows the CD spectra of
H24, H24-T9, H24-T15, M23, M25 and H26 and their
induced CD spectra of BMVC at a 1:1 molar ratio in
Kþ solution, respectively. Among them, the mixed-I-type
structure is suggested to be dominated in both H24 and
H26 in Kþ solution (1). To our knowledge, no structural
information has been given to other sequences. It is found
that the CD patterns are quite similar among them with
a positive band �290 nm associated with a positive
shoulder �265 nm and a negative band �240 nm in Kþ

solution, which are different from those in Naþ solution.
Although the induced CD patterns of BMVC upon
interaction with H24 and H24-T9 in Kþ solution are
similar to those in Naþ solution, the induced CD patterns
of BMVC upon interaction with H24-T15, M25 and
M23 in Kþ solution are different from those in
Naþ solution. Furthermore, the induced CD pattern of
BMVC in H24-T9 is similar to that in H24, but slightly
different from those in M25 and H24-T15, and quite
different from those in H26 and M23 in Kþ solution.
It implies that the induced CD patterns of BMVC may
be useful in distinguishing different local structures of
the binding sites.

Structural conversion upon Kþ titration examined by BMVC

We now take advantage of a high binding affinity of the
BMVC to the G4 structure of H24 to test the hypothesis
of structural conversion from the basket-type form to the
mixed-type form upon Kþ titration. Figure 4A and B
shows the CD spectra of H24 and the induced CD spectra
of BMVC at a molar ratio 1.5 in Naþ solution upon
Kþ titration, respectively. The key finding is the detection
of gradual changes on the CD spectra, but no appreciable
difference on the induced CD spectra upon Kþ titration.
If the structural conversion from the basket form to
the propeller form or the mixed form occurs upon
Kþ titration, one would expect to detect signal change in
the induced CD spectra of the BMVC during Kþ titration.
It is possible that similar induced CD of BMVC in
Naþ and in Kþ solutions is not able to detect the
structural conversion if the conversion between two
different G4 structures is very rapid. Another possibility
is that the rapid spectral conversion of H24 is not due
to structural conversion via a switch in the orientation of
the GGG strand upon Kþ titration.
Considering different CD spectra of H26 together with

different induced CD spectra of BMVC in Naþ and in
Kþ solutions, Figure 4C and D shows the CD spectra of
H26 and the induced CD spectra of BMVC–H26 at a
molar ratio 1.5 in Naþ solution upon Kþ titration,
respectively. Again, we have detected the CD spectral
change. Of particular interest is that the induced CD
spectrum shows spectral change right after the first 10mM
Kþ titration and then slight change for the further Kþ

titration. Yang et al. (1) suggested that the mixed-I-type
G4 structure is dominated for the H26 in Kþ solution.
Unfortunately, the major structure of H26 in Naþ

solution has not been determined yet. Nevertheless, we
have observed the spectral change of the induced CD
pattern of BMVC. If we adopt the hypothesis that the
CD spectral conversion of H26 is due to the structural
conversion between different types of the G4 structures,
the main question is whether it is possible to unfold and
refold the G4 structures of H26 upon Kþ titration for the
structural conversion within few minutes.
Since BMVC could not only bind to the two ends of

G-quartet, but also interact with groove, we now examine
the BMVC-binding effect to the G4 structure of H24 as
a function of BMVC. Figure 5A–D shows the CD spectra
of H24 and the induced CD spectra of BMVC in the
presence of Naþ and Kþ upon BMVC titration, respec-
tively. The CD patterns are similar in Kþ solution,
but different in Naþ solution upon BMVC titration.
In Naþ solution, it is found that the �265 nm negative CD
band converts to a positive band and the �245 nm positive
CD band converts to a negative band upon BMVC
titration up to 100 mM. The change of the CD pattern
clearly indicates that the BMVC binding could perturb the
G4 structure. Under the same experimental conditions, the
CD patterns of H24 in Kþ solution show no appreciable
difference upon BMVC titration. On the other hand, the
induced CD patterns of BMVC upon interaction with H24
in Naþ and in Kþ solutions are similar with each other
during BMVC titration, implying that similar binding sites

Nucleic Acids Research, 2007, Vol. 35, No. 9 2851



Figure 5. (A and B) CD spectra of 10 mM H24 and (C and D) its induced CD spectra of BMVC in the presence of Naþ (A and C) or Kþ (B and D)
upon BMVC titration, respectively.

