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Abstract

Analysis of microarray and other high throughput data often involves identification of genes consistently up or down-
regulated across samples as the first step in extraction of biological meaning. This gene-level paradigm can be limited as a
result of valid sample fluctuations and biological complexities. In this report, we describe a novel method, SLEPR, which
eliminates this limitation by relying on pathway-level consistencies. Our method first selects the sample-level differentiated
genes from each individual sample, capturing genes missed by other analysis methods, ascertains the enrichment levels of
associated pathways from each of those lists, and then ranks annotated pathways based on the consistency of enrichment
levels of individual samples from both sample classes. As a proof of concept, we have used this method to analyze three
public microarray datasets with a direct comparison with the GSEA method, one of the most popular pathway-level analysis
methods in the field. We found that our method was able to reproduce the earlier observations with significant
improvements in depth of coverage for validated or expected biological themes, but also produced additional insights that
make biological sense. This new method extends existing analyses approaches and facilitates integration of different types
of HTP data.
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Introduction

Although the use of DNA microarrays and other high throughput

(HTP) technologies is increasingly widespread and affordable,

identifying the underlying biological themes from HTP data

remains a major challenge in the arena of systems biology. Once

data from these experiments has been normalized, a tremendous

variety of software tools and methods are available for analysis of

HTP data, primarily focusing on microarray data. These methods

primarily rely on several categories of common gene-level

approaches. One category of approaches is gathering patterned

genes across samples or datasets by clustering (e.g., hierarchical [1],

K-means [2], or SOM [3] methods, pattern extraction method [4]);

Another category of common approaches is generating differenti-

ated gene lists from two or more class contrasts using a variety of

methods (Significance Analysis of Microarray [5], moderated t-test

[6–7], LPE [8], FDR [9], as well as other gene selection methods

including ‘‘unusual ratio method’’ [10], analysis of variance

(ANOVA) related methods [11–16], Mixed Model Analysis [17].

A more recent approach, namely meta-analysis, looks for common

signatures across multiple independent datasets by combining

multiple statistical methods including simple t-test, FDR, and cross-

validation into a single result [18].

In order to identify the biological themes embedded in such

differentiated gene lists, the next step typically maps these genes to

their pathways or networks. Further integration of this data with

literature resources connects the identified genes with their

potential biological roles [4,19], www.ingenuity.com, www.gen-

ego.com. Alternatively, enrichment-based analysis [4,20–22] can

be applied to such a gene list to generate ranked functional

categories (e.g., GO) or pathways based on their enrichment levels,

so that the significantly enriched pathways and their associated

genes can be easily identified as the primary biological themes.

Additional efforts have been made using various algorithms and

statistical methods for gene set-based group testing analysis [23–

27]. Some very recent efforts explore the topology and

architectures of the networks in conjunction with high-throughput

data to seek biological scenarios [28–29].

The existence of high levels of natural variation within

populations coupled with the observation that very slight changes

in multiple relevant genes in a gene set can trigger biological

changes has led to the development of several gene-set based or

group testing methods: 1. over-representation analysis (ORA)

[4,20–22,30]; 2. functional class scoring (FCS) [23–24,27,31–33];

3. global tests [34]; 4. module-level analysis scheme [35–37]; 5.

singular value decomposition or SVD-based method [38]; 6. a

network structure-based method [39].

Most, if not all of these methods directly use cross-sample

evaluation for differentiated genes or ranking genes for further

gene-set based methods, based on the assumption that, for a given

phenotype (e.g. tumor vs. normal tissues, treated vs. control), any

relevant genes should behave consistently across the samples or
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individuals within the studied population within their own class (e.g.,

Tumor or normal tissues). With existing group-test analysis methods

such as GSEA [23–24], the assertion is made that in order to be

significant, the data distribution per gene is significantly shifted

between the contrasted classes. However, we challenge this notion

with a new more general assertion that while biologically relevant

genes may consistently behave in correlation with an associated

phenotype across a population, it is even more likely that common

pathways can be impacted through distinct gene events that are not

reflected at the individual gene level across samples. Such pathway-

level consistency seems particularly relevant considering the

stochastic nature of many epigenetic events that lead to disease

states. For example, a conventional t-test based approach is usually

used to evaluate the statistical difference of genes among the

individuals between two contrasted classes for a typical microarray

dataset. For a specific gene, even with a statistically significant p-

value, the expression of this gene in one or more samples of one class

could have the same or even lower value than some samples from

the other class, although the mean of expression for this gene in the

first class is higher than that of the second one with statistical

significance suggested by p-value. Thus, with the presence of such

sample-level variants, this gene will still be considered as a

differentiated gene and become included in the final differentiated

gene list because it may have passed statistical criteria including p-

value or FDR. This is a result of the fact that all variances of

individual gene levels are aggregated into a single decision:

differentiated gene or a single measurement: fold change or p-

value. However, as we will discuss below, such sample-level variants

or specificity in a class population, although some would be more

common and some would be unique, can be both realistic and

biologically relevant, since even for this same phenotype, other

relevant genes could have changed or other types of changes for this

gene, such as phosphorylation status or protein stability, which

could not be captured by microarray, could happen in this

individual. This may otherwise mask the real effect leading to the

same or a similar phenotype. In short, multiple genes within a

biological pathway could be impacted with the same net-effect on

the pathway. Therefore what may be happening at a higher

biological level (i.e., group of relevant genes, gene sets, pathways,

functionally related genes) may have been excluded from the

analysis if such sample-level specificity is not taken into account.

In order to capture the sample-level specificity of gene-level

variance, we introduce a new concept - sample-level differentiated

genes (SLDGs). These are defined as genes that are differentially

expressed for a sample in one class when compared to the data

distribution of the other class population. We believe that this new

concept should accommodate both the gene-level changes

identified by established methods but also sample-level specific

changes related to the phenotype but only evident in individual

samples. Although variations and even outliers that can be

introduced by technical issues or experimental variations that have

nothing to do with biological relevance, the chance that multiple

related genes in a pathway or biological process have such issues

simultaneously should be rare. Thus, SLDGs for each sample can

be used as individual gene lists to evaluate the data consistency at

the pathway-level using an ORA-like enrichment method. Instead

of using summarized differentiated gene lists, SLDG lists are used

to calculate enrichment levels of each term for each sample and a

class-contrast based pathway-ranking method is then used to rank

the most consistent and enriched pathways (or gene sets, GO

terms). We named this method Sample-Level Enrichment-based

Pathway-Ranking method (SLEPR).

In this report, we provide evidence that analyzing data at the

level of functional categories, including well-defined or customized

pathways and GO terms, for pathway-level consistency, may help

understand the underlying biological themes at a higher level or in

more detail than other methods provide. Furthermore, in addition

to identifying potential biologically relevant processes or pathways,

we also look for pathway-level differentiated genes from sample-

level differentiated gene lists, which can be combined among

sample populations to reveal a whole spectrum of genetic and

biochemical changes associated with the phenotype in question. In

contrast to conventional methods, we have extended the

‘‘differentiated’’ concept from the gene-level to the pathway-level,

so that one can focus on a biological process or pathway that has

consistent changes at the pathway-level rather than just individual

gene-level across the samples or datasets in a study.

As a proof of concept, we have used this method to analyze

several public microarray datasets with validated results and/or

expected biological themes. We have found that the SLEPR

method effectively reproduced the previously analyzed and

experimentally validated results or generated analysis results that

are consistent with biologically relevant expectations. In direct

comparison with the GSEA method, we also found that the

SLEPR method uncovered many other potentially biologically

relevant pathways not identified by GSEA including many sample-

specific genes that potentially cover the entire repertoire of

candidate genes for pathways or gene sets that are associated with

the expected phenotype. We hope that these results give a more

complete picture of phenotype-wise genetic and biochemical

changes and that this method will help derive biological themes

from additional datasets measuring changes at different levels of

regulation including transcription, protein expression, and phos-

phorylation when these data become increasingly available in the

future.

Results

Overview: Sample-Level Enrichment-Based Pathway
Ranking Method (SLEPR)

To overcome the issues and limitations of the gene-level

consistency paradigm where data analysis primarily considers the

change in gene behavior (e.g., expression) that consistently occurs

in the majority of the sample population, we devised a simple

approach, namely Sample-Level Enrichment-Based Pathway

Ranking Method (SLEPR), which is schematically illustrated in

Figure 1 and described in more detail in the methods section. One

of the major goals of the SLEPR method is to consider sample-

level specificity for gene-level variances, and place the identified

genes in the context of a priori defined gene sets, annotated

biological processes or pathways, functional categories (e.g., GO

terms) and look for pathway-level consistency of enrichment effects

from changes occurring at multiple related genes systematically.

The goal is to accomplish this objective without sacrificing

sensitivity in detecting those genes that do behave consistently

within their class.

Using a recent diabetes study and their class contrast (e.g., highly

expressed in individuals with NGT versus those with DM2: [23]), we

first derived sample-level differentiated genes for each sample based

on the data distribution of samples from the Exclusion/Background

class using MADe-based statistics (Figure 1). The null hypothesis for

SLEPR is that sample-level differentiated gene lists are random sets of

genes with regard to their belonging to a particular sample group in a

given class contrast. The alternative hypothesis is that sample-level

differentiated genes are associated with the specific class assignment

and therefore the biological phenotype under study. We also chose to

allow the concept of the gene group to remain arbitrary and thus can

include conventional gene sets, pathways, functional categories such

SLEPR Pathway Ranking Method
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as GO terms or simply genes with a particular transcription factor

binding site and we will simply refer to these groups as gene sets

henceforth. As a consequence, pathway-level consistent enrichment

of genes annotated in a gene set within each of these sample-level

differentiated gene lists would be biologically relevant to the

phenotype being contrasted in the classes under study.

We then determine the functional enrichment levels in any a priori

defined gene sets for each derived sample-level differentiated gene list.