Figure 4. (A) CD spectra of 10 mM H24 and (B) the corresponding induced CD spectra of BMVC at molar ratio 1:1.5 in Naþ solution upon
Kþ titration. (C) CD spectra of 20 mM H26 and (D) the corresponding induced CD spectra of BMVC at molar ratio 1:1.5 in Naþ solution upon
Kþ titration.
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of H24 to the BMVC are involved in Naþ and in
Kþ solutions.

In addition, it is of interest to evaluate how the
G4 structure of H24 can be stabilized by various BMVC
concentrations. Figure 6A shows the CD intensity at
295 nm of H24 and its complexes with various BMVC
concentrations as a function of temperature. It is found
that the melting temperature of H24 increases as a
function of BMVC. The change of melting temperature
of the folded and unfolded structures upon interaction
with BMVC provides evidence of thermal stabilization of
the H24 structure.

Since the melting temperature of H24 in Naþ solution
increases by 188C upon interaction with BMVC at molar
ratio 5, the unfolding and refolding of the G4 structure
should be more difficult at high concentrations of BMVC.
Figure 6B shows the CD spectra of H24 mixed with
BMVC at a molar ratio 5 in Naþ solution upon
Kþ titration. The change in the CD pattern at molar
ratio 5 is less pronounced than that at molar ratio 1.5,
implying that more BMVC could bind to H24 and may
lower the interaction of Kþ with H24.

G4 Structural units and spectral conversion of a longer
sequence d(T2AG3)13 (H78)

Considering the 50–200 bases in a single-stranded
telomeric sequence, it is of interest to examine the
structural units of G4 in longer sequences d(T2AG3)9
(H54) and d(T2AG3)13 (H78), and the possible spectral
conversion upon Kþ titration. Figure 7A shows the CD
spectra of H54 and H78 in Naþ and in Kþ solutions.
The CD patterns of H54 and H78 are almost identical
to the patterns of H24 in Naþ or in Kþ solutions,
indicating the presence of G4 structure. In order to
determine the unit number of the G4 structure in a longer
sequence, Figure 7B shows the absorption spectra of free
BMVC and its complexes with H78 in Naþ solution as
a function of BMVC concentration. The job plots are

Figure 6. (A) CD signal at 295 nm for the measurement of melting
temperature of H24 and its complexes of BMVC as a function of
temperature. (B) CD spectra of 10 mM H24 mixed with 50 mM BMVC
in Naþ solution upon Kþ titration.

Figure 7. (A) CD spectra of 10 mM H54 and 10 mM H78 DNA in the
solutions containing 150mM of Naþ or Kþ cation. (B) Absorption
spectra of free BMVC and its complexes with H78 in Naþ solution
upon BMVC titration. The inset shows the job plots to determine the
binding ratio. (C) CD spectra of 5mM H78 in 150mM Naþ solution
upon Kþ titration.
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shown in the inset. Our results reveal a binding ratio
�5 for BMVC to H78 in Naþ solution. Although the
detailed structure of the whole H78 is not clear at present,
the CD spectra together with the job plots suggest
that H78 could form two units of G4 structures in
Naþ solution. This finding illustrates that a longer single-
stranded telomeric sequence could form more than one
unit of G4 structure.
Considering more complexes of local environment

around the G4 structure of H78, we have examined if
the spectral conversion of H78 occurs upon Kþ titration.
Figure 7C shows the CD spectra of H78 in 150mM Naþ

solution upon Kþ titration. Surprisingly, the spectral
conversion of H78 is similar to that of H24. Similar CD
spectral conversion of H54 is also observed upon Kþ

titration, although the spectral titration reveals a binding
ratio �3 for BMVC to H54 in both Naþ and Kþ solutions
(data not shown). Since there are two units of G4 structure
in H78 and one unit of G4 structure with long tails in H54,
it would be more difficult to unfold and refold the
G-quadruplex for structural conversion of H54 and H78.
We have further investigated the BMVC-binding effect

on the spectral conversion of H78. Figure 8A and B shows
the CD spectra of H78 and the induced CD spectra
of BMVC in Naþ solution upon BMVC titration.
The �265-nm negative CD band changes toward a
positive direction and the �245-nm positive CD band
changes toward a negative direction. The CD spectral
change of H78 is slower than that of H24 upon BMVC
titration. This difference is probably due to the nonspecific
binding of BMVC to the more complex structure of H78.
An induced CD positive band of BMVC–H78 complexes
at �415 nm increases associated with a relative weak

positive band at �495 nm switches to a negative band at
�460 nm upon BMVC titration up to molar ratio 12.
Nevertheless, the induced CD patterns of BMVC–H78 at
molar ratio �8 are similar to that of BMVC–H24 at molar
ratio �2.

Considering two units of the G4 structure in H78, we
use a relative high molar ratio of BMVC with H78 to
assure the two ends of each G4 structure of H78 bound by
BMVC. Figure 8C and D show the CD spectra of H78
and the induced CD spectra of BMVC–H78 at a molar
ratio �12 in Naþ solution upon Kþ titration, respectively.
Again, we have detected spectral change on the CD
patterns. In addition, the induced CD spectrum shows
discernible difference right after the first 10mM Kþ

titration and no appreciable difference for the further
Kþ titration. Note that the melting temperature of H78 in
Naþ solution increases by �178C upon interaction with
BMVC at a molar ratio 10 (data not shown). Considering
that the G4 structure of H78 surrounded by local
environments is more complex and its structure can be
stabilized by BMVC, the rapid spectral change upon Kþ

titration is very unlikely due to the switch between
different types of the G4 structures. The difference in
the induced CD spectrum upon the first 10mM
Kþ titration may be due to the interaction of Kþ with
the complexes of BMVC with the minor binding sites
in the H78.

Figure 9A shows the time-dependent CD spectra of
H54 mixed with BMVC at a molar ratio 10 in Naþ

solution and further mixed with 100mM Kþ. A gradual
change on CD spectra as a function of incubation time is
found in both cases. However, a drastic change is found
right after adding 100mM Kþ. Figure 9B shows the plots

Figure 8. (A) CD spectra of 5 mM H78 and (B) the corresponding induced CD spectra of BMVC in Naþ solution upon BMVC titration.
(C) CD spectra of 5mM H78 and (D) the induced CD spectra of BMVC–H78 at a molar ratio 12 in Naþ solution upon Kþ titration.
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of the CD intensity change at 265 nm of H24, H54 and
H78 in 150mM Naþ solution after adding 110mM Kþ as
a function of time. It is found that the spectral change of
H24 is very fast and almost negligible after adding Kþ for
10min. On the other hand, a drastically spectral change
followed by a slow change is observed for both H54 and
H78. Figure 9C shows the CD spectra of BMVC–H54 at a
molar ratio 10 in Naþ solution upon Kþ titration. Again a
discernible CD change is detected right after the first
10mM Kþ titration followed by a slight change upon
further Kþ titration. It appears that the rapid spectral
change is very likely due to the fast ion exchange.