The derived enrichment scores are used to evaluate the pathway-level

consistency of enrichment for gene sets using a pathway-ranking

algorithm in the SLEPR method. The method considers both the

positive contribution of class I (included) and the negative

Figure 1. Schematic overview of SLEPR method (see Materials And Methods section for more details). The goal of SLEPR method is to
use sample-level differentiated genes for each sample to capture the sample-level specificity for gene-level variance, and then use functional
enrichment levels of these gene lists to evaluate pathway-level data consistency associated with the contrasted classes in study: Inclusion/Target
class versus Exclusion/Background class (e.g., NGT versus DM2+IGT in the human type 2 diabetes mellitus (DM2) study [23]). Step 1 of SLEPR is to
assign the samples to the Inclusion class (I) and Exclusion class (E). Then for each genes or features in study (i.e., G1, G2, G3…Gn), consider the data
distribution and use median and MADe of data in samples of class E to set up the cutoff for sample-level differentiated genes for each genes (Step 2).
Each gene Gi will have its own cutoff to determine if it is a sample-level differentiated gene. Gene Gi will be selected as the sample-level differentiated
gene for a sample if the data of gene Gi in this sample is beyond the cutoff (Step 3). Each sample including samples from both I and E classes will
have its own sample-level differentiated gene list (L1, L2, L3….) (Step 3). To determine the functional enrichment levels in any a priori defined gene
sets, pathways, or functional categories (e.g., GO terms) for each of the sample-level differentiated lists, batch computation of Fisher’s exact test
based enrichment analysis is performed and the results are merged automatically into a matrix (e.g., Stanford format file) of enrichment scores which
consists of enrichment scores of each sample from class I and E for each term (T1, T2, T3, …Tm), which are transformed as 2log10(p-value) of Fisher’s
exact test p-values (Step 4). To determine whether a gene set, pathway, or functional category (e.g., GO term) is significant in terms of how consistent
it is enriched across samples, a pathway ranking algorithm is applied to the enrichment score matrix to obtain pathway ranking scores, which
considers both positive contribution of class I and negative contribution of class E from individual sample-level enrichment level (see details in
Materials And Methods section) (Step 5). To determine the statistical significance of actual ranking of a gene set or a GO term in the contrasted
classes: I versus E, the entire procedure (steps 1 to 5) is repeated 1000 times or more by simply permutating the class labels for each selected samples
(Step 6). The pathway ranking scores of each term from each permutation are pooled together and used to build the empirically derived distribution
of pathway ranking scores from the permutation procedure. The permutated p-value for each term is calculated as the fraction of random trials
resulting in permutated pathway ranking scores higher than the actual score from the original sample assignments.
doi:10.1371/journal.pone.0003288.g001
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contribution of class E (excluded) to individual sample-level

enrichment. This is done in order to reduce possible bias by using

only samples from the Exclusion class as the reference background for

cutoff determination for sample-level differentiated genes.

Case Study 1: Human Diabetes Datasets
The human type 2 diabetes mellitus (DM2) dataset described

previously [23] consists of 22,000 genes in skeletal muscle biopsy

samples from 43 age-matched males: 17 with normal glucose

tolerance (NGT), 9 with impaired glucose tolerance (IGT) and 17

with DM2. A goal of the original study [23] was to identify gene

expression changes characteristic of DM2 and pre-defined gene

sets for association with the disease phenotype. A novel method,

called Gene Set Enrichment Analysis (GSEA), was developed to

successfully identify as significant a set of genes involved in

oxidative phosphorylation, although none of the individual genes

had a significant difference in expression between the diagnostic

categories [23]. Although GSEA successfully identified oxidative

phosphorylation as one of major biological themes associated with

the disease phenotype, subsequent studies revealed that the GSEA

method was biased toward assigning higher enrichment scores to

gene sets of large size [40].

In order to compare methods, we applied the SLEPR method to

the same microarray dataset from the human type 2 diabetes

mellitus study [23]. To ensure a fair comparison, we also

implemented into the SLEPR method the same GSEA annotation

database (also call MSigDB) [24] and compared the analysis

results for the same database of gene sets.

For each single gene in our SLEPR method, we used the

Exclusion/Background class as the background or reference

distribution of data. In contrast to GSEA-based methods, instead

of looking at the change in expression of genes between the two

contrasted classes, our SLEPR method starts with sample-level

differentiated genes by comparing data of each sample to the data

distribution of samples of the Exclusion class. Thus, the expression

of each gene from each individual sample (samples from both

Inclusion and Exclusion classes) is compared to this background

distribution of the same genes’ expression and is defined as a

sample-level differentiated gene for a sample if the expression of

this gene in the corresponding sample has an expression level at a

distance larger than MADe compared to the median of

background data range for this gene from either one or both

directions (see Materials And Methods section).

We used the NGT samples as the Inclusion class and IGT and

DM2 samples together or DM2 samples only as our Exclusion

class (see Materials And Methods section for class definition) and

used GSEA annotations of gene sets or MSigDB (http://www.

broad.mit.edu/gsea/) for SLEPR (Table 1, 2) and GSEA analysis

(Table 3, 4). Our SLEPR method successfully identified 5 closely

related terms: ‘‘mitochondrial genes’’ (two of them, annotated

from different sources), ‘‘electron transport’’, and ‘‘oxidative

phosphorylation’’, ‘‘PGC related genes’’ at the top of the ranked

term list using either IGT+DM2 or only DM2 samples as

Exclusion class (Table 1, 2), which is consistent with the previous

analysis result of GSEA [23]. Particularly when both IGT and

DM2 samples are used, these relevant terms appear to be even

more significant and ranked as the top 5 terms (Table 1). However,

the GSEA method only ranked 3 of these terms among the top list

when using only DM2 samples as the Exclusion class (Table 4),

and only one of these terms among the top list when using both

IGT and DM2 samples as Exclusion class (Table 3). Thus, the

SLEPR method appears to uncover more terms with expected

biological relevance with higher significance scores than GSEA in

both settings of class comparison, especially when both IGT and

DM2 samples were pooled together as one class (Table 1, 3). The

additional terms uncovered by SLEPR: ‘‘mitochondrial genes’’

and ‘‘PGC related genes’’, which were absent from the GSEA

results and have strong biological relevance with the previously

identified and validated term ‘‘oxidative phosphorylation’’: the

mitochondria are well known as the cellular compartment where

the oxidative phosphorylation reactions occur and PGC (or PGC-

1)-responsive genes involved in oxidative-phosphorylation are

coordinately downregulated in human diabetes [23]. The fact that

these additional terms are closely related to electron transport and

oxidative phosphorylation, suggests that SLEPR could potentially

uncover more related biological themes, presumably due to our

consideration of sample-level specificity for gene-level variances

and pathway-level consistency across the population.

Interestingly, for many of the relevant terms identified by both

SLEPR and GSEA, SLPER revealed a higher significance

compared to GSEA in general. For example, although both

SLEPR and GSEA detected ‘‘oxidative phosphorylation’’ as a top

ranked term, the permutated p-values of ‘‘oxidative phosphoryla-

tion’’ derived from SLEPR (p = 0.00048 or p = 0.00034, Table 1

and 2) appear to be more significant than the GSEA method

(p = 0.029 from original GSEA analysis [23], p = 0.02 with current

version (v2.0.1) of GSEA) (Table 4) comparing NGT with only

DM2 samples, and p = 0.3511 comparing NGT with both DM2

and IGT samples, which is not significant and ranked only at 165

(Table 3 and see the complete list of the result in Table S1). This

Table 1. Top ranked GSEA annotation terms in SLEPR Analysis Result for Comparison of NGT vs DM2+IGT in human DM2 data.

GSEA_TermName GSEA_TermID Combined Ranking Permutated P_Val FDR q_Val

Mitochondrial genes HUMAN_MITODB_6_2002 1.009408 0.00011557 0.144

Mitochondrial genes MITOCHONDRIA 0.96734041 0.00013403 0.0835

Genes involved in electron transport ELECTRON_TRANSPORT_CHAIN 0.73313179 0.00033066 0.13733333

Oxidative Phosphorylation MOOTHA_VOXPHOS 0.63908609 0.00048395 0.15075

PGC related genes PGC 0.41673472 0.00146549 0.3652

RIBOSOMAL_PROTEINS RIBOSOMAL_PROTEINS 0.26145395 0.00456661 0.9483

Microarray data for human type 2 diabetes mellitus (DM2) study [23] was re-analyzed with SLEPR method to compare either NGT versus IGT+DM2 (IGT+DM2 as
Exclusion/Background class in SLEPR). One-side MADe method was used in SLEPR for selection of highly expressed genes as sample-level differentiated genes in the
comparison of NGT versus IGT+DM2. Two-side MADe method was also used for selection of highly and lowly expressed genes as sample-level differentiated genes, and
similar result was obtained (see Table S4). 1000 permutations were performed. Combined_Ranking: Combined ranking scores for terms; Permutated_P_Val: p-value of
terms derived from permutated data; FDR_q_Val: FDR of terms derived from permutated data (see Materials And Methods section for details).
doi:10.1371/journal.pone.0003288.t001
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observation is extended further by examining the FDR q-values of

‘‘oxidative phosphorylation’’: FDR = 0.15 or FDR = 0.082 from

SLEPR results (Table 1 and 2) compared to those from GSEA

results: FDR = 0.446 and FDR = 1 (Table 4, S1).

In addition, the top ranked terms in the GSEA results appeared

to have much higher FDR q-values (Table 3, 4) than those

identified with SLEPR. Furthermore, in the SLEPR results, we

observe a sharp rise in FDR q-values from 0.3652 to 0.9483

between terms No. 5 and 6 (Table 1) and from 0.088 to 0.3335

between terms No. 7 and 8 (Table 2), suggesting that these

thresholds might be used to separate the identified terms into high

and low priority groups.