Gel electrophoresis assays

Gel analysis may allow us to evaluate the possible
existence of different structural forms. Figure 10A and B

shows the pre-stained gels and UV shadowing of the gels
of 20 mM each DNA of H21, H24, H54 and H78 (lanes
1–4) and their complexes with 20 mM BMVC pre-stained
for 10min (lanes 5–8) in the presence of Naþ, respectively.
A major component is found for each lane with very
similar position level between the free DNA and its pre-
stained DNA in the UV shadowing, implying that the
major component is the free DNA in the pre-stained gels.
However, the level of the fluorescence band due to
BMVC–DNA complexes in the pre-stained gels differs
from the level of the band in the UV shadowing.
In addition, Figure 10C shows the same gels after being
post-stained by 10 mM BMVC for 10 s. The band in the
UV shadowing resulting from the free DNA is clearly
revealed by BMVC fluorescence in the post-stained gels.
Of particular interest is that the BMVC bound H24,
H54 and H78 complexes migrate faster than their free
forms. In contrast, BMVC-bound H21 complexes migrate
slower than their free forms. Different migrations between
BMVC–H24 and BMVC–H21 complexes to their free
forms indicate that BMVC bound to the end of the
G-quartet with a diagonal loop is stronger than that with
two TTA loops. It further supports the involvement of
the 50-TTA sequence in the BMVC binding. In addition,
our data show that the high-order structural form does
not exist.
We have further examined the effect of tail sequence to

the G4 structure formed by a four-repeat human telomeric
sequence using the gel competition assay. Figure 10D and
E shows the pre-stained gels and UV shadowing of the
BMVC incubated with each DNA of H22, H24, H24-B
and H26 (lanes 1–4) and the mixture of H26 DNA to each
DNA of H22, H24 and H24-B (lanes 5–7) for 10min in
Kþ solution, respectively. Figure 10F shows the same gels
after being post-stained by 10 mM BMVC for 10 s.
Similar gel competition patterns in Naþ solution are also
observed. Our data show that the binding strength
of BMVC to different DNA follows the order of
H24�H24-B4H22�H26. It implies that the two T
bases in the tail play an important role in BMVC binding.
However, it is of interest why the binding strength of
BMVC to H26 is weaker than H24 and H24-B if they
have similar G4 structures.

DISCUSSION

The binding sites of H24 to BMVC

The induced CD spectra and a binding ratio of �2 suggest
that the two ends of the G-quartet are the main binding
sites of H24 to BMVC. Moreover, we have found that the
binding affinity of BMVC to the end of the G-quartet
depends upon the associated loops and tails. The binding
strength is given as (50-TTA tailþ diagonal
loop)� (50-TTA tailþ lateral loops)4(diagonal loop)
� (two lateral loops)4(one lateral loop). It appears
that the end of the G-quartet with a diagonal loop and
a 50-TTA tail is the major binding site of H24 to BMVC at
the molar ratio 1:1. Our finding is consistent with the
study of acridine derivative (30). Besides the two ends of
the G-quartet, BMVC could externally interact with the

Figure 9. (A) Time-dependent CD spectra of H54 mixed with BMVC–
H54 at a molar ratio 10 in Naþ solution and further mixed with
100mM Kþ. (B) The plots of the CD intensity change at 265 nm of
H24, H54 and H78 in 150mM Naþ solution as a function of time after
adding 110mM Kþ. (C) CD spectra of BMVC–H54 at a molar ratio 10
in Naþ solution upon Kþ titration.
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G4 structure of H24 at a high molar concentration.
However, BMVC does not externally stack to the end
surface of the G-quartet of H12. It is likely that groove
interaction is a major binding mode of BMVC to the
dimeric G4 structure of H12. Determining the major
binding mode is critical for the design of structure-specific
DNA-binding agent as a drug agent.

The major G4 structure of H24 in Kþ solution

Determination of the folding structure of H24 in Kþ

solution is a challenge. A number of studies suggested that
the parallel propeller structure is unlikely the major form
of H24 in Kþ solution (1,3,6,31). Others suggested that the
antiparallel G4 structures are either dominated or coex-
isted in both Naþ and Kþ solutions (4,5). Recently, three
groups have determined the folding topology of four-
repeated human telomeric sequences. Yang et al. (1) found
that the mixed-I-type form (Scheme ID) is the major
structure to a modified sequence, d(AAAG3(T2AG3)3AA)
(M26), by NMR analysis. Since the CD and NMR
patterns of H26 are very similar to that of M26, they
strongly suggested that the mixed-I-type form
(Scheme ID) is also the major structure of the wild-type
H26. Sugiyama et al. (3) substituted the guanines in the
H22 with 8-bromoguanine and found that the H22 exists
as a mixture of mixed-I (Scheme ID) form and chair form
(Scheme IC) using CD spectroscopy. Patel et al. (31)
studied the modified d[TTGGG(T2AG)3]A sequence and
concluded that the major structure is the mixed-I-type

form (Scheme ID, �95%) by NMR analysis. They all
suggested that the mixed-I-type form is a major structure
for the four-repeated human telomeric sequences in Kþ

solution. It should be noted that these G-rich sequences
are modified from the wild telomeric sequences.

Since the CD spectrum of H24 in Kþ solution is very
different from that in Naþ solution, we first examine if
they have different G4 structures. Note that the basket
form is dominated in the G4 structure of H24 in Naþ

solution (13), while multiple conformational isomers are
suggested to the G4 structures of H24 in Kþ solution
(1,6,15). It is possible that the basket form may coexist
with other G4 structures for the H24 in Kþ solution (4).
Nevertheless, very similar binding characters and induced
CD spectra of BMVC upon binding to H24 in Naþ or Kþ

solutions suggest that the G4 structures of H24 should
have very similar binding sites in these solutions. Since the
tails and loops in the G4 structure are important to
stabilize the external stacking of BMVC to the end of the
G-quartet (17), the three TTA side loops in the propeller
structure (Scheme IB) are not able to hold BMVC to the
end of the G-quartet by simply external stacking. Similar
binding characters of BMVC to H24 in Naþ and in Kþ

solutions could eliminate the parallel propeller G4
structure (Scheme IB) as a major component of H24 in
Kþ solution (4).

Sugiyama et al. (6) suggested that the chair form and
the mixed-I form are the major G4 structures of H24 in Kþ

solution. A highly relevant example, the thrombin- binding

Figure 10. (A) The pre-stained gels and (B) UV shadowing of H21, H24, H54, and H78 (lanes 1–4) and their complexes with BMVC pre-stained for
10min (lanes 5–8) in the presence of Naþ. (C) The post-stained gels after 10 mM BMVC post-staining with the same gels for 10 s. (D) The pre-stained
gels and (E) UV shadowing of the BMVC incubated with DNA of H22, H24, H24-B, and H26 (lanes 1–4) and the mixture of H26 with each H22,
H24-B, and H24 (lanes 5–7) for 10min in the presence of Kþ. (F) The post-stained gels after 10 mM BMVC post-staining with the same gels for 10 s.
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aptamer sequence d(G2T2G2TGTG2T2G2) (TBA), which
has been shown to form a chair-type structure in the
presence of Naþ or Kþ (17,32), gives a very similar
CD pattern to that of H24 andM23 in Naþ solution, but is
different from that of H24 in Kþ solution. At present, we
are not able to distinguish the basket form from the chair
form. It is possible that both basket and chair forms coexist
for the H24 in Kþ solution (5). On the other hand,
the Tetrahymena telomeric DNA d(T2G4)4 (Tet24), which
has been shown to form a mixed-I-type structure in
Naþ solution (33), gives a similar CD spectra to those of
H24 and H26 in Kþ solution. Moreover, Yang et al. (1)
strongly suggested that the mixed-I-type form is the major
structure of H26, implying that this form is also the major
structure of H24 in Kþ solution. It is of interest to examine
if the H24 and H26 have similar G4 structures.