Since SLEPR is designed to uncover additional information

from sample-level enriched genes, we wanted to evaluate how the

top ranked terms are enriched in individual samples. To do this,

we put the matrix of enrichment scores of 17 top ranked GSEA

annotation terms of SLEPR result (Table 1, also see the complete

list of the result in Table S2) into a heatmap for visualization

(Figure 2). As expected, although the majority of NGT samples

have enrichment scores at a significant level, a small portion of

IGT or DM2 samples also have enrichment scores at significant

levels for some terms, which expand to a larger portion of the

samples for lower ranked terms that have relatively higher FDR q-

values (Figure 2, Table S2).

In order to get a more complete picture of the genes that are

involved in the top ranked terms found by the SLEPR method, we

retrieved the pathway-level differentiated genes that are associated

with one of the top ranked terms: ‘‘Oxidative Phosphorylation’’

from Table 1 using the newly developed WPS pipeline interface

for pathway-level pattern extraction, described in a separate

manuscript [4], Yi and Stephens, unpublished work. As expected,

the pathway-level differentiated genes did not display an obvious

gene-level consistency in their relative expression levels across the

sample population even in the same class (Figure S1), although

Table 2. Top ranked GSEA annotation terms in SLEPR Analysis Result for Comparison of NGT vs DM2 in human DM2 data.

GSEA_TermName GSEA_TermID
Combined
Ranking Permutated P_Val FDR_q_Val

Mitochondrial genes HUMAN_MITODB_6_2002 2.33012855 0.0000025 0.003

Mitochondrial genes MITOCHONDRIA 1.19377468 0.0000975 0.0585

PROPANOATE_METABOLISM PROPANOATE_METABOLISM 0.87576134 0.00029917 0.11966667

PGC related genes PGC 0.85709181 0.00031583 0.09475

Oxidative Phosphorylation MOOTHA_VOXPHOS 0.83877765 0.0003425 0.0822

Genes involved in electron transport ELECTRON_TRANSPORT_CHAIN 0.80602325 0.0003875 0.0775

RIBOSOMAL

PROTEINS RIBOSOMAL_PROTEINS 0.73004401 0.00051333 0.088

Downregulated in correlation with overt
Alzheimer’s Disease, in the CA1 region
of the hippocampus

ALZHEIMERS_DISEASE_DN 0.43387443 0.00222333 0.3335

Microarray data for human type 2 diabetes mellitus (DM2) study [23] was re-analyzed with SLEPR method to compare either NGT versus DM2 (DM2 as Exclusion/
Background class in SLEPR). One-side MADe method was used in SLEPR for selection of highly expressed genes as sample-level differentiated genes in the comparison
of NGT versus DM2. 1000 permutations were performed. Combined_Ranking: Combined ranking scores for terms; Permutated_P_Val: p-value of terms derived from
permutated data; FDR_q_Val: FDR of terms derived from permutated data (see Materials And Methods section for details).
doi:10.1371/journal.pone.0003288.t002

Table 3. Top ranked GSEA annotation terms in GSEA Analysis Result for Comparison of NGT vs DM2+IGT in human DM2 data.

GSEA_TermName GSEA_TermID ES NES NOM p-val FDR q-val FWER p-val

Upregulated by expression of mutant MeCP2
(Rett syndrome) vs. wt MeCP2 in fibroblasts

RETT_UP 0.6723 1.830771 0.001** 0.93558 0.56

Granule constituents expressed during mouse
promyelocytic cell line cell differentiation

LIAN_MYELOID_DIFF_GRANULE 0.5568 1.791872 0.002012 0.700521 0.683

Genes highly associated with medulloblastoma
treatment failure

POMEROY_MD_TREATMENT
GOOD_VS_POOR_DN

0.5402 1.720124 0.016327 0.971015 0.875

Regulated by UV-B light in normal human
epidermal keratinocytes, cluster 8

UVB_NHEK3_C8 0.4442 1.685022 0.001** 1 0.931

Genes involved in electron transport ELECTRON_TRANSPORT_CHAIN 0.3457 1.680579 0.060797 0.863601 0.937

Down-regulated in mycosis fungoides
(cutaneous T-cell lymphoma) T-cells resistant to
IFN-alpha, compared to sensitive parent cell line

IFNALPHA_RESIST_DN 0.5722 1.648226 0.014315 0.980393 0.968

Regulated by UV-B light in normal human
epidermal keratinocytes, cluster 6

UVB_NHEK3_C6 0.4663 1.642358 0.018987 0.885222 0.979

Microarray data for human type 2 diabetes mellitus (DM2) study [23] was re-analyzed with GSEA method (using the newest version (v 2.0.1) GSEA tool [22]) to compare
NGT versus IGT+DM2. 1000 permutations were performed. **: p-value(s) is adjusted to p = 1/number of permutation for p = 0 according to GSEA manual.
doi:10.1371/journal.pone.0003288.t003

SLEPR Pathway Ranking Method

PLoS ONE | www.plosone.org 5 September 2008 | Volume 3 | Issue 9 | e3288



there may be higher levels expression in general in the Inclusion

class (NGT) compared to Exclusion class (IGT+DM2). Interest-

ingly, after ranking these genes with a method similar to a class

difference ranking method used for term ranking (See Materials

And Methods section), many of genes at the top of the ranked list

showed strong relevance with diabetes, and metabolism (Table

S3). Although the higher ranked genes appear to be distributed

with higher frequency in sample population, each of the sample-

level differentiated genes appeared widely varying among the

samples. However, less variance was observed within the top

ranked genes (Figure S2). This is consistent with the previous

observation [23], and explains why common gene-level methods

can not reveal the changes that occurred at pathway-level.

In order to determine how stable the SLEPR method is in terms

of the choice of changed directions of sample-level differentiated

genes and/or class setting, we also used SLEPR with a two-sided

MADe option for highly or lowly expressed genes in NGT samples

compared to DM2 samples for the same class setting (NGT versus

DM2). Consistent with the one-sided MADe result (Table 1, 2), we

found a very similar result with ‘‘Mitochondrial genes’’ (two of

them from different resources: No. 1 and No. 5 terms), ‘‘PGC

related genes’’ (No. 3 term), and ‘‘oxidative phosphorylation’’ as

the top ranked terms in the lists with two-sided MADe options

(highly expressed or lowly expressed in NGT) (Table S4). We also

identified two or more of relevant terms including ‘‘Mitochondrial

genes’’, ‘‘PGC related genes’’, ‘‘Oxidative Phosphorylation’’, and

‘‘Genes involved in electron transport’’ as top ranked terms as well

in many different class contrast settings: NGT versus DM2+IGT

with two-sided MADe; DM2 lower than NGT with one-sided

MADe; DM2+IGT lower than NGT with one-sided MADe; NGT

versus IGT with one-sided MADe (data not shown).

Selection of cutoffs for significance testing in any gene-set

analysis will have a dramatic impact on the number of pathways

identified and the reliability of the results obtained. In order to

determine the impact of the cutoffs for sample-level differentiated

genes on the final SLEPR results, we used a series of different

cutoffs for selection of sample-level differentiated genes for

comparison of permutated p-values and ranks of SLEPR analysis

results for human type 2 diabetes mellitus (DM2) data [23] with

IGT and DM2 samples as the Exclusion/Background class and

with one-side MADe method for highly expressed genes (as above).

We selected the top 5 ranked terms from the original SLEPR

result (Table 1) for comparison of permutated p-values and ranks

for the same terms in SLEPR results with other cutoffs for selection

of sample-level differentiated genes (Table 5). We found that,

unlike the conventional ORA method [31], which usually uses a

gene-level differentiated gene list, the SLEPR method appears to

be quite resistant to the cutoff change effects. For a wide range of

values for cutoffs of sample-level differentiated genes, SLEPR

maintains the main biological themes in its analysis results in that

all the top ranked terms based on the original 16MADe cutoff are

primarily ranked at the top level (most of the terms still remained

at the top level: ranked within the top 10 functional terms and p-

value less than or close to 0.01). This stability is an important

property of the SLEPR method that would be beneficial, especially

for the situation when different HTP samples with dramatically

different dynamic ranges are being analyzed.

To compare how significant the enrichment score of a top

ranked term from SLEPR result is on the DM2 dataset to that of a

gene set by random chance, we generated 2000 randomly selected

gene sets of the same size as the gene set ‘‘Oxidative

Phosphorylation (MOOTHA_VOXPHOS)’’ (80 genes per gene

set) from annotated genes in the GSEA database or MSigDB.

Then the 80 genes of ‘‘Oxidative Phosphorylation’’ were mixed

with the 2000 randomly selected gene sets to build up the synthetic

database for SLEPR analysis using the same human DM2 dataset.

As expected, ‘‘Oxidative Phosphorylation’’ was identified as the

No. 1 top ranked term with FDR q-value as 0.016 when NGT

versus IGT+DM2 class contrast was used, whereas the No. 2

ranked term (PermTerm157) has FDR q-value at as high as 0.502,

indicating a ‘‘gap’’ between the real relevant terms and the

accidental hit of a randomly selected gene set term (Table S5). A

similar result was found using NGT versus DM2 contrast (data not

shown).

Case Study 2: GNF Human Tissue Datasets
We next used the SLEPR method to analyze another public

microarray dataset: Affymetrix U133A tissue expression dataset,

derived from 79 human tissues, from the Genomic Institute of the

Novartis Research Foundation (GNF) and described previously

[41]. In this case, we used both GSEA annotation and GO (gene

ontology) biological processes as the input gene sets for SLEPR

Table 4. Top ranked GSEA annotation terms in GSEA Analysis Result for Comparison of NGT vs DM2 in human DM2 data.