Similar CD patterns of H24 and H26 in Kþ solution
suggest that they could have similar mixed-I-type struc-
tures. If so, one would expect to observe similar binding
behaviors to BMVC. However, the gel competition assays
show that the binding strength of BMVC to H26 is weaker
than H24 and H24-B. The binding preference of BMVC to
the (50-TTA tailþ a lateral loop) and (30-TT tailþ a lateral
loop) in H26 is more likely over the (50-TTA tailþ a lateral
loop) and (a lateral loop) in H24 at two ends of the
G-quartets. The gel competition results suggest that the
H24 and H26 have different G4 structures. If we assume
that the antiparallel G4 structure is the major form to H24
and H26, it is possible that the 50-TTA and the 30-TT
sequences could affect the binding preference of BMVC
to H26 with respect to H24 since the two tails are located
at the same end of the G-quartet. Therefore, we have
incubated BMVC with H26 for 24 h and then mixed with
H24 for 10min. It is surprising that the pre-stained gels
show no appreciable fluorescent band for the H26–BMVC
complexes, but a bright fluorescent band for the
H24–BMVC complexes (data not shown). It further
supports that H24 and H26 have different G4 structures.
Since the binding strength of BMVC to H24 is stronger
than H26, the mixed-I-type form is more likely dominated
in H26, but not in H24. It appears that similar CD spectra
of G-rich sequences could have different G4 structures.

Recently, Neidle et al. (26) argued that the mixed-I-type
form of the sequences of d[AAAG3(T2AG3)3AA] (1) and
d[TTG3(T2AG)3]A (31) based on NMR analysis may not
be valid to the G4 structure of H22, since both sequences
have been slightly altered at the termini from telomeric
regularity. Note that the flanking sequence plays a critical
role for the folding of the G4 structure in Kþ solution
(1,34,35). Furthermore, Patel et al. (31) showed that the
extra flanking residues are stacked one on each end of
the core of G-tetrads, and help to stabilize this particular
topology. However, such a fold has not been observed
with the H22, which cannot form such base pairs. They
concluded that the precise nature of all the species of
H22 in Kþ solution deserves further study by fine
structure methods (26).

Since the induced CD patterns of BMVC in H24-T15
and Oxy12 are similar in Naþ solution, it is suggested this
signal is mainly due to the interaction of BMVC with a
TTT and a TTTT diagonal loop. With reference to similar

CD patterns of H24 and H24-T15, we consider that the
basket-type form is a major component to both of them.
If so, substitution of a base in the diagonal loop of H24
does not change the folded structure. On the other hand, if
we assume that different CD spectra of H24 and H24-T9
in Naþ solution are due to different G4 structures, it is not
clear why substitution of one base in the lateral loop of
H24 changes the folded structure. Alternatively, is it
possible that different CD spectra could have similar type
of the G4 structure?
Of particular interest is that several antiparallel duplex

DNAs of various sequences, such as [d(C4G4)]2, also
show a CD pattern with a positive band at 265 nm and a
negative band at 240 nm, which is very similar to the
CD spectra of the parallel G4 structure (36). Moreover,
similar CD patterns have been found for a single strand
d(GA)10 and homoduplexes of d(GA3)5 and d(GA2)7
under certain conditions (37,38). These results open a
possibility that distinct CD spectra of H24 in Naþ or Kþ

solutions and different CD spectra of H24 and H24-T9 in
Naþ solution may be due to different loop base stacking
and various intramolecular hydrogen bonding effects. If it
is so, the basket and the chair forms are more likely the
main components of H24 in Kþ solution.
Alternatively, we anticipate that the mixed-II form

(Scheme IE) may be a candidate to coexist with other G4
structures for the H24 in Kþ solution. Note that the
mixed-II-type form characterized by a diagonal loop at
one end and a lateral loop with a 50-TTA at the other end
of the G-quartet could have two major binding sites,
which are relatively comparable to the binding sites of the
basket form of H24 in Naþ solution. Nevertheless, our
results favor the coexistence of the basket form and the
chair form. Further experiments are necessary to verify
the G4 structures of H24 in Kþ solution.