GSEA_TermName GSEA_TermID ES NES NOM p-val FDR q-val FWER p-val

Up-regulated following treatment with Et-743 at any
timepoint in at least 8 of 11 sarcoma cell lines

ET743_SARCOMA_UP 0.4778 1.851262 0.0019455 0.835225 0.416

Oxidative Phosphorylation MOOTHA_VOXPHOS 0.6187 1.844164 0.02 0.460014 0.446

Target genes down regulated by p53 KANNAN_P53_DN 0.6835 1.84351 0.005848 0.309037 0.447

Genes involved in electron transport ELECTRON_TRANSPORT_CHAIN 0.594 1.840375 0.0217822 0.240362 0.46

p-regulated in liver, heart or kidney tissue from
hypophysectomized rats (lacking growth hormone),
compared to normal controls

HYPOPHYSECTOMY_RAT_UP 0.5129 1.776757 0.0040404 0.3918 0.664

Upregulated by expression of mutant MeCP2 (Rett
syndrome) vs. wt MeCP2 in fibroblasts

RETT_UP 0.544 1.697153 0.0179641 0.740229 0.855

Genes down-regulated by LIF treatment (10 ng/ml,
overnight) in AtT20 cells

ABBUD_LIF_DN 0.569 1.682703 0.0226804 0.727445 0.872

OXIDATIVE_PHOSPHORYLATION OXIDATIVE_PHOSPHORYLATION 0.5167 1.653935 0.0459082 0.832665 0.908

Microarray data for human type 2 diabetes mellitus (DM2) study [23] was re-analyzed with GSEA method (using the newest version (v 2.0.1) GSEA tool [22]) to compare
NGT versus DM2. 1000 permutations were performed. **: p-value(s) is adjusted to p = 1/number of permutation for p = 0 according to GSEA manual.
doi:10.1371/journal.pone.0003288.t004
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analysis. Specifically, we examined whether there were tissue-

specific biological processes that are enriched in testis-related

tissues that were highly ranked in SLEPR analysis when

configured to select testis-related tissues as the Inclusion class

and the other tissues as Exclusion class, using one-sided MADe

method for highly expressed genes. The expected result was

Figure 2. Heatmap of enrichment scores in all samples from NGT versus IGT and DM2 for the top 17 ranked terms of SLEPR result
listed in Table S2. The enrichment scores, which in general derived from Fisher’s exact test p-value using formula (2Log10(p-value)), were floored
to 0 if the ListHits,2 or p-value.0.05. The rows of the heatmap are the ranked terms in the same order as in Table S2 (Top 7 of them shown in
Table 1) from top to bottom with the higher ranks at the top. The gradient of red color in heatmap indicated the enrichment levels.
doi:10.1371/journal.pone.0003288.g002

Table 5. Comparison of SLEPR results using a series of cutoffs for selection of sample-level differentiated genes.

TermName (TermID) 0.5XMADe 0.75XMADe 1XMADe 1.25XMADe 1.5XMADe

p-Value* Rank p-Value* Rank p-Value* Rank p-Value* Rank p-Value* Rank

Mitochondrial genes
(HUMAN_MITODB_6_2002)

0.150 153 3.08E-04 1 1.16E-04 1 6.58E-05 2 1.03E-05 1

Mitochondrial genes (MITOCHONDRIA) 0.170 179 6.38E-04 2 1.34E-04 2 2.22E-05 1 2.31E-05 2

Genes involved in electron transport
(ELECTRON_TRANSPORT_CHAIN)

4.49E-03 7 8.82E-04 4 3.31E-04 3 1.75E-04 3 7.61E-05 4

Oxidative Phosphorylation
(MOOTHA_VOXPHOS)

1.01E-02 9 6.91E-04 3 4.83E-04 4 2.22E-04 4 7.53E-05 3

PGC related genes (PGC) 1.05E-02 10 2.93E-03 6 1.47E-03 5 5.05E-04 6 6.21E-04 7

Comparison of permutated p-values and ranks of SLEPR analysis results of for human type 2 diabetes mellitus (DM2) data [23] with IGT and DM2 samples as Exclusion/
Background class by using a series of different cutoffs (0.5, 0.75,1,1.25,1.56of MADe) for selection of highly expressed genes as sample-level differentiated genes. The
one-side MADe method selecting for highly expressed genes was used (see Materials And Methods section). The top 5 ranked terms from the case of 1XMADe are
selected for comparison of permutated p-values and ranks for the same terms with those derived from other cutoffs. 1000 permutations were performed.
doi:10.1371/journal.pone.0003288.t005
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obtained in SLEPR analysis using either GSEA annotation or GO

biological processes in WPS [4], Yi and Stephens, unpublished

work, as shown in Table 6 for GSEA annotations and Table 7 for

GO biological processes. There are two top ranked functional

terms from GSEA annotations (the No. 1 and No. 2 ranked terms)

that are directly related to testis-related gene expression as

obviously described by the terms themselves (Table 6). As a

comparison, the same data was analyzed using the GSEA method

to compare the selected testis-related tissues with other tissues

within the GNF dataset. As shown in Table 8, the top 2 GSEA

terms obtained by GSEA method do not appear to be directly

related to testis-related functions, whereas the same two terms that

were found as the top 2 terms in the SLEPR method were only

ranked as terms 3 and 4, respectively, in the GSEA analysis result.

Interestingly, we also observed that there exists a sharp rise in

FDR q-values from 0.121 to 0.417 in between No. 2 and 3 terms

of GSEA result and in between No. 1 and No. 2 as well (Table 8),

which seems to reduce the significance of No. 3 and 4 terms that

do not appear to be directly relevant to the function of testis. This

observation makes the GSEA result more difficult to interpret in

that the testis-specific terms (No. 3 and 4 terms) appear to be less

significant (Table 8). In contrast, we observed a sharp rise in FDR

q-values from 0.0005 to 0.0437 between term No. 2 and 3 of the

SLEPR result (Table 6) and such a ‘‘gap’’ in SLEPR result may

help distinguish the testis-specific terms (The top 2 terms) from

more generic terms (No. 3, and 4 term) (Table 6)

Similarly, most of the top ranked terms in the SLEPR result

using GO biological processes are related to testis-specific

functions such as spermatogenesis, and male gamete generation

(Table 7). Interestingly, we again observed a sharp rise in FDR q-

values from 0.0002 to 0.044167 in between No. 5 term

(gametogenesis) and No. 6 term (nuclear division). Interestingly,

all of the top 5 terms are testis-specific terms whereas beginning at

No. 6 term, the terms that ranked below are more generic terms,

which suggested a useful FDR ‘‘gap’’ between significant and

insignificant terms that seems to reflect the difference in biological

relevance or specificity. This observation is also evident in a

heatmap of enrichment scores in that these testis-specific

functional terms (The top 5 terms in Table 7) are enriched

consistently and more specifically in testis-related tissues compared

to rest of the tissues in the dataset (Figure 3).

We also asked the same question as to muscle-related tissues in

the data. In contrast to testis, where essentially a single biological

process is performed, we felt that muscle would represent a more

diverse tissue type, since it is involved in more processes. We

expected that muscle-specific functions or processes would be

highly ranked in SLEPR analysis if we chose to select muscle-

related tissues as the Inclusion class and the other tissues as

Exclusion class, and used a one-sided MADe method to include

highly expressed genes as the sample-level differentiated genes. As

expected, we found that the two top ranked terms are muscle-

specific functions in the SLEPR analysis result using GO biological

Table 6. Top ranked terms in SLEPR analysis result for testis-related tissues in GNF dataset.

GSEA_TermName GSEA_TermID Combined_Ranking Permutated_P_Val FDR_q_Val

Genes expressed specifically in human testis tissue HUMAN_TISSUE_TESTIS 25.62201 7.29E-07 0.001

Testis related genes curated from the GNF normal
tissue compendium

TESTIS_EXPRESSED_GENES 24.08417 7.29E-07 0.0005

Cell-cycle dependent genes regulated following
exposure to serum in a variety of human fibroblast
cell lines

SERUM_FIBROBLAST_CELLCYCLE 6.951284 9.56E-05 0.0437

50 top ranked SAM-defined over-expressed genes
in each subgroup__PR

ZHAN_MM_CD138_PR_VS_REST 6.523997 0.000106 0.0365

Microarray data for GNF human tissues study [41] was analyzed with SLEPR method to compare testis related tissues (total 5 testis related tissues selected: Testis Germ
Cells, Testis Interstitial, Testis Leydig Cell, Testis Seminiferous Tubule, Testis) (as Inclusion/Target tissues in SLEPR) to the other tissues (total 74 tissues) (as Exclusion/
Background class in SLEPR) as for GSEA annotated gene sets. In SLEPR method, one-side MADe method for selection of highly expressed genes as sample-level
differentiated genes was used. 1000 permutations were performed.
doi:10.1371/journal.pone.0003288.t006

Table 7. Top ranked GO Biological Processes terms in SLEPR analysis result for testis-related tissues in GNF dataset.

TermName Term Combined_Ranking Permutated_P_Val FDR_q_Val

spermatogenesis GO:0007283 17.21279 6.71E-07 0.0005

male gamete generation GO:0048232 17.21279 6.71E-07 0.0005

sexual reproduction GO:0019953 16.27175 6.71E-07 0.000333

reproduction GO:0000003 16.17275 6.71E-07 0.00025

gametogenesis GO:0007276 13.95838 6.71E-07 0.0002

nuclear division GO:0000280 4.461007 0.000178 0.044167

M phase GO:0000279 4.361697 0.000195 0.041429

Microarray data for GNF human tissues study [41] was analyzed with SLEPR method to compare testis related tissues (total 5 testis related tissues selected: Testis Germ
Cells, Testis Interstitial, Testis Leydig Cell, Testis Seminiferous Tubule, Testis) as Inclusion/Target tissue to the rest of the tissues (74 other tissues) as Exclusion/
Background class for testis-specific GO biological processes, using one-side MADe method for selection of highly expressed genes as sample-level differentiated genes.
1000 permutations were performed.
doi:10.1371/journal.pone.0003288.t007
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processes (Table 9). Despite the fact that the muscle-related tissues

we selected are quite divergent in that they include cardiac

myocytes, smooth muscle, heart, and skeletal muscle, which were

selected together as Inclusion class, the divergence among these

tissues might be quite small compared to the divergence among

other tissues, which makes the pathway ranking still favor muscle-

specific terms. This shows another strength of the SLEPR method

in that it may still be able to catch the pathway-level difference

when there is divergence or large variation amongst the samples in

the same phenotypic class. This is useful in that in cases where

sufficient samples are not available from an individual study, they

may be able to be combined with samples from other studies.