Structural conversion upon Kþ titration

The next question is to evaluate if the rapid spectral
conversion of H24 from the Naþ form to the Kþ form
upon Kþ titration is due to structural conversion of the
basket-type form (Scheme IA) to the mixed-type form
(Scheme IE). Considering the presence of multiple G4
structures of H24 in Kþ solution, the CD spectrum is a
collection of contributions from all the conformational
isomers, such as the possible G4 structures described in
the previous section. Neidle et al. (26) suggested that more
attention is required to assign the CD spectra for the G4
structures, since multiple components cannot readily be
identified simply by CD spectra. In addition, although the
mixed-type form was suggested by the structural analysis
of NMR fine lines (1,6), no direct correlation between the
fine structure of NMR and the CD pattern was
established. Particularly, DNA concentration is about
two order magnitudes higher for the NMR studies than
the CD measurements. Aggregation is possibly formed
at high concentration. Furthermore, structural conversion
from the Naþ form to the Kþ form upon Kþ titration may
not be the same as a direct formation of the G4 structure
of H24 in Kþ solution. For example, the mixed type
structure may be directly formed in the presence of Kþ.
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However, the conversion from the basket form
(Scheme IA) to the mixed-type form (Scheme IE) upon
Kþ titration takes a lot of work to change the syn/anti
configuration of guanine residues. Moreover, the binding
preference of BMVC to the both ends of the G-quartet
could stabilize the G4 structure of H24 in Naþ solution by
increasing the melting temperature4108C. The switch of
the 50 end GGG strand from the basket-type form to the
mixed-II-type form involves first unfolding and then
refolding the G-quartet; it is very unlikely that the rapid
spectral conversion is due to structural conversion
between different types of G4 structures.
A number of G4 structural conversions have been

documented (15,39–41). Phan and Patel (15) found that
the dimeric antiparallel and parallel G4 structures of
H12-B coexist and interconvert in Kþ solution. However,
direct interconversion between these two G4 structures is
improbable. It involves unfolding and folding processes.
They further found that the antiparallel form is more
favorable at low temperatures (5508C). Sugimoto et al.
(40) reported structural transition from antiparallel to
parallel G4 structures of Oxy12 induced by Ca2þ. Their
kinetic data showed that the structural transition includes
at least three steps: cation binding, isomerization and
oligomerization. On the other hand, Feigon et al. (41)
suggested that the addition of Kþ to a basket G4 structure
of Oxy12 in the presence of Naþ induces modest changes
on local structures but does not change the type of
quadruplex structures. For a unimolecular G4 structure
of a TBA, the binding of the second Kþ between the loops
and the adjacent quartets of the chair-type G4 structure
could primarily alter the loop structure but not the type of
G4 structure (42). It appears that cation binding could
perturb the loop structure easily and isomerizes the type
of G4 structure.
Our results show that the CD spectra of H24 in Naþ

solution could be perturbed by BMVC binding. The
spectral change from the �265 nm negative band asso-
ciated with a �245 nm positive band to the �268 nm
positive band associated with a �240 nm negative band at
high molar ratio of BMVC is not due to the switch
between different types of G4 structures. This is because
BMVC favors to bind the ends of the G-quartet and
thermally stabilizes the G4 structure of H24 in Naþ

solution by 4108C. Thus, we consider that the spectral
change is due to changes on local conformational
structures, while the overall fold is the same upon
BMVC binding. The stacking of the BMVC to the end
of the G-quartet could change the loop base interaction
with the G-quartet and intramolecular hydrogen bonding.
Feigon et al. (32) monitored spectral conversion of

[d(G3T4G3)]2 from the Naþ form to the Kþ form upon Kþ

titration. This spectral conversion was attributed to the
displacement of Naþ by Kþ from G-quartet ion coordina-
tion sites. In addition, Yang et al. (1) suggested that ion
exchange occurs before structural conversion. Note that
cations bound by a G4 structure of Oxy12 are exchanging
with ions quite fast, the bound lifetime of Naþ is �180 ms
in a solution containing both Naþ and Kþ (32,43). It is
likely that the displacement of Naþ by Kþ inside the
G-quartet initiates the spectral conversion of H24 upon

Kþ titration. In addition, Chaires et al. (3) suggested that
the Kþ form is hydrodynamically more compact than the
Naþ form and the conformational change resulting from
the substitution of Kþ for Naþ may involve an alternation
in loop adenine residue interaction with the G-quartet.
With reference to the close similarity of the CD spectra of
the parallel G4 structure and the homoduplexes of
d(GA2)7 and d(GA3)5 (36), we suggest that the spectral
conversion of H24 upon Kþ titration is likely due to the
local conformational change resulting from different loop
base interaction and various intramolecular hydrogen
bonding effects. Thus, the loop base interaction with the
G-quartet and the loop–loop interaction deserve further
detailed study.