Since both testis-related tissues and muscle-related tissues have a

limited number of samples: 5 and 4, respectively, which are only a

small portion of total 79 tissues in the dataset, there is a possibility

that the small number of the samples in the Inclusion class may

cause a bias favorable to the inclusion class. To test this possibility,

we chose a related tissue type with more samples in the dataset to

test whether the sample-size influences the SLEPR method. We

choose neural or brain-related tissues as our Inclusion class with a

total sample size of 24 and other tissues as the Exclusion tissues.

We ran the SLEPR analysis on GO biological processes and used

the one-sided MADe method to include highly expressed genes as

the sample-level differentiated genes. Interestingly, the sample size

of the Inclusion class does not seem to influence the SLEPR result

- the top 4 ranked GO terms are indeed very specific to neural-

related biological processes (Table S6).

As described above, among the several tissue types (e.g., testis,

muscle, neural-related tissues) we have chosen from this human

tissue dataset to test the SLEPR method, every time it successfully

identified many top-ranked terms that are directly relevant to what

is expected from the tissue types that were chosen. In order to

further characterize the pathway-level differentiated genes at the

top of these ranked term lists, we retrieved the associated genes for

the top ranked testis-specific terms (Table 6) or muscle-specific

terms (Table 9) using the new features in the pathway pattern

Table 8. Top ranked terms in GSEA analysis result for testis-related tissues in GNF dataset.

GSEA_TermName GSEA_TermID ES NES NOM p-val FDR q-val FWER p-val

50 most interesting genes upregulated by the
combination of TSA and DAC in at least one of
four pancreatic cancer cell lines, but not in
normal (HPDE) cells

TSADAC_PANC50_UP 0.571787 2.3071 0.001** 0.002 0.004

Up-regulated 2 hours after VEGF treatment in
human umbilical vein endothelial cells

VEGF_HUVEC_2HRS_UP 0.562051 2.01 0.001** 0.077 0.121

Testis related genes curated from the GNF normal
tissue compendium

TESTIS_EXPRESSED_GENES 0.868249 1.8032 0.001** 0.271 0.417

Genes expressed specifically in human testis tissue HUMAN_TISSUE_TESTIS 0.904183 1.7737 0.001** 0.255 0.474

Microarray data for GNF human tissues study [41] was analyzed with GSEA method [23] (Using the newest version (v2.0.1) GSEA tool [24]) to compare testis related
tissues (total 5 testis related tissues selected: Testis Germ Cells, Testis Interstitial, Testis Leydig Cell, Testis Seminiferous Tubule, Testis) to the other tissues (total 74
tissues) as for GSEA annotated gene sets. 1000 permutations were performed. **: p-value(s) is adjusted to p = 1/number of permutation for p = 0 according to GSEA
manual.
doi:10.1371/journal.pone.0003288.t008

Figure 3. Heatmap of enrichment scores of sample-level differentiated genes of all samples in human GNF tissue dataset [41] for
the top 8 ranked GO biological process terms shown in Table 7. The enrichment scores, which in general derived from Fisher’s exact test p-
value using formula (2Log10(p-value)), were floored to 0 if the ListHits,2 or p-value.0.05. The rows of the heatmap are the terms and columns are
tissue samples from the dataset. The gradient of red color in heatmap indicated the enrichment levels.
doi:10.1371/journal.pone.0003288.g003
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extraction pipeline of the WPS program [4], Yi and Stephens

unpublished work. Interestingly, we found that many of pathway-

level differentiated genes associated with these testis-specific or

muscle-specific terms are expressed at relatively higher level in

only a small portion of these selected testis-related or muscle-

related tissues although some genes are highly expressed in other

tissue types. Figure S3 shows the expression patterns of such genes,

which are associated with the top 2 ranked muscle-specific terms

from SLEPR analysis shown in Table 9 (i.e., muscle contraction

and muscle development). This observation suggests that individ-

ual sample-level variations widely exist across the sample

population, even for the genes that are involved in these highly

relevant biological processes. This suggests that the commonly

used gene-level analysis methods may fail to identify such relevant

pathway-level differentiated genes.

Case Study 3: Prostate Cancer Datasets
We also used the SLEPR method to analyze a well studied

prostate cancer microarray dataset: Affymetrix U95a dataset,

derived from 25 human prostate cancer tissues and 9 nonmalignant

tissues described previously [42,43]. In this case, we used both

GSEA annotation and KEGG pathway collections [4]. Interesting-

ly, in our SLEPR analysis for both highly and lowly expressed genes

(two-sided MADe option for SLEPR) (Table 10), we found that the

top ranked functional gene sets from GSEA annotation are

obviously cancer-related including: 1) ‘‘Sixty-seven genes commonly

upregulated in cancer relative to normal tissue from a meta-analysis

of the OncoMine gene expression database’’ (p = 5.43E-7, FDR q-

value = 0.00011) and 2) ‘‘Genes highly expressed in hepatocellular

carcinoma with poor survival’’ (p = 5.43E-7, FDR q-value = 2.94E-

5). Another top ranked gene set: ‘‘Genes up-regulated by MYC in

P493-6 (B-cell)’’ (p = 5.43E-7, FDR q-value = 3.45E-5), may be also

consistent with the previous observation as to the presence of

varying amount of B-cells within these tumors [42] and the fact that

c-MYC is a proto-oncogene that is commonly activated in a variety

of human tumors and has been shown to promote tumor

angiogenesis [44]. In contrast, in the GSEA analysis result

(Table 11), only two of the top terms were found in the top list:

‘‘Genes up-regulated by MYC in P493-6 (B-cell)’’ (p = 0 (actually

p = 0.001 based on 1000 permutation according to GSEA manual),

FDR q-value = 0.031) and ‘‘Sixty-seven genes commonly upregu-

lated in cancer relative to normal tissue from a meta-analysis of the

OncoMine gene expression database’’ (p = 0.004, FDR q-val-

ue = 0.058). However, for the third term: Genes highly expressed

in hepatocellular carcinoma with poor survival, GSEA only ranked

it at position 124 in the list with a very low significance level

(p = 0.167, FDR q-value = 0.467) (Table S7).

We also ran SLEPR analysis using KEGG annotation for this

dataset with both highly and lowly expressed genes (two-sided

MADe option for SLEPR). Surprisingly, we saw a pathway

‘‘Cholera – Infection’’ at the top of the ranked list (Table S8). As

found by others using the same dataset with the conventional

ORA method [43], ‘‘Cholera – Infection’’ is related to tumorgen-

esis since this pathway contains genes such as adenylate cyclase

signaling and phospholipase C that are changed in tumor cells. In

addition, ‘‘Integrin-mediated cell adhesion’’ was found as the next

top ranked pathway (Table S8), which has been suggested as a

target pathway in many other studies to achieve an optimization of

anticancer treatments, probably through interfering with anti-

apoptotic signaling [45] and/or metastasis. However, this pathway

was not found by conventional ORA analysis or gene-level based

analysis [42,43], probably due to the dispersion of the data or a

lack of consistency at the gene-level for genes in this pathway.

Discussion

More and more evidences have shown that conventional gene-

level analysis methods seeking biomarkers or differential genes

encountered limitations and difficulties from both statistical and

biological sides [46–47]. As with the analysis approaches discussed

in the Introduction section, most, if not all of these gene selection

methods consider the global behavior of individual genes across

the sample population in one class compared to another class as

the basis for grouping by applying various statistics including fold

change, p-value and FDR. The genes associated with the

phenotype of interest that behave more consistently within both

sides of the contrasted classes will be favorably selected as

differential genes and pursued in follow-up studies. The assump-

tion that the most critically involved genes tend to behave in a

similar way between samples within each class is well founded in

many cases, especially for single genes that cause rare diseases.

However, the inherent complexity of biological systems, the

multiple stages where protein function can be regulated, and the

Table 9. Top ranked GO Biological Processes terms of SLEPR result for muscle-related tissues in GNF dataset.

TermName Term Combined_Ranking Permutated_P_Val FDR_q_Val

muscle contraction GO:0006936 5.035783 0.000195 0.289

muscle development GO:0007517 3.766843 0.000438 0.325

cell-cell signaling GO:0007267 3.115529 0.000755 0.373667

morphogenesis GO:0009653 2.51698 0.001281 0.47525

development GO:0007275 2.509388 0.001292 0.3836

organogenesis GO:0009887 2.434454 0.001375 0.34

cell motility GO:0006928 2.410239 0.00141 0.298857

striated muscle contraction GO:0006941 1.781977 0.002482 0.4605

regulation of body fluids GO:0050878 1.602872 0.003043 0.501778

angiogenesis GO:0001525 1.40132 0.003982 0.5909

Microarray data for GNF human tissues study [41] was analyzed with SLEPR method to compare muscle related tissues (total 4 muscle related tissues selected: Cardiac
Myocytes, Heart, Skeletal Muscle, Smooth Muscle) as Inclusion/Target tissue to the rest of tissues (74 other tissues) as Exclusion/Background class for testis-specific GO
biological processes, using one-side MADe method for selection of highly expressed genes as sample-level differentiated genes (see Materials And Methods section).
1000 permutations were performed.
doi:10.1371/journal.pone.0003288.t009
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high overall levels of individual variations, suggest that this

approach may miss important aspects of biology.

Interestingly, Chinnaiyan’s group has hypothesized that many

oncogenes may exhibit marked over-expression only in a subset

of tumor samples and traditional analysis methods such as t-

statistic has limitation to detect them [48]. Consequently, they

proposed a novel method, commonly known as ‘‘Cancer outlier

profile analysis’’ or COPA, which can effectively uncover such

oncogene outlier expression profile [48]. Such efforts have been

improved and extended by a few other groups [49–52]. These

methods are great renovations over the conventional t-statistic

based or other gene-level consistency-based methods. However,

since these methods mainly focus on extremely expressed genes

or outliers and still consider all of their statistics at gene-level,

although they may use other genes’ data to estimate the

significance of their statistics, they are still considered as gene-

level approaches.

In the current study, we explored a new method termed

SLEPR, which considers the possibility that genetic impacts

leading to class distinctions can occur, and consequently be

measured, at the pathway level rather than at the individual gene

level. Our method is motivated not only similarly as COPA

methods intended for oncogene outliers occurred in only a subset

of tumor samples, but also more importantly by the observation

that many diseases are not simply caused by single genes, including

complex diseases such as cancers, heart diseases, and hypertension,

which have been shown to be caused by mutations in multiple

genes in the same or related pathways or caused by single but

different genes in individuals that causing biological changes in the

same or related pathways among the population [53–56]. This is

Table 10. Top ranked terms in SLEPR analysis results for a well-studied prostate cancer dataset.

GSEA_TermName GSEA_TermID Combined_Ranking Permutated_P_Val FDR q_Val

Sixty-seven genes commonly upregulated in
cancer relative to normal tissue, from a
meta-analysis of the OncoMine gene
expression database

CANCER_NEOPLASTIC_META_UP 7.312481 5.43E-07 0.000111

Genes downregulated in response to
glutamine starvation

PENG_GLUTAMINE_DN 6.578343 5.43E-07 6.25E-05

These are genes identified by simple statistical
criteria as differing in their mRNA expresssion
between WTs and fetal kidneys LOW

LI_FETAL_VS_WT_KIDNEY_UP 5.961163 5.43E-07 0.00004

Genes 2fold upregulated by insulin ROME_INSULIN_2F_UP 5.905375 5.43E-07 3.7E-05

Genes up-regulated by MYC in P493-6 (B-cell) SCHUMACHER_MYC_UP 5.762658 5.43E-07 3.45E-05

Genes highly expressed in hepatocellular
carcinoma with poor survival.

HCC_SURVIVAL_GOOD_VS_POOR_DN 5.449725 5.43E-07 2.94E-05

A well studied prostate cancer dataset [42,43] was analyzed with SLEPR method. SLEPR method used the 25 tumor samples as Inclusion/Target class compared to 9
nonmalignant tissues as Exclusion/Background class for GSEA annotated terms, by two-sided MADe method for selection of both highly and lowly expressed genes as
sample-level differentiated genes. Only top ranked functional terms were shown in the table (the chromosomal location-based annotation terms were taken out for
simplicity). 1000 permutations were performed.
doi:10.1371/journal.pone.0003288.t010

Table 11. Top ranked terms in GSEA analysis results for a well-studied prostate cancer dataset.

GSEA_TermName GSEA_TermID ES NES NOM p-val FDR q-val FWER p-val

Genes up-regulated by MYC in P493-6 (B-cell) SCHUMACHER_MYC_UP 0.6769 2.043 0.001* 0.031466 0.039

Genes overexpressed in polyclonal plasmablastic cells
(PPCs), mature plasma cells isolated from tonsils (TPCs),
and mature plasma cells isolated from bone marrow
(BMPCs), as compared to B cells purified from
peripheral blood (PBBs) and tonsils (TBCs)

TARTE_PC 0.6101 1.954 0.0019193 0.07472 0.144

Genes downregulated in response to glutamine
starvation

PENG_GLUTAMINE_DN 0.4842 1.939 0.001** 0.058919 0.167

Genes downregulated in response to leucine starvation PENG_LEUCINE_DN 0.5067 1.911 0.001** 0.066378 0.238

Downregulated in HL-60 promyeloid leukemic cells
after treatment with the cytotoxic drug cantharidin

CANTHARIDIN_DN 0.6218 1.903 0.001* 0.059042 0.26

Genes downregulated in response to rapamycin
starvation

PENG_RAPAMYCIN_DN 0.5000 1.891 0.0020576 0.060076 0.309

Sixty-seven genes commonly upregulated in cancer
relative to normal tissue, from a meta-analysis of the
OncoMine gene expression database

CANCER_NEOPLASTIC_META_UP 0.6634 1.883 0.0042105 0.058265 0.335

A well studied prostate cancer dataset [42,43] was analyzed with GSEA method (Using the newest version (v2.0.1) GSEA tool [24]). GSEA compared the tumor samples to
the nonmalignant tissues. Only top ranked functional terms were shown in the table (the chromosomal location-based annotation terms were taken out for simplicity,
the full ranked list can be obtained from table S7). 1000 permutations were performed. **: p-value(s) is adjusted to p = 1/number of permutation for p = 0 according to
GSEA manual.
doi:10.1371/journal.pone.0003288.t011
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what we proposed as pathway-level consistency instead of gene-

level consistency that traditional methods are based on.

In order to evaluate inter-sample consistency at the pathway-

level, we introduce a new concept: sample-level differentiated

genes (SLDGs). Unlike conventional approaches for gene-level

differentiated genes, which use data from the sample population of

one class compared to those of the other class, the SLDGs are

based on the data of each individual sample from both sides of the

contrasted class compared to the Exclusion/Background class. We

make no assumptions of the data distribution and use MADe, a

factored Median Absolute Deviation (MAD), which has more

robust statistics compared to standard deviation-based statistics

and is largely unaffected by the presence of extreme values [57–

58] (see Materials And Methods section). Since we select SLDGs

from the higher and/or lower ends (distance of MADe from the

median) of that genes’ data distribution in the Exclusion/

Background class sample, the method should capture both gene-

level and pathway-level differential effects. It should be noticed

that our SLDGs are different from the outlier genes selected by

COPA methods mentioned early in that SLDGs are sample-wise

genes called on behalf of each sample, whereas outlier genes from

COPA methods are called population-wise in spite of considering

the occurrence of outlier genes in only a subset of population. The

second difference is that the SLDGs not only include outliers as

conventionally defined, but also cover high and/or low end of

expressers as the basis for the next-step analysis of SLEPR.

It is possible that when SLEPR method selects SLDGs with

1XMADe as the cutoff, the chance of outlier data leading to

mistakenly selecting genes would be higher. The reason that we did

not filter out the outlier data in advance is that we believe some

outliers have biological relevance, just like what the COPA methods

seek for, which is not caused by experimental issues. Simply filtering

these genes out before evaluating their biological relevance could

lead to loss of important information. Since we use the Fisher’s exact

test based enrichment method for pathway-level consistency

analysis, the outliers could work together with other relevant genes

of high and/or low end expressers to contribute to enrichment

scores, which otherwise would be reduced to less significant levels.

We have tested our method with a series of constants (0.5, 0.75,

1.25, 1.5; Table 5; even 1.75, data not shown) that multiply MADe

as the final cutoffs for selecting sample-level differentiated genes

rather than the default setting of 1.0 and our MADe selections are

quite stable in the final pathway-ranking results in that they pick

up the same set of terms as highly or top ranked terms. This

suggests that the SLEPR method is quite stable in terms of the

cutoff for selection of genes, which is in contrast to the

conventional ORA method using a single summary gene list as a

starting point that has been claimed to be sensitive to the cutoff

used for getting the gene lists [31].

Thus, sample-level differentiated genes represent a robust input

starting point for subsequent SLEPR enrichment analysis using

Fisher’s exact test as the basis for discrimination of changed

pathways. The derived enrichment score for each sample from both

sides of the contrasted classes was used to evaluate the pathway-level

consistency. We further evaluated the consistency across samples

between both Inclusion and Exclusion classes for the best pathway

that was present at a higher frequency and higher enrichment

magnitudes in samples of the Inclusion/Target class but not in

Exclusion/Background class, or with less frequency or lower

enrichment magnitudes. This is the basic rationale that we used

to set up the pathway-ranking algorithm in SLEPR method.

As we have shown in example datasets, the SLEPR method

worked quite well and was able to not only reproduce the

previously analyzed and experimentally validated results (the

human DM2 dataset, Table 1,2; prostate cancer dataset, Table 10)

or generated analysis results that are consistent with biologically

relevant expectations (the GNF tissue dataset, Table 6, 7 and 9;

prostate cancer dataset, Table 10), but also may have provided

more opportunity to study those highly ranking terms using the

pathway-level differentiated genes derived from the corresponding

sample-level differentiated genes. We also suggest that one could

even rank these genes for their possible relevance to a phenotype

of interest between the contrasted classes as we showed for our

pathway-ranking algorithms (Figure S1, Table S3, also see

Materials And Methods section).

As a comparison with other group test methods such as the

GSEA method [23], we carefully selected three datasets, which are

well characterized public datasets that either have had the results

validated (the human DM2 dataset, prostate cancer dataset

[23,42]) or have clear biological expectations based on the nature

of the studies they were derived from (the GNF human tissue

dataset [41]). Thus, the analysis results from these datasets can be

easily interpretated and compared for different analysis methods.

In addition, we are confident the choice of these well-character-

ized data should be better than any simulated data or synthetic

datasets, since they carry natural noise levels from both

experimental and biological variations. In fact, we did a couple

of tests using synthetic databases derived from randomly selected

genes forming artificial gene sets mixed with a real gene set and

SLEPR worked very well in these cases (Table S5).