Recently, Davis et al. (44) reported that unimolecular
G-quadruplex could mediate Naþ/Kþ cation exchange.
Sen and Gilbert have proposed that the G4 structures
might participate in ion-driven regulatory mechanisms
in vivo (45). Further elucidating the mechanism of the
spectral conversion of H24 upon Kþ titration may be
more important in its biological function.

Spectral conversion of long telomeric sequences

Considering longer telomeric sequences H54 and H78,
similar CD patterns both in Naþ or Kþ solutions indicate
that the G4 structures are also formed in these sequences.
In addition, the job plots suggest that two units of the G4
structure occur in H78. It is likely that the CD spectra of
telomeric sequences are mainly determined by the G4
structure. At present, we are not able to elucidate the local
environment of the G4 structure surrounded by the
residues of various single-stranded T2AG3 repeats. Since
the induced CD pattern of BMVC depends upon the
binding site, one could give a brief comparison on the
induced CD pattern. The induced CD pattern of BMVC–
H78 at molar ratio �8 is also similar to that in
BMVC–H24 at molar ratio �2. Although there are two
units of G4 structure in H78, it appears that the BMVC
binding to the ends of the G-quartet is perturbed by the
local environments of the G4 structure in H78. Together
with the melting temperature at �518C for H78 and
�688C for BMVC–H78 at a molar ratio 10, the spectral
results suggest that the two units of the G4 structure in
H78 are likely independent with each other. It further
implies that the study of the G4 structure of H24 is valid
for the long human telomeric sequences.

Furthermore, we have also detected similar spectral
conversion of H54 and H78 from Naþ form to Kþ form
upon Kþ titration. Considering more complex unfolding
and refolding of the G4 structure surrounded by
additional T2AG3 repeats for a long telomeric sequence,
the rapid spectral conversion is very unlikely due to the
switch between different types of G4 structures upon Kþ

titration. In addition, the G4 structure can be thermally
stabilized by BMVC. It is more probable that the rapid
spectral conversion of H54 and H78 is also induced by
different base stacking and intramolecular hydrogen
bonding. Moreover, the CD spectra of H54 and H78 in
Naþ solution slightly change as a function of incubation
time after adding BMVC or Kþ. This spectral change is
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much smaller than the spectral change right after Kþ

titration. It appears that the rapid spectral conversion is
very likely due to fast ion exchange resulting in local
conformational changes.

In summary, we have determined the major binding
mode of BMVC to the G4 structure of H24. The binding
properties of BMVC have allowed us to eliminate the
parallel propeller (Scheme IB) in Kþ solution. Our data
suggest that the basket G4 structure (Scheme IA) is likely
a major component of the H24 in Kþ solution. The chair
form (Scheme IC) and the mixed-II form (Scheme IE) may
coexist as the main components. In addition, our results
support that the flanking sequence is critical for the
folding of the G4 structure in Kþ solution. Furthermore,
the binding ratio together with the CD spectra indicates
that H78 could form two units of G4 structure in both
Naþ and Kþ solutions. Similar spectral conversion
observed both in H24–BMVC and H78–BMVC com-
plexes upon Kþ titration suggests that the rapid spectral
conversion of H24 is very unlikely due to structural
conversion between different types of the G4 structures.
With reference to the CD spectra of d(GAA)7 and
d(GAAA)5 (37,38), we suggest that the spectral change
of H24 is attributed to fast ion exchange resulting in
different loop base interaction and various hydrogen
bonding effects upon Kþ titration. Moreover, we have
illustrated that the study of the G4 structure of H24
can be applied to a long human telomeric sequence.
In addition, the G4 structure deserves more attention
because the G4 structure is not only a promising target as
an antitumor agent, but also it exists in many G-rich
sequences involved in gene regulation.
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