We have found that in all the head-to-head comparisons with

the GSEA method, our SLEPR method consistently did a better

job or got at least compatible results with those from the GSEA

method (Table 1, 2 vs. 3, 4; 6 vs. 8; 10 vs.11). First of all, our

method was more sensitive than the GSEA method at uncovering

biological themes with higher significance in general. Such a

conclusion was drawn by comparing p-values, FDR q-values and

rankings obtained by both methods for the sense of relative

significance considering all the terms in the results, taking into

account the difficulty in directly comparing the p-values and FDR

q-values derived from the two quite different methods with

differences in algorithms and rationales. For example, the highly

ranked term ‘‘oxidative phosphorylation’’ has higher significance

revealed by SLEPR than by GSEA as mentioned in the Result

section (Table 1–4). Secondly, as evident in Table 1 to 4 and 10

to11, our SLEPR method was more powerful than the GSEA

method in terms of finding more relevant terms with a broader

scope for biological relevance functionally linked to the phenotypes

under study. For example, 5 related terms were consistently

uncovered by SLEPR (Table 1, 2) compared to only 1 or 3 of them

that were found by GSEA with the same class setting, respectively

(Table 3, 4). Thirdly, our method was consistent and powerful in

the analysis result with flexible inclusion of relatively diversified

but related samples into analysis, especially when the intermediate

class samples were included. For example, as evident in Table 1 to

4, particularly in Table 1 vs. 3, where DM2 and IGT were pooled

together as one class in class comparison with NGT (NGT vs.

DM2+IGT) based on the observation that the intermediate class

IGT is more similar to DM2 in phenotype than NGT, SLEPR has

consistently uncovered many of the relevant functional terms

similar to class comparison of NGT vs. DM2 (Table 1, 2), whereas

GSEA failed to do so (Table 3, 4). In addition, SLEPR was able to

find consensus of underlying functions within related but different

samples, which can be only ‘‘loosely’’ defined as one class (e.g.,

testis-related tissue in Table 6 and 8; muscle-related tissues in

Table 9; neural-related tissue in Table S6). This would give

SLEPR more flexibility and power to overcome the variations and

naturally existing noise in biology samples to find the major

SLEPR Pathway Ranking Method
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biological consensus. Fourthly, in a number of cases mentioned in

the RESULTS section, the appearance of FDR ‘‘gap’’ (the sharp

rise) in SLEPR results implicated a potential statistical threshold

that may have biological relevance, which may help users

distinguish the significant terms from non-significant ones and

easily draw a line to select the terms for further investigation.

Fifthly, in contrast to the potential bias in GSEA method that

higher enrichment scores were assigned preferentially to gene sets

of large size [40], no such bias exists in SLEPR method (Figure

S4). Lastly, since our SLEPR method begins with sample-level

differentiated genes in contrast to the gene-level consistency-based

gene ranking in the GSEA method, SLEPR is designed to capture

the sample-wise gene-level changes taking into account individual

variations and specificity over the population and obviously would

cover more possible gene-level changes in the population with the

phenotype of interest. This is another benefit that SLEPR is

designed to pursue. Consequently, SLEPR would be able to

retrieve more possible relevant genes as pathway-level differenti-

ated genes that may account for phenotype of interest, which

GSEA or other group test methods may have missed due to the

fact that they only consider the genes with better across-sample

data behavior (e.g., SNR on top of mean and standard deviation of

both contrasted classes in GSEA [32]; correlated expression

pattern [33]; fold change or ratio in between two classes [27]).

It is very important to emphasize that SLEPR is neither a simple

extension of GSEA or other group test methods with similar

analysis goals nor COPA methods specifically looking for outlier

genes, but rather a novel pathway analysis method in terms of its

unique concepts and methodology. Unlike others, SLEPR does

not attempt to rank the genes or derive conventional differentiated

genes at the beginning; instead, it just collects the potential genes

for each sample that behave unusually compared to the

population. Then SLEPR ranks the pathways or terms based on

how consistent the enrichment levels of the terms amongst the

selected sample-level differentiated genes of each sample. It is

SLEPR that points out the new concept for the analysis: pathway-

level consistency as the basis for analysis, which is not considered

in any of the other analysis methods including GSEA.

In conclusion, the SLEPR method represents a novel way to

analyze high throughput data through pathway-level consistencies

that have been proven to be effective in uncovering biological

themes. Since sample-level differentiated genes can be selected

from datasets measuring changes at different levels of regulation,

including transcription, protein expression, and phosphorylation

occurring in the same individual samples, all HTP data measuring

these changes in the systems biology era can be integrated and

included in SLEPR method. Furthermore, we feel that using

sample-level rather than gene-level enrichment as a starting point

may represent a much more robust and versatile approach for

integration of data from multiple sources as new technologies

advance the ability to assess regulatory networks at multiple levels.

Materials and Methods

Three public microarray datasets [23,41,42] were obtained

from the original publications and used for purpose of demon-

stration for SLEPR method. All the described procedures for the

SLEPR method are implemented into and as a part of newly

developed pathway pattern extraction pipeline in the original WPS

program developed previously [4], which can be downloaded from

the WPS website (http://www.abcc.ncifcrf.gov/wps/wps_index.

php). The details and program interface of the pathway pattern

extraction pipeline in WPS program are described elsewhere in a

separate manuscript (Yi and Stephens unpublished work). The

following sections are details of those procedures, which were also

schematically illustrated in Figure 1.

Inclusion/Target Class versus Exclusion/Background Class
For a given dataset intended for contrast studies (e.g., NGT vs.

IGT+DM2; tumor vs. normal tissues; muscle tissues vs. other

tissues), we separated all of the samples from the dataset into two

classes representative of interested contrast: Exclusion/Back-

ground class E (e.g., normal tissues) as the class for background

of data measurement and the interested class: Inclusion/Target

class I (e.g., tumor tissues) as the target sample group to make

comparison with Exclusion/Background class. E and I is

exchangeable and also do not have to cover all the samples in

datasets, dependent upon the questions to address. The same

sample can not be selected into E and I classes at the same time.

Therefore, if TI as total number of samples from Inclusion class I

and TE as number of samples from Exclusion class E, and there

are total T samples in dataset. Thus, we have TI+TE, = T.

Select Sample-Level Differentiated Genes for Each
Sample in Dataset

For each single gene k in a dataset, its data in sample j is denoted

as Dk,j (k: gene k; j: sample j in the dataset, either in Class I or Class

E). To decide whether gene k is a sample-level differentiated gene

for sample j, we first used data of gene k in samples within

Exclusion/Background class E as background distribution of data

to create a cutoff threshold Ck for gene k, where we have

Ck = MADe({Dk,j}), where j = 1,2,… TE; TE is number of samples in

Class E in the dataset.

Function MADe() is defined as following: for n values xi

(i = 1,2,..n) in a data set X:

MADe xif gð Þ

~ 1:483 1 MAD xif gð Þ

~ 1:483 1 median xi{median Xð Þj jf gð Þ

where the inner median median(X) is the median of the set X and

the outer median is the median of the n absolute values of the

deviations about the inner median. MAD is conventional Median

Absolute Deviation and 1.483 is the scaling factor, which make

MADe comparable with a SD (Standard Deviation), although

MADe is more robust than SD and unaffected by the presence of

extreme values or outliers [57–58]. We also define median

expression level Mk for gene k for samples in Exclusion class E as:

Mk~median Dk,j

� �� �

where j = 1,2,… TE; TE is number of samples in class E in the

dataset.

There are two MADe-based methods for selecting sample-level

differentiated genes: one-sided MADe method and two-sided

MADe method. The one-sided MADe method intends to only

select sample-level differentiated genes from one direction of

changes (e.g., only up-regulated genes or only down-regulated

genes) in each sample. In contract, the two-sided MADe method

intends to select sample-level differentiated genes from both

directions of changes (e.g., pooled highly expressed genes and

lowly expressed genes together) in each sample.

For one-sided MADe method, there are two options for

selecting genes: higher side (right-side) or lower side (left side)

sorting options, which will select only highly expressed (e.g., up-

regulated) genes, or only lowly expressed (e.g. down-regulated)
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genes as sample-level differentiated genes compared to the data

distribution of Exclusion/Background class, respectively. For

higher side sorting option, considering gene k, if and only if

Dk,m. = Mk+Ck, gene k will be selected as a sample-level

differentiated genes (e.g., highly expressed) for sample m. For

lower side sorting option, considering gene k, if and only if

Dk,m, = Mk2Ck, gene k will be selected as a sample-level

differentiated gene (e.g., lowly expressed) for sample m; where

sample m is one of the selected samples in the dataset (either a

sample from Class I with TI samples or Class E with TE samples).

For two-sided MADe method, considering gene k, either if

Dk,m. = Mk+Ck or if Dk,m, = Mk2Ck, gene k will be selected as

sample-level differentiated gene (e.g., highly expressed or lowly

expressed ) for sample m, where sample m is one of the selected

samples in the dataset (either a sample from Class I with TI

samples or Class E with TE samples). This method will pool

together the genes that have changed at either direction (e.g.,

highly or lowly expressed) into sample-level differentiated lists.

Each time sample-level differentiated genes are selected, an

intermediate result file can be created, in which a similar binary

data matrix with value of either 1 or 0 was generated like the

original data matrix, except that for each data point in the original

matrix, say, a data point for gene g and sample s, the data was

transformed to either 1 if gene g was selected as sample-level

differentiated genes for sample g, or 0 if not. The interface for

creating such an intermediate result file is implemented into WPS

[4] and described in a separate manuscript (Yi and Stephens

unpublished work). Such an intermediate result file is useful if one

wants to further pursue the importance of each of the pathway-

level differentiated genes involving in the studied phenotype with

class-ranking method described as below.

Compute for Enrichment Scores for Each Sample-Level
Differentiated Genes into an Enrichment Score Matrix

Once the sample-level differentiated gene lists are sorted into

individual files in a file folder or directory using WPS program

interfaces and utilities of pathway pattern extraction pipeline

described in a separate manuscript (Yi and Stephens unpublished

work), enrichment scores can be computed in a batch mode for

each of these gene lists and merged into a stanford format file.

Briefly, Fisher’s exact test is performed based on 262 contingency

tables (whether a gene is in the given list or not vs. whether this

gene is associated with a pathway/term or not, described

previously [4] for each term for each list). All Fisher’s exact test

results are ranked based on the p-values for each list and stored as

individual files for further merging. During the merging process,

all the p-values are transformed by a formula (2Log10(p-value))

into enrichment scores, where appropriate filtering is applied,

typically, ListHits,2 or p-value.0.05 will be used to floor the

enrichment scores to 0; otherwise, 2Log10(p-value) will be the

enrichment scores. The data matrix of enrichment scores without

any flooring or filtering (i.e., original enrichment scores (2Log10(p-

value))) may be also obtained from a program interface described

in a separate manuscript (Yi and Stephens unpublished work).

Pathway-Ranking for Enrichment Score Matrix
For each term in the enrichment score matrix, let the

enrichment score of sample i in pathway or term t as ESi,t, TI as

total number of samples from Inclusion class I and TE as number

of samples from Exclusion class E.

In order to get the Pathway-ranking score for a given pathway

or term t, we need compute for two intermediate ranking scores

for each term t: class difference ranking scores and p-value sum

ranking scores. Class difference ranking scores reflect the

difference in the percentages of samples in class I and class E

with significant enrichment scores. p-value sum ranking scores

reflect the difference in the magnitude of the enrichment scores in

samples of class I and samples of class E.

Cfc is defined as the Cutoff for class difference ranking score, as

default, Cfc = 2log10(0.05) = 1.3 (one can change the default in

program interface to other desired value). First, we compute for

class difference ranking score CDR for pathway or term t, which is

defined as CDRt, we have:

CDRt~N ESi,twCfc,i[Ið Þ
�

TI{N ESj,twCfc,j[E
� ��

TE

Where N(ESi,t.Cfc, iMI) refers to the number of samples in class I

with enrichment score larger than the Cfc; and N(ESj,t.Cfc, jME)

refers to the number of samples in class E with enrichment score

larger than the Cfc.

Then, we compute for p-value sum ranking scores for pathway

or term t, which is defined as PSRt, we have:

PSRt~
X

i[I

ESi,t=TI{
X

j[E

ESj,t

�
TE

Where
P
i[I

ESi,t refers to the sum of enrichment scores for term t of

all samples in class I and
P
j[E

ESj,t refers to the sum of enrichment

scores for term t of all samples in class E. Thus, to compute the

pathway-ranking score for a given pathway or term t, which

referred as PRt, we have:

If both CDRt and PSRt are less than 0, PRt is computed as

PRt = (21)*CDRt*PSRt; otherwise, PRt is computed as:

PRt = CDRt*PSRt.

Estimation of Significance of Ranked Pathways/Terms
The statistical significance of a given pathway ranking score PRt

for a given pathway or term t is assessed with permutated p-value

using permutation testing of class assignments of each sample from

both Inclusion and Exclusion classes (e.g., whether a sample has a

phenotype of DM2 versus NGT in the human type 2 diabetes

mellitus (DM2) dataset [23]). Briefly, we permutate the sample

labels among total selected samples including both class I and class

E. For each permutation, we re-calculate pathway-ranking score

for each term t as permutated PRt. This procedure was repeated

1000 (default setting) or more times. The permutated p-value for

each term t is calculated as the fraction of random trials resulting

in permutated pathway-ranking scores no less than PRt. The FDR

q value is also calculated based on this null distribution derived

from permutation as followed: to compute an FDR q value, for a

given pathway-ranking score PRt, the FDR is the ratio of the

percentage of all pathway-ranking scores derived from the

permutated data, which are no less than PRt, divided by the

percentage of observed pathway-ranking scores derived from the

original data, which are no less than PRt. Because such

permutation tests randomize the class assignments of samples

from both sides of contrasted classes, it is a test of the dependence

of the actual class assignment for each individual sample, which is

characteristic of the phenotype under study.

Retrieval and Ranking of the Associated Genes for
Significant Ranked Terms as Pathway-Level Differentiated
Genes

The ranked pathways with significant permutated p-values,

FDR, and/or rankings may be used for retrieval of their associated

SLEPR Pathway Ranking Method

PLoS ONE | www.plosone.org 14 September 2008 | Volume 3 | Issue 9 | e3288



genes from the sample-level differentiated genes in samples of

Inclusion class. The retrieval can be easily done using newly

developed WPS pipeline interface for pathway-level pattern

extraction, described in a separate manuscript (Yi and Stephens

unpublished work). The retrieved genes can be ranked in a way

similar to the class ranking method used for pathway ranking,

using the subset of data for these genes derived from the

intermediate result file created when selecting the sample-level

differentiated genes as described above.

Within the retrieved associated genes, we compute for class

difference ranking score CDRG for gene g, which is defined as

CDRGg, and each transformed value TV (i.e. 1 or 0) in the data

matrix of an intermediate result file referred as TVs,g for sample s

and gene g, then we have:

CDRGg~N TVi,g~1,i[I
� ��

TI{N TVj,g~1,j[E
� ��

TE

Where N(TVi,g = 1, iMI) refers to the number of samples in class I

with transformed value in the intermediate file equal to 1; and

N(TVj,g = 1, jME) refers to the number of samples in class E with

transformed value in the intermediate file equal to 1.

We define these genes with CDRG larger than 0 as pathway-

level differentiated genes, which may potentially represent the

whole repertoire of alternations occurring at gene level within the

engaged pathway in association with the class contrast or

compared phenotypes. Such ranking of pathway-level differenti-

ated genes can be used for evaluating the significance or the

probability of the involvement of these genes related to the

interested phenotype in the dataset under study.

Supporting Information

Figure S1 Sample-wise gene-level variations shown by the

heatmap of z-scores for pathway-level differentiated genes, which

are associated with one of the top terms (Oxidative Phosphory-

lation) from the SLEPR result in Table 1. The z-scores of these

genes were computed using all samples from both Inclusion and

Exclusion classes, and were displayed in the heatmap using color

gradient for their values as red for positive z-scores and green for

negative z-scores, black for scores of 0. The z-scores are calculated

on each gene basis. For each sample, the z-score (also referred as

standard score sometime) of an intended gene is derived by

subtracting the population mean of this gene from the original

data of the corresponding sample of this gene and then dividing

the difference by the population standard deviation of this gene. In

general, a positive z-score indicates a relatively higher expression

level of a gene in the corresponding sample over the sample

population for this gene; negative for a lower expression; 0 for

average expression.

Found at: doi:10.1371/journal.pone.0003288.s001 (1.41 MB TIF)

Figure S2 Heatmap of call values for sample-level differentiated

genes, which are associated with one of the top terms (Oxidative

Phosphorylation) from the SLEPR result in Table 1. The call value

is 1 if the gene is called as sample-level differentiated genes for the

corresponding sample, 0 if not. The genes were ranked in a way as

described in Materials And Methods Section, and were displayed

in the heatmap in the order of ranks from top to bottom with

higher ranked genes at the top.

Found at: doi:10.1371/journal.pone.0003288.s002 (1.17 MB TIF)

Figure S3 Sample-wise gene-level variations shown by the

heatmap of Z-scores for sample-level differentiated genes, which

are associated with the No. 1 (Muscle contraction) and No. 2

(Muscle development) terms from the SLEPR result in Table 9.

The z-scores of these associated genes were computed using all

samples from both Inclusion and Exclusion classes, and were

displayed in the heatmap using color gradient for their values as

red for positive z-scores and green for negative z-scores, black for

scores of 0.

Found at: doi:10.1371/journal.pone.0003288.s003 (1.37 MB TIF)

Figure S4 No bias for the SLEPR ranking scores vs. sizes of gene

sets. A pdf file with several plots showing no bias for the SLEPR

ranking scores vs. sizes of the gene sets: for distribution of SLEPR

pathway ranking scores vs. gene set sizes (with different gene set

size windows) and histogram distribution of gene set sizes for data

in Table S2, Table S4, and Table S6 (for all terms or different

numbers of top ranked terms in the tables).

Found at: doi:10.1371/journal.pone.0003288.s004 (1.92 MB

PDF)

Table S1 The complete list of result of GSEA analysis result for

NGT vs. IGT+DM2 comparison, which has the top ranked terms

shown in Table 3

Found at: doi:10.1371/journal.pone.0003288.s005 (0.19 MB

XLS)

Table S2 The complete list of result of SLEPR analysis result of

GSEA annotations for NGT vs. IGT+DM2 comparison with one-

side MADe option for highly expressed genes in NGT, which has

the top ranked terms shown in Table 1.

Found at: doi:10.1371/journal.pone.0003288.s006 (0.33 MB

XLS)

Table S3 The complete list of ranked pathway-level differenti-

ated genes of the No. 1 term (Oxidative Phosphorylation) in

Table 1. The call values for sample-level differentiated genes of

these genes are also included in the file.

Found at: doi:10.1371/journal.pone.0003288.s007 (0.06 MB

XLS)

Table S4 The complete list of SLEPR analysis result of GSEA

annotations for NGT vs. DM2 comparison with two-side MADe

option for highly or lowly expressed genes in NGT.

Found at: doi:10.1371/journal.pone.0003288.s008 (0.30 MB

XLS)

Table S5 The complete list of SLEPR analysis result of a

synthetic database that consisted of 2000 randomly selected gene

sets (with matched size of gene set) mixed with the known gene set

of ‘‘Oxidative Phosphorylation’’ from MSigDB. NGT versus

IGT+DM2 class contrast was used with one-side MADe option for

highly expressed genes in NGT.

Found at: doi:10.1371/journal.pone.0003288.s009 (0.22 MB

XLS)

Table S6 The complete list of SLEPR analysis result of GO

biological processes for comparison of neural or brain-related

tissues vs. other tissues with one-side MADe option for highly

expressed genes in neural or brain-related tissues.

Found at: doi:10.1371/journal.pone.0003288.s010 (0.28 MB

XLS)

Table S7 The complete list of result of GSEA analysis result for

tumor vs. normal comparison, which has the top ranked terms

shown in Table 11

Found at: doi:10.1371/journal.pone.0003288.s011 (0.16 MB

XLS)

Table S8 The complete list of SLEPR analysis result of KEGG

pathways for comparison of tumor vs. normal with two-side

MADe option for highly or lowly expressed genes in tumors.
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Found at: doi:10.1371/journal.pone.0003288.s012 (0.02 MB

XLS)
